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Abstract

The Computational Plant or Cplant is a commodity-
based supercomputer under development at Sandia Na-
tional Laboratories. This paper describes resource-
allocation strategies to achieve processor locality for par-
allel jobs in Cplant and other supercomputers. Users of
Cplant and other Sandia supercomputers submit parallel
jobs to a job queue. When a job is scheduled to run, it is as-
signed to a set of processors. To obtain maximum through-
put, jobs should be allocated to localized clusters of proces-
sors to minimize communication costs and to avoid band-
width contention caused by overlapping jobs.

This paper introduces new allocation strategies and per-
formance metrics based on space-filling curves and one di-
mensional allocation strategies. These algorithms are gen-
eral and simple. Preliminary simulations and Cplant ex-
periments indicate that both space-filling curves and one-
dimensional packing improve processor locality compared
to the sorted free list strategy previously used on Cplant.
These new allocation strategies are implemented in the new
release of the Cplant System Software, Version 2.0, phased
into the Cplant systems1 at Sandia by May 2002.
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1. Introduction

As part of the Accelerated Strategic Computing Initia-
tive [32], the Department of Energy Laboratories are pur-
chasing a sequence of increasingly powerful custom su-
percomputers. In a parallel effort to increase the scal-
ability of commodity-based supercomputers, Sandia Na-
tional Laboratories is also developing the Computational
Plant or Cplant [46, 24, 9, 42, 7, 8]. This paper describes
resource-allocation algorithms to optimize processor local-
ity in Cplant and other supercomputers.

Although Sandia maintains a diverse set of comput-
ing resources, the tools for managing these resources
commonly rely on scheduling/queueing software such as
NQS [15] or PBS [36] to determine which of the available
jobs should be run next. These jobs are prioritized based on
a variety of factors including computing resources already
allocated to the owners of the jobs, number of processors
requested, running-time estimates, waiting time so far, and
even day of week and time of day. But this decision is not
based on the locations of the free processors. The scheduler
simply verifies a sufficient number of processors are free
before dispatching a job.

When a job is selected to run, the processor allocator
assigns it to a set of processors, which are exclusively ded-
icated to this job until it terminates. To obtain maximum
throughput, the processors allocated to a single job should
be physically near each other to minimize communication
costs and to avoid bandwidth contention caused by over-
lapping jobs. Processor locality is particularly important
in commodity-based supercomputers, which typically have
higher communication latencies and lower bandwidth than
supercomputers with custom networks.

Processor locality is an issue for Cplant. We have shown
that if two high-communication jobs are hand-placed on the
machine so that their communication paths overlap signif-



icantly, both jobs’ running times are approximately dou-
bled. Subramani et al. [50] reach similar conclusions. The
Cplant switches are usually connected in a two or three-
dimensional mesh topology. Most switches contain four
processors. Thus, a good processor allocation includes all
processors in a rough subcube of switches.

For the problem addressed in this paper, we have no con-
trol over the scheduler. Given a stream of jobs from the
scheduler, we wish to allocate processors to maximize pro-
cessor locality. More precisely, we address the following
problem. Each parallel job � has an arrival time ��� (the
time when it is dispatched from the scheduler for proces-
sor allocation), a requested number of processors ��� , and
a processing time (the user submits an estimated process-
ing time; the true processing time is known when the job
completes; the user’s job may get truncated if it does not
complete by the estimated processing time). The jobs ar-
rive online, that is, job � is only known to the allocator after
the time ��� when it is dispatched from the scheduler. Pre-
emption and migration are not allowed, that is, once a job is
begun it must be executed to completion on the same set of
processors. The objective is to assign a set of processors to
each job to optimize some global measure of locality. For
example, if the machine is a mesh, we may choose to op-
timize the average expansion of the bounding box, i.e. the
ratio of the bounding box for the allocated processor set and
the minimum possible bounding box. Section 2.3 defines a
new locality measure motivated by this work.

The thesis of this paper is that processor locality can be
achieved in massively parallel supercomputers using sim-
ple, one-dimensional allocation strategies. This approach is
applicable even when the processors are connected by ir-
regular, higher dimensional networks. We accomplish this
reduction using an space-filling curve which imposes an or-
dering on the network of processors such that locations near
each other on the curve are also near each other in the net-
work of processors.

In this paper we describe our experience applying this
strategy to Cplant. In Cplant supercomputers, the switches
are usually connected by two or three-dimensional meshs
with toroidal wraps in one or more dimensions, but some
of the oldest systems have more highly-connected irregu-
lar topologies. We use Hilbert curves (also called fractal
curves) in two dimensions and have an integer program for
general networks. We present preliminary experimental re-
sults and motivating simulations for 2D and 3D meshes.

The remainder of the paper is organized as follows. The
next subsection describes related theoretical and simulation
work. Section 2 describes our allocation strategies given a
processor ordering. Section 3 summarizes our simulations.
Section 4 describes our experimental results. Section 5 of-
fers some concluding remarks.

1.1 Related Work

The simulation-based investigations of Subramani et
al. [50] show that fragmentation is necessary for high per-
formance. Their work is directly motivated by the Cplant
system, though some of it can be applied to more general
systems. They investigated the effect on system through-
put of a policy forbidding fragmentation, using trace files
from the Cornell Supercomputing Center. In their simula-
tion, they queued jobs until a set of contiguous processors
were available, scaling the running times down to indicate
the benefit of contiguous allocation. They determined that
fragmentation must cause at least a factor-of-two slowdown
in order for the benefit of completely contiguous allocation
to compensate for the loss of processor utilization. Thus,
any real system must allow for fragmentation.

Subramani et al. [50] also investigated a strategy that
allows fragmentation, motivated by the buddy strategy for
memory allocation. They considered 2D and 3D meshes.
The machine is subdivided geometrically. For example, two
halves of the machine are a buddy pair, two quarters within
the half, etc. Jobs are allocated to these predefined sub-
blocks. Their system holds some jobs back rather than frag-
menting them. This buddy approach does not directly apply
to our problem because the allocator cannot ever delay jobs.

A problem closely related to Cplant processor allocation
is memory allocation. In this problem there is an array of
memory, and contiguous sub-arrays are allocated and deal-
located online [43, 44, 33]. One objective is to minimize the
highest memory address used and consequently the required
memory size. Memory allocation differs from processor al-
location because memory allocators leave empty space to
guarantee contiguity and are allowed to refuse requests that
do not fit contiguously.

Another related problem is online bin packing. In bin
packing, the objective is to pack a set of items with given
sizes into bins. Each bin has a fixed capacity and cannot
be assigned items whose total size exceeds this capacity.
The goal is to minimize the number of bins used. The off-
line version is NP-hard [22] and bin packing was one of
the first problems to be studied in terms of both online and
offline approximability [27, 28, 29]. Multi-dimensional bin
packing, where the items and bins are hyperrectangles, has
also been studied. The seminal offline and online results
appear in [12, 14], while the latest results are in [47]. For
a more detailed review of bin packing, see the surveys [13,
18]. Bin packing results cannot be directly applied to our
problem since we have only a single “bin”. Also objects
can leave the system, creating multiple holes within this bin
because jobs cannot migrate.

Our work adapts several of the algorithms for one-
dimensional online bin packing. A common feature of these
algorithms is they keep a list of partially-filled bins. Ar-



riving objects may be placed in one of these bins (assum-
ing they fit) or they may be placed in a new bin, which is
then added to the list. The First Fit algorithm [27] places
a new object in the first bin in which it fits. Best Fit [27]
places a new object in the bin whose remaining space will
be smallest. When the bins and objects have integral sizes,
the more complicated Sum of Squares algorithm [17] is also
available. This algorithm bases its decisions on a vector � ,
where ������� is the number of bins with remaining size � . It
places a new item in the bin which minimizes the resulting
value of �������	��
 . This allocation policy encourages a va-
riety of sizes of unallocated regions. When the input comes
from a discrete distribution, this algorithm has near-optimal
behavior [16].

Other researchers have used space-filling curves for a va-
riety of problems. Originally, space-filling curves were in-
troduced by Hilbert [26] and Peano [38]. Recent presen-
tations appear in [19] and [45]. Hilbert curves have been
shown to preserve several measures of ”locality” [35, 23].
An alternative with better performance in two dimensions
is given in [37]. Generalizations of Hilbert curves to
higher dimensions are given in [1]. Specific applications
include matrix multiplication [11, 20], domain decomposi-
tion [3, 25, 39], and image processing [2, 34, 4, 51, 31, 30].
They are also a standard tool in the creation of cache-
oblivious algorithms [21, 40, 5, 41, 6, 10], which have
asymptotically optimal memory performance on multilevel
memory hierarchies while avoiding memory-specific pa-
rameterization.

There is a large body of work on scheduling and on-
line scheduling, in particular. We do not attempt to re-
view all this work here, but refer the reader to the survey
of Sgall [48].

2 Allocation Strategies

2.1 Baseline Cplant Allocation

Our test Cplant system is a 2D toroidally-wrapped mesh.
The Cplant version 1.9 default allocator uses a sorted free
list based on a left-to-right, top-to-bottom linear processor
order. Even for the Cplant machines with non-mesh inter-
connection topologies, the processors are physically placed
on planes so that such an ordering is possible. When a job �
requiring � � processors is dispatched by the scheduler, the
allocator queries the system to determine which processors
are free and gathers these processors into a sorted list. Job
� is allocated to the first � � processors in the list. These
processors may be far apart with respect to the linear order
(and the real machine), even if there is a contiguous piece
of sufficient size available later in the list.

We use the latest version 1.9 default Cplant system as
our baseline against which to measure improvement.

2.2 Transforming to One-Dimensional Allocation

As with the current Cplant node-allocation algorithms,
we impose a linear ordering on the processors. We use a
Hilbert curve, rather than an arbitrary order or sorting by
row and column. We then allocate to obtain locality within
this linear ordering.

The Hilbert curve only applies to grid topologies. We
consider the problem of finding good one-dimensional or-
derings for general parallel interconnection topologies and
formulate this problem as an integer program. (We omit
the full formulation.) If two processors’ ranks in the one-
dimensional ordering differ by � , then their contribution to
the objective function (which we minimize) is a parame-
ter �
����� times their distance in the graph. The parameter
�
����� decreases rapidly (e.g., inverse exponentially) with � ,
so that close pairs in the linear order are coerced to be close
physically. We can also use this objective function to com-
pare different curves for a given topology.

The above integer-programming problem for computing
a good one-dimensional ordering is NP-complete since it
is a generalization of the Hamiltonian path (HP) problem.
This problem is HP if we set �
��������� for all ����� , and
�
��������� . The graph has a Hamiltonian path if and only if
the integer program has a solution with an objective func-
tion value of ����� where � is the number of nodes in the
graph. Though the problem is NP-complete we may be able
to solve particular instances optimally or to within a prov-
able instance-specific error tolerance using PICO (Parallel
Integer and Combinatorial Optimizer), a massively-parallel
branch-and-bound code developed at Sandia National Lab-
oratories and Rutgers University. PICO includes a (branch-
and-cut) mixed-integer program solver. Though this com-
putation may be time-consuming, it is performed only once
for any given physical machine and choice of ����� � .

2.3 One-Dimensional Allocation Strategies

We modify existing memory-allocation and bin-packing
algorithms for the Cplant processor-allocation problem.
The modification is not a straightforward generalization be-
cause it is not required (although desirable) that processors
be allocated contiguously. We use analogs to bin-packing
algorithms when processors can be allocated contiguously.
The intervals of contiguous free processors are analogous
to free space in unfilled bins. However, we must determine
a different allocation strategy when there is no contiguous
interval of sufficient size.

Span Metrics Our one-dimensional processor-locality
metric is motivated by a linear or ring topology. Let !#" be
the rank of processor � in the linear ordering. This will
be an integer in the range �%$'&#&'&($*) +,) , where + is the set



of processors. Let � � be the set of processors assigned
to job � . The linear span, ���� is the number of proces-
sors potentially involved in message propagation/delivery
for job � if the processors are connected only in a line.
That is, ���� is the maximum difference in rank between
any pair of processors assigned to job � (plus one): ���� ����
	 "���
�� ! " � ����� "���
�� ! "���� . All processors with ranks
between this minimum and maximum rank (including the
endpoints) are involved in routing a message between these
two processors. These are the processors “owned” by job �
plus those “trapped” between pieces of job � . The ring span
���� is a measure of locality if the processors are connected
in a ring, again corresponding to the processors “owned”
by job � and those “trapped” by these segements. Computa-
tionally, it is easier to determine the size of the largest “free”
set of processors, accounting for the ring wraparound, and
subtract it from the number of processors. Let ! ��� � be the
� th-smallest rank of a processor in � � for � � � &#&'& � � � � .
Then we define ���� � ) +,)%� ���
	 � ���
	 "���� 
���! ! ��� �#"%$ � ! ��� � �
�*$%) +,)'� ����! ��� "����&$'� ! ���  � & In this paper, we use ring span
which we call span and denote � � for brevity. Span � � is
a measure of the processor locality of job � for more gen-
eral topologies provided the space-filling curve closely re-
flects processor locality. The integer program described in
Section 2.2 computes a processor ranking for ring span pro-
vided difference in rank is computed as the minimum dis-
tance around the ring.

In this paper we test heuristic methods for span mini-
mization. (Minimizing metrics based on span is computa-
tionally difficult. Examples of such metrics include the sum
of the spans of jobs ( �)(�#�%$ ��� ), the max of the spans of jobs
( ���
	 (���%$ ��� ), the sum (resp. max) of the spans divided by
the requested number of processors ( �)(���*$ ���,+ �-� ), the sum
(resp. max) of the spans weighted by the processing times
( � (���%$ ���/.,� ), etc.)

Strategies When job � is dispatched, we determine if
there is a contiguous interval of free processors large
enough to run job � . When a job cannot be allocated
contiguously, it is allocated across multiple intervals. We
choose the allocation that minimizes the span of the job. In
a tie we start the job at the smallest rank possible. When a
job can be allocated contiguously, we choose which interval
to use based on adaptations of one-dimensional bin-packing
algorithms. We consider three strategies:

0 First-Fit Allocation – Allocate � to the first interval that
is large enough.

0 Best-Fit Allocation – Allocate � to the interval that
minimizes the number of unallocated processors re-
maining in the interval.

0 Sum-of-Squares Allocation – For each interval to

which � could be allocated, determine the number of
intervals of each size that would remain. Allocate � to
the interval that minimizes the sum of squares of these
numbers of intervals.

All of these strategies are easy to implement and run
quickly. The gains in system throughput (described in Sec-
tion 5) far outweigh the additional computation time of the
allocator.

3 Simulations

We built an event-driven Cplant simulator, which tests
the allocation strategies from Section 2.3 on space-filling
curves. The objective of the simulator is to exhibit tenden-
cies rather than to predict running times precisely. Our sim-
ulations suggest that one-dimensional allocation strategies
coupled with space-filling curves yield processor locality in
higher dimensions. A variety of performance metrics gauge
the processor locality.

Trace Files The Cplant simulator was run on traces from
October, November, and December 2000. These trace
files contain data about all jobs submitted to a Cplant ma-
chine configured as a heavily augmented 2D mesh with1�2�3

compute processors. The trace file includes the times
that the jobs were dispatched from the scheduler, the num-
ber of processors requested, and the actual running times.
These traces did not contain the processors on which the
job was actually run so we cannot compute the fragmenta-
tion/runtime environment of these jobs.

From a trace it is hard to predict how the running time of
the jobs would change if the allocation were different. The
difficulty is because the running times depend on factors
that are hard or impossible to model. These factors include
the processor allocation, the communication patterns of the
jobs, the overlaps of the jobs, and the properties of the com-
munication network.

Rather than make potentially spurious estimates about
the change in the running time of the job with different allo-
cations, our simulations hold the running times constant and
use metrics based on processor locality. The assumption is
that increased locality improves performance, but that the
actual speed-ups should be determined through experimen-
tation.

We transformed the traces into many inputs that model
different workloads. We developed one parameterized set of
inputs by increasing or decreasing the running times of the
jobs by a factor that we call the work multiple. All the jobs
were increased by this work multiple. Increasing running
times makes processors busier since jobs are in the system
for a longer amount of time. Note that we do not change



release times so that the interaction between jobs are differ-
ent. We developed a second set of parameterized inputs by
duplicating jobs and perturbing the arrival times; the num-
ber of times that a job is duplicated is called the replication
factor. The results for both types of inputs were similar, so
we report only the work-multiple results.

Metrics One-dimensional metrics include the average
span and the average span divided by the number of proces-
sors (stretch-span). Three-dimensional metrics include the
average size of a bounding box (size of the region defined
by the maximum difference between the � , � , and � dimen-
sions of the job allocation), the average sum of the dimen-
sions of the bounding box, the average size of the bound-
ing cube, the average number of connected components per
job, as well as metrics based on the maximum and sum-of-
squares of these parameters as well as metrics weighted by
the running times or divided by the number of processors.

Simulator The simulator assumes a single 8x8x5 grid
with one processor per vertex, for a total of 320 processors.
This topology is a simplification of the production Cplant
architecture at the time the traces were obtained.

Our simulator models the Cplant job queue and sched-
uler so that the workloads are similar to those on Cplant.
When a job arrives it is placed in a job queue. The job
queue is sorted first by number of requested processors and
then by requested processing time. (Thus, fairness between
users and different night and day priorities are not modeled.)
Periodically, the scheduler polls to determine which proces-
sors are free to execute jobs, and jobs are removed from the
front of the queue.

Results Our results suggest that one-dimensional alloca-
tion strategies coupled with space-filling curves yield pro-
cessor locality in higher dimensions. We tested a variety
of performance metrics; for the sake of brevity, only a few
representative results appear in Figure 1.

We do not know how much the increased locality speeds
up the running time. However, the work-multiple param-
eterization demonstrates that as workloads increase, it be-
comes harder to obtain processor locality and as workloads
decrease it becomes easier. Thus, as the locality of the
jobs improves, the running time decreases which further de-
creases the load, thus further decreasing the running time.

The overall trend is that the processor locality improves
through our approach. The simulation results were suffi-
ciently promising to justify implementing the allocation al-
gorithms on Cplant. The gains in system throughput (de-
scribed in Section 4) are consistent with these simulation
results.
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Figure 1. Top: The average bounding cube
divided by the smallest bounding cube. Bot-
tom: The average span of jobs. The � -axis
plots the work multiple, where we simulate
the strategies on a range of workloads.

4 Experiments

We have performed a limited number of experiments on
a 128-processor Cplant machine configured as a 2D mesh.
This development machine has an ����� mesh of switches
with toroidal wraps in both dimensions. Four of the rows
have four processors per switch. The other rows contain
no compute processors; they contain service and I/O nodes,
but fewer than four per switch on average. This pilot study
serves as a proof of the concept: careful one-dimensional
ordering and allocation to preserve locality within this or-
dering both improve system throughput.

All runs use identical job streams containing replicas
of various-sized instances of a single communication test
suite. The communication test suite contains all-to-all
broadcast, all-pairs ping-pong (message sent in each direc-
tion), and ring communication. Each communication test is



Allocation Average Standard
Strategy Makespan Deviation
Free List (no curve) 5:46:31 0:10:10
Best Fit (no curve) 5:27:58 0:05:48
Free List (Hilbert) 4:58:52 0:07:37
Sum of Squares (Hilbert) 4:32:09 0:03:16
First Fit (Hilbert) 4:30:22 0:06:09
Best Fit (Hilbert) 4:25:23 0:03:00

Table 1. Effect of allocation policy on the
makespan of the test stream

repeated a hundred times in each suite. The suite computes
a variety of statistics, whose computation consumes a small
fraction of the total running time. Because locality is most
important for jobs with high communication demand, this
test suite represents a best-case scenario for the benefits of
allocation improvements.

Our test job stream had 91 jobs of size 2, 33 jobs of
size 5, 31 jobs of size 25, and 33 jobs of size 30. This
gives a small range of “large” (approximately � +�� or � + 1 of
the machine) and small jobs. The stream starts with some
large jobs to fill up the machine. Small jobs are interspersed
among the large ones to cause fragmentation. The last job
submitted is small, but it always finishes in front of the last
large job. The machine is busy through the release of the
last job.

Running times on the Cplant system are nondeterminis-
tic. If we run the same job stream twice with the same al-
location algorithm, same job ordering, same release times,
starting from an empty machine, and having dedicated pro-
cessors, the running times are not the same. Cplant has in-
herent nondeterminism in the network. There is variabil-
ity in time to load executables, in message delivery times,
and so on. If the completion time of a single job changes,
the options available for the allocation of subsequent jobs
also changes. This effect propagates so that later jobs can
be allocated significantly better or worse than in a previ-
ous run. We even see different job execution orderings,
when a job that is held up for insufficient free processors
in one run finds enough free processors in a different run.
We found that this nondeterminism did not significantly af-
fect the makespan of the job stream,2 but the running times
of individual job types did vary by 4-16%.

We ran the job stream two to five times (an average of
four) for each of the following strategies: First Fit and Sum
of Squares with the Hilbert curve, and Free List and Best
Fit with and without the curve.

Table 1 shows the effect of the allocation algorithm on

2The makespan of a set of jobs is the time between the start of the first
job and the completion of the last job.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140 160 180 200

W
ai

tin
g 

T
im

e 
(s

ec
on

ds
)

Job Number

Baseline
Free List

Sum of Squares
First Fit
Best Fit

Figure 2. The x-axis shows order of job re-
lease. The y-axis shows waiting time. The
baseline points use the default processor or-
dering. All other runs are for the indicated
algorithm with the Hilbert curve. Jobs of size
2, 5, and 25 are not represented since these
would all be near the line ����� .

the makespan of the job stream. For this particular job
stream, it is better to use a space-filling curve than the row-
based ordering. It is also better to pack a job into a consec-
utive interval if possible. However, the performance of the
various bin-packing-based allocation strategies were largely
indistinguishable.

Figure 2 shows the waiting times of the 30 node jobs
as a function of their order in the job stream. Recall the
job stream is identical for all runs, so job order is identical
across runs. Wait time measures the amount of time a job
sits in a queue waiting for a sufficient number of free pro-
cessors. This plot does not include the

3
-node,

1
-node, and3�1

-node jobs. Their wait time was so insignificant com-
pared to that of the �*� -node jobs that they all sit near the
� axis. This figure shows that waiting time is yet another
metric that orders the methods the same way with substan-
tial separation.

Figure 3 examines job completion time as a function of
two job-fragmentation metrics, one inherent to the topol-
ogy of the job placement and one used by the algorithms.
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Figure 3. Top: (a) Completion time as a func-
tion of the average number of communication
hops between processors. Bottom: (b) Com-
pletion time as a function of span. Compar-
ison of fragmentation metrics. These plots
include only 30-processor jobs across all al-
location algorithms. (a) includes all proces-
sor orderings. (b) is for Hilbert curve only.

A natural geometric fragmentation metric is the average of
the number of communication hops between processors al-
located to a job. Figure 3(a) plots job completion time as a
function of this average for the 30-node jobs. Figure 3(b)
is a similar plot for span with the Hilbert curve. We do not
include the 2-node, 5-node, and 25-node jobs in these plots.
The 2-node, 5-node, and 25-node jobs differ enough from
the 30-node jobs to add noise to the plots. When the 2-
node, 5-node, and 25-node jobs are plotted by themselves,
they show the same weak correlation on a different scale
and with a different slope. These plots include all 30-node
jobs placed with all algorithms since the effect of fragmen-
tation should be a function of the amount of fragmentation
and independent of how that placement decision was made.

We observe a weak correlation for both metrics. As ex-
pected, there is a stronger correlation of completion time to
the average number of communication hops because this is
a closer match to the topology of the job placement. We
are encouraged that the general span metric, which can be
easily computed, still tracks this correlation, albeit more
weakly. We do not show the similar plot for bounding
box perimeter that gives an intermediate strength correla-
tion. None of these metrics captures the full environment in
which a job is run.

5 Concluding Remarks and Future Work

We are cautiously optimistic that the simple, general al-
location methods discussed in this paper will improve the
performance of Cplant systems and apply to more general
systems. Our experiments support the use of span as a frag-
mentation metric for the design of algorithms and as a mea-
sure of locality. Jobs with large span do generally take
longer. However, the relationship between span and com-
pletion time is not very tight. More work is needed to deter-
mine how much of this variability is inherent in the problem
and how much results from the imprecision of using span.

We also think that finding the minimum span for a given
machine and set of jobs is an interesting theoretical prob-
lem. It is related to, yet distinct from, well-studied prob-
lems such as memory allocation and bin packing. We have
a simple reduction to show that finding the exact minimum
span is NP-hard, but do not yet know if it is approximable.

We have also studied these problems in the online set-
ting, where the standard (worse-case) model is competitive
analysis [49]. While we omit the proof here, we have been
able to show that no online algorithm for minimizing maxi-
mum span can achieve a competitive ratio better than � ��� �
even for randomized strategies.

We intend to evaluate non-greedy allocation methods for
jobs that cannot be allocated a contiguous interval. In par-
ticular, Sum-of-Squares-like algorithms are more likely to
leave flexibility in the allocation options for future jobs. On



some Cplant machines, once a job has span of half the ma-
chine size, it effectively consumes bandwidth across the en-
tire machine. Our hope is that additional flexibility will al-
low us to avoid such situations.

It may be possible to improve the allocation further
by considering the actual processor topology rather than
working entirely within a linear ordering of the processors.
When the processors are arranged as a mesh, this makes
the allocation problem a multidimensional packing prob-
lem, but other processor topologies such as toruses do not
have obvious analogs in the packing literature.

It may also be beneficial to consider scheduling and pro-
cessor allocation together. Currently the allocator is forced
to allocate jobs passed from the scheduler even if these
jobs must be highly fragmented. Combining these modules
might allow more intelligent decisions to be made, but any
replacement would need to provide other functionality of
the scheduler such as preventing starvation and allocating
resources fairly between users.

Our experiments were limited by the small size of
our test machine and the specialized nature of the test
jobs/stream. Fully rigorous testing will be very challenging
because even our limited test suite required 4.5 to 6 hours
per run. In order to do these runs, we must take a system
away from other users. This is particularly challenging for
the 1500+ node production systems. Therefore our future
work will have to rely on simulation to some extent. How-
ever, these simulations must convincingly account for the
effects of locality on job completion time.
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