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Abstract

We show that the Shortest Processing Time (SPT) algorithm is (∆ + 1)/2-competitive for
nonpreemptive uniprocessor total flow time with release dates, where ∆ is the ratio between the
longest and shortest job lengths. This is best possible for a deterministic algorithm and improves
on the (∆ + 1) competitive ratio shown by Epstein and van Stee using different methods.
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1 Introduction

We consider the problem of online nonpreemptive scheduling with release dates on a single machine
to minimize total flow time (1|ri|

∑

i Fi). The input is a sequence of n jobs, where job Ji cannot be
started before its release time ri and must exclusively occupy the machine for its processing time
pi. In our model, the value of pi is known at time ri. Let SA

i and CA
i be the starting time and

completion time of Ji when scheduled by algorithm A. The flow time of job Ji is FA
i = CA

i −ri, the
time between its release and completion. Our objective is to minimize

∑n
i=1 FA

i , the total flow time.
When preemption is allowed, i.e., jobs can be paused and resumed without penalty, the problem
is solved optimally by the algorithm Shortest Remaining Processing Time (SRPT) [6, 7], which
always runs the job with the least remaining processing time. When preemption is not allowed,
every deterministic algorithm is Ω(n)-competitive for total flow [4]. Even in the offline setting, flow
cannot be approximated within a factor of Ω(n1/2−ǫ), for any ǫ > 0, unless P=NP [4].

These strong bounds make it natural to consider approximations in terms of other parameters.
One choice is ∆, the ratio between the largest and smallest processing times. Epstein and van
Stee [3] give bounds in terms of ∆ for a resource-augmented version of the problem where an online
algorithm running on l processors is compared to the optimal algorithm (SRPT) running on one
processor. For the special case l = 1, they show that the algorithm Shortest Processing Time (SPT),
which begins the shortest available job whenever the processor becomes idle, is (∆+1)-competitive.
They also show an Ω(∆) lower bound for deterministic algorithms.

The main result of this paper is the following:

Theorem 1 SPT is (∆ + 1)/2-competitive for total flow.
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Figure 1: SRPT schedule of 3 jobs. The active intervals of jobs J1, J2, and J3 are [0, 2), [2, 8), and
[3, 5) respectively. Intervals [0, 2) and [2, 8) are maximal, so the blocks are {J1} and {J2, J3}.

In Section 2, we define blocks of jobs based on the SRPT schedule and show that the jobs of a
block are also executed together in the SPT schedule. In Section 3 we define a block-based schedule
ECHO and show it has competitive ratio (∆ +1)/2. In Section 4 we use ECHO as an intermediate
between SRPT and SPT to prove Theorem 1. Then, in Section 5, we show a lower bound of
(∆ + 1)/2 on the competitive ratio of any deterministic algorithm. Section 6 gives concluding
remarks and open problems.

2 Block Structure

Although typical definitions of SRPT and SPT do not specify how the algorithms choose among
jobs of the same processing time, it is necessary to do so to prove our results. If SRPT has already
worked on one of the jobs with equal remaining processing time, we require that it resume this job
before starting the others. It may choose between jobs with equal initial processing time arbitrarily,
provided that SPT uses the same order.

Now we can define blocks. The active interval of job Ji is the half-open interval [SSRPT
i , CSRPT

i ).
When two active intervals intersect, one contains the other [4]. We focus on maximal active intervals,
those not contained in any other. A block is the set of jobs run during a maximal active interval.
Since maximal active intervals are disjoint, the blocks partition the set of jobs. Figure 1 illustrates
these definitions.

The main result of this section is that SPT obeys the block structure of SRPT; the only difference
is the order in which it runs the jobs of each block. To show this, we label the blocks B1, B2, . . . , Bm

in the order SRPT runs them and use Ii to denote the interval when SRPT runs the jobs of Bi. Let
the SRPT-rank of job J be the index of the block containing it, i.e. J has SRPT-rank i if J ∈ Bi.

Theorem 2 SPT runs jobs in order of non-decreasing SRPT-rank.

We say that an algorithm is busy if it is idle only when it has completed all jobs that have been
released. Because SRPT and SPT are both busy algorithms, they are idle at exactly the same
times and Theorem 2 is equivalent to the following:

Corollary 3 For each i, SPT runs exactly the jobs of Bi during interval Ii.

Proof of Theorem 2: Consider a counterexample with fewest jobs. In such a counterexample,
SPT must begin a job of SRPT-rank 2 before finishing all jobs of SRPT-rank 1, because otherwise
both SPT and SRPT would finish the first block of jobs at the same time and these jobs could be
removed to create a smaller counterexample.

Because we specified that they use the same tie-breaking rule to select a job, SPT and SRPT
both begin with the same job Ja. SRPT must preempt Ja, because otherwise this is the only job
of SRPT-rank 1. Suppose SPT first starts a job of SRPT-rank 2 at time t and let Jb be the job
it starts. Because we have a smallest counterexample, all jobs are started by at least one of the
algorithms by time t. In particular, this implies that no jobs arrive after time t.
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Figure 2: Illustration for the proof of Theorem 2

Let pa(t) be the remaining processing time of Ja at time t, and let time t′ ≤ t be the latest
time before time t that SRPT works on Ja. Since SRPT works on Ja immediately before time t′,
it had finished all jobs shorter than pa(t) available before time t′. Because the jobs SRPT works
on between times t′ and t must be shorter than pa(t), they arrive no earlier than time t′. They are
also shorter than pb since Jb 6∈ B1 implies pb ≥ pa(t). Thus, SPT schedules them before Jb. Since
SPT starts Jb at time t, these jobs finish in time t − t′, so SRPT also finishes them at time t and
resumes Ja. Because no jobs arrive after time t, Ja is not interrupted. The block ends when SRPT
finishes Ja so SRPT runs Jb next. Figure 2 depicts the situation.

SPT and SRPT are both busy so they finish the instance at the same time. SPT must run
at least one job after Jb since pa(t) > 0. Let Jc be the last job it runs, so Jb and Jc finish
simultaneously. Because pb ≥ pa(t), SRPT finishes Ja no later than SPT finishes Jb and thus starts
Jb no later than SPT starts Jc. Hence, pb ≥ pc.

Recall, however, that SPT runs Jb before Jc. Jc was available when SPT starts Jb at time t
because no jobs arrive after time t, implying pb ≤ pc. Since SRPT runs Jc before Jb, consistent tie
breaking strengthens this to pb < pc, a contradiction. 2

3 Schedule ECHO

Now we define a new schedule ECHO in terms of the SRPT schedule. ECHO is idle at exactly
the same times as SRPT. During Ij , ECHO runs the jobs of Bj , starting with the same job as
SRPT and then running the others in order of increasing SRPT completion time. The jobs are run
without delay so they complete during Ij . Figures 3 and 4 give examples of ECHO schedules.

For the SRPT schedule at time t, let first(t) be the work remaining on the block’s first job,
part(t) be the work done on partially-completed jobs other than the first, and curr(t) be the work
remaining on the currently-running job. These quantities obey the following relationship:

Lemma 4 curr(t) ≤ first(t) − part(t), with strict inequality unless SRPT is idle or working on

the block’s first job at time t.

Proof: We prove this for each block. At the start of a block, the claim holds because curr(t) =
first(t) and part(t) = 0. When SRPT does not switch jobs, the inequality remains true because
curr(t) decreases to compensate for changes in first(t) or part(t). Now suppose that SRPT switches
jobs at time t. Let Ji be the job SRPT was running immediately before time t.

Case 1: Ji is preempted to run a job Jj. Let curr ′(t) be the value of curr(t) if Ji had not
been preempted. Because Jj preempts Ji, pj < curr ′(t). If Ji is the first job, part(t) = 0 and
curr ′(t) = first(t) imply the inequality. Otherwise, curr(t) = pj < curr ′(t) preserves it.
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Case 2: Ji is finished and the block ends. If a new block is begun, curr(t) = first(t) and
part(t) = 0. Otherwise, the processor is idle at time t, with first(t) = part(t) = curr(t) = 0.

Case 3: Ji is finished, but the block does not end. Let Jk be the unfinished job that was
most recently preempted and time t∗ be when its most recent preemption occurred. By
definition, SRPT finishes jobs it runs between times t∗ and t, so part(t) = part(t∗). Also,
first(t) = first(t∗) since SRPT does not run the block’s first job until Jk is finished. Because
the inequality would hold at time t∗ if Jk had not been preempted, pk(t

∗) ≤ first(t∗)−part(t∗).
If Jk is resumed at time t, curr(t) = pk(t

∗). Otherwise, a job shorter than Jj runs so
curr(t) < pk(t

∗). In either case, the inequality holds.

When SRPT is working on a job other than the block’s first, the first job has been preempted
and not resumed. Applying case 1 when the first job is preempted causes the inequality to become
strict until the first job is resumed. 2

Now we are ready to prove the soundness of ECHO.

Theorem 5 ECHO does not run a job before its release time.

Proof: This is clear for the first job in each block. For other jobs, we show that ECHO only
starts jobs SRPT has already finished. To see this, view the ECHO schedule as being constructed
incrementally, starting with the first job in the block and adding other jobs as SRPT completes
them. At any time t after ECHO finishes the first job in the block, SRPT has spent first(t)−part(t)
time on jobs that it has completed, but ECHO has not. Thus, ECHO will take time first(t)−part(t)
to finish the already-scheduled jobs and Lemma 4 implies that SRPT finishes a job before ECHO
runs out of already-scheduled jobs. 2

Now we consider the competitiveness of ECHO.

Lemma 6 ECHO is (∆ + 1)/2-competitive for total flow.

Proof: We consider a single block starting with Ji. Let x be the sum of sizes of jobs other
than Ji. Let ΣSRPT and ΣECHO denote the total flow of SRPT and ECHO, respectively. In
the SRPT schedule, Ji has flow pi + x and the other jobs have at least x, for at least pi + 2x
total. ECHO delays Ji by x less than SRPT and delays each of the other jobs by at most pi

more. Since there are at most x/pmin other jobs, where pmin is the instance’s minimum processing
time, ΣECHO ≤ ΣSRPT − x + pix/pmin ≤ ΣSRPT + (∆ − 1)x. Thus, the competitive ratio is
ΣECHO/ΣSRPT ≤ 1 + (∆ − 1)x/ΣSRPT ≤ 1 + (∆ − 1)x/(pi + 2x) ≤ (∆ + 1)/2 2

4 Proof of Theorem 1

Now we prove Theorem 1 by showing that SPT generates a schedule no worse than ECHO for every
problem instance. (Figure 3 gives an instance where SPT is strictly better.) Lemma 6 then implies
that SPT is (∆ + 1)/2-competitive.

To compare SPT and ECHO, consider changing a SPT schedule into an ECHO schedule by
repeatedly removing the first difference between them. By Corollary 3, it suffices to consider the
schedule of a single block. Without loss of generality, assume SPT runs jobs in numerical order: J1

followed by J2 and so on. Let the schedules first differ at time τ , when ECHO starts Ji and SPT
starts Ji′ with i > i′. We remove this difference with a slide; start Ji at time τ and delay Ji′ , . . . , Ji−1
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SPT J1 J3 J2

0 4 5 7

ECHO J1 J2 J3

0 4 6 7

SRPT J1 J2 J1J3 J1

0 1 3 4 5 7
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Figure 3: Instance with SPT better than ECHO (
∑

FSPT
i = 11 and

∑

FECHO
i = 12)
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i ri pi
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4 14 1
5 7 6

Figure 4: SRPT, ECHO, and SPT schedules

by pi. This increases flow by (i− i′)pi −
∑i−1

k=i′ pk =
∑i−1

k=i′(pi − pk). The latter expression gives the
increase as the sum of increases due to each inversion, a change in relative order of Ji and Jk. We
denote an inversion moving Ji before Jj with (Ji, Jj). For our proof, we call inversion (Ji, Jj) bad

if pi < pj and good otherwise; bad inversions are those that decrease flow.
For the instance in Figure 4, changing the SPT schedule into the ECHO schedule requires 3 slide

operations, advancing J3, J5, and J4. These slides cause the inversions (J3, J2), (J5, J4), (J5, J2),
and (J4, J2). The only bad inversion is (J4, J2), which changes flow by p4 − p2 = −3.

We now show that the slide operations increase flow by proving that procedure PAIR given in
Figure 5 pairs each bad inversion in which job Jslide moves earlier with a good inversion in which
Jslide moves later so that each pair has a net increase. To demonstrate this procedure, we use it to
find a partner for (J4, J2) in the instance shown in Figure 4. Jslide = J4 and only J2 is colored blue
on line 2. In the first iteration of the loop (lines 4–14), Jblue = J2, t = 9, X = {J1}, and Y = {J3}.
Job J3 is alone in Y \X so Jpick = J3. SPT runs J4 after J3 so we color J3 blue and set its note to
J2. In the second iteration, Jblue = J3, t = 13, X = {J1, J2}, and Y = {J3, J5}. The only red job
in Y \X is J5. SPT runs J4 before J5 so inversion (J5, J4) is paired with (J4, note(J3) = J2). This
pair has net change in flow (p5 − p4) + (p4 − p2) = 2.

We begin showing that PAIR works by proving a pair of technical lemmas.

Lemma 7 At each step, pblue ≤ ppick.

Proof: SPT runs Jblue rather than Jpick at time t; Jpick 6∈ X so SPT has not run Jpick, but
Jpick ∈ Y is available because SRPT has finished it. 2

Lemma 8 Jslide is not released until SPT has started all the blue jobs.
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1 Procedure Pair(job Jslide, schedule SPT, schedule SRPT)
2 color job J blue if bad inversion (Jslide, J) occurs and red otherwise
3 attach a note “J” to each job J
4 foreach blue job Jblue in SPT (in order of increasing SPT start time)
5 t = start time of Jblue in SPT
6 X = jobs SPT finished by time t
7 Y = jobs SRPT finished by time t
8 Jpick = any red job of Y \ X
9 if(SPT runs Jslide before Jpick)
10 pair (Jpick, Jslide) with (Jslide, note(Jblue))
11 color job Jpick green
12 else
13 color Jpick blue
14 copy the note of Jblue to Jpick

Figure 5: Procedure Pair, which finds partners for bad inversions involving Jslide

Proof: The lemma follows from the following invariants: (1) Jslide is shorter than each of the
blue jobs, and (2) SPT runs Jslide after all the blue jobs. Both hold initially because each blue job
occurs in a bad inversion with Jslide. If Jpick is colored blue on line 13, the first invariant holds by
Lemma 7 because the newly blue Jpick is longer than one of the jobs that was already blue. The
second invariant holds because we only color Jpick blue if SPT runs Jslide after it. 2

Now we show Jpick can always be selected on line 8.

Lemma 9 PAIR can always find a red job in Y \ X.

Proof: First we show there is a blue job in X for each blue or green job in Y . Consider a job
J ∈ Y that is not red. It cannot have been colored blue on line 2 because this implies that SRPT
finishes it after Jslide and Jslide has not been released yet by Lemma 8. Since J is not red and was
not colored blue on line 2, it was Jpick in a previous loop iteration. The Jblue from that iteration is
in X since line 4 considers jobs in order of SPT start time.

Now observe that J1 ∈ X. Since the block ends when SRPT finishes J1, J1 6∈ Y . Also, J1 is
never colored blue so it did not cause a Jpick to be selected. The lemma follows since SRPT has
always finished at least as many jobs as any other algorithm [6]. 2

Next we show that the resulting pairs are valid and have non-negative flow.

Lemma 10 Each pair consists of 2 valid inversions whose combined change to flow is non-negative.

Proof: First we show that inversion (Jpick, Jslide) exists. (The other inversion exists since
note(Jblue) was colored blue on line 2.) A pair is only made if SPT runs Jslide before Jpick. SRPT
finishes Jpick ∈ Y by time t. Since Jslide is released after time t by Lemma 8, SRPT and ECHO
run Jslide after Jpick.

Now we show that the pair gives non-negative change in flow. Denote the processing time of the
job named in note(Ji) with pnote(i). Then the net change of {(Jpick, Jslide), (Jslide, note(Jblue))} is
ppick − pslide + pslide − pnote(blue) = ppick − pnote(blue). By Lemma 7, this is at least pblue − pnote(blue).
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Now it suffices to show pi ≥ pnote(i) for all i. This is initially true because note(Ji) = Ji. Notes are
only changed on line 14, where a note is copied from Jblue to Jpick. Since pblue ≤ ppick by Lemma 7,
the claim is maintained. 2

Finally, we address termination.

Lemma 11 PAIR terminates and pairs all bad inversions caused by sliding Jslide.

Proof: PAIR terminates because each job is Jblue at most once. Furthermore, since Jpick 6∈ X by
construction, if Jpick is colored blue on line 13, SPT runs it after Jblue. Thus, each blue job creates
either a pair or a later blue job. Since all blue jobs are visited, all inversions are paired. 2

5 Lower Bound

Now we show that ECHO and SPT have the best possible competitive ratio.

Theorem 12 No deterministic algorithm for nonpreemptive uniprocessor total flow is c-competitive

for any fixed c < (∆ + 1)/2.

Proof: For any algorithm, we construct an adversarial instance on which the algorithm’s com-
petitive ratio is arbitrarily close to (∆ + 1)/2. The instance’s first job has processing time ∆ and
release time 0. Any deterministic algorithm delays for some constant time C, dependent on the
algorithm, and then starts this job. The instance’s remaining jobs all have processing time 1 and
release time C + ǫ + i for small ǫ and each i = 0, . . . , n − 2. The algorithm has flow at least
C + ∆ + (∆ + 1− ǫ)(n− 1). The optimal algorithm runs the small jobs as they arrive and runs the
first job either immediately if C ≥ ∆ or after the small jobs if C < ∆. The latter case yields greater
flow, C + ∆ + 2(n − 1). The ratio between the algorithm’s flow and the optimal flow approaches
(∆ + 1)/2 as n → ∞ and ǫ → 0. 2

6 Concluding Remarks

We have shown that SPT has the best possible competitive ratio among deterministic algorithms,
but it is open whether randomized algorithms can do better. The best lower bound known for
randomized uniprocessor flow is Ω(

√
∆) [2].

On a multiprocessor, SRPT does not have the same block structure because preempted jobs
can be restarted on different processors. However, Awerbuch et al. [1] give an O(log min{n, ∆})-
competitive multiprocessor algorithm that uses preemption, but not migration. In their algorithm,
each processor runs SRPT on a subset of the jobs. Replacing the SRPT schedule on each processor
with ECHO removes the preemptions while increasing the competitive ratio by an O(∆) factor.
No algorithm was known to be competitive for online nonpreemptive multiprocessor flow; the best

offline approximation known is O
(

√

n/m log(n/m)
)

on m processors [5].
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