
Improved Combination of Online Algorithms for
Acceptance and Rejection

David P. Bunde
∗

Department of Computer Science
Univ. Illinois at Urbana-Champaign

Urbana, IL 61801

bunde@uiuc.edu

Yishay Mansour
†

School of Computer Science
Tel-Aviv University

Tel-Aviv, 69978, Israel

mansour@tau.ac.il

ABSTRACT
Given two admission control algorithms that are cA-accept-
competitive and cR-reject-competitive respectively, we give
two ways to make an algorithm that is simultaneously O(cA)-
accept-competitive and O(cAcR)-reject-competitive. The
combined algorithms make no reference to the offline op-
timal solution. In addition, one of the algorithms does not
require knowing the value of either cA or cR. This improves
on work of Azar, Blum, and Mansour, whose combined al-
gorithm was O(c2

A)-accept-competitive, involved computing
offline optimal solutions, and required knowing the values of
both cA and cR.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; F.2.2 [Analysis of Algo-

rithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms
Algorithms, Theory.

Keywords
On-line, Competitive, QoS, Admission control.

1. INTRODUCTION
In admission control problems, the input is a list of calls,

each a request for resources. The algorithm is given limited
resources and chooses a subset of the calls to satisfy, reject-
ing the others. Typically, these decisions must be made

∗Partially supported by NSF grant CCR 0093348.
†Partially supported by the Israel Science Foundation.

Copyright is held by the author/owner.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
ACM 1-58113-840-7/04/0006.

online, where it is not possible to find an optimal solu-
tion. Two types of competitive algorithms have been de-
vised. One type of algorithm tries to maximize the value of
accepted calls, called its benefit and denoted BALG(σ) for
input σ. We say that an online algorithm A is c-accept-
competitive if BA(σ) ≥ (1/c)BOPT (σ) for all σ, where OPT
is the offline optimal algorithm. The other type of com-
petitive algorithm tries to minimize the value of rejected
calls, called its cost and denoted CALG(σ). An online algo-
rithm R is c-reject-competitive if CR(σ) ≤ cCOPT (σ) for all
σ. Although OPT both maximizes benefit and minimizes
cost, accept-competitive and reject-competitive algorithms
are incomparable in general. For example, consider a 2-
accept-competitive algorithm A and a 2-reject-competitive
algorithm R. If OPT accepts 98% of the input, algorithm
R accepts at least 96%, but algorithm A may accept only
49%. However, if OPT accepts 50% of the input, algorithm
A accepts at least 25%, but algorithm R may accept noth-
ing.

Azar, Blum, and Mansour [1] cite examples of each type of
algorithm and give an algorithm SWITCH to combine a cA-
accept-competitive algorithm A and a cR-reject-competitive
algorithm R into an algorithm that is simultaneously O(c2

A)-
accept-competitive and O(cAcR)-reject-competitive. The
main idea behind SWITCH is to alternately run algorithms
A and R depending on the proportion of calls accepted by
an offline optimal solution for σt, the input up to time t.
It requires explictly knowing the values of cA and cR. In
this paper, we give two algorithms that are simultaneously
O(cA)-accept-competitive and O(cAcR)-reject competitive.
Neither requires finding optimal solutions. The first, S2, is
a modification of SWITCH that no longer requires know-
ing the value of cR. The second, RO, is new and does not
require knowing the value of either cA or cR.

Model. Our model is identical to that of Azar et al. [1].
One call arrives at each time step. If the call is accepted
and not later preempted, the algorithm accrues benefit one.
If the call is rejected (or later preempted), it accrues cost
one. Thus, |σ| = BALG(σ) + CALG(σ) for all inputs σ and
all algorithms ALG. The only assumption about the re-
sources made by algorithm S2 is monotonicity; any subset
of a feasible set of calls is also feasible. In addition, algo-
rithm RO must be able to tell when two calls cannot be
satisfied concurrently, but neither algorithm requires an ex-
plicit representation of the resources.

2. ALGORITHM S2
Now we describe algorithm S2. Internally, S2 simulates

algorithms A and R on the input. At any time, S2 is in
either an A phase or an R phase. We call the algorithm
corresponding to the current phase the phase algorithm. S2
accepts, rejects, and preempts calls in exactly the same way
as the phase algorithm. At each time step, S2 decides its
current phase by calculating rt = BR(σt)/t. S2 is in an
R phase if rt ≥ τ = 1 − τ̄ , where τ̄ = 1/(8cA), and in
an A phase if rt < τ . Whenever S2 switches phases, it
preempts any accepted calls that the new phase algorithm
did not accept. Thus, the calls accepted by S2 are feasible
since they are a subset of the calls accepted by the phase
algorithm.

2.1 Analysis of Rejections
Suppose S2 is in an A phase at time t. Then BR(σt) < τt

and CR(σt) = t − BR(σt) > τ̄t. Since algorithm R is cR-
reject-competitive, COPT (σt) > τ̄t/cR = t/(8cAcR). Even
if S2 rejects every call, its rejection competitive ratio is at
most 8cAcR = O(cAcR).

Now suppose that S2 began an R phase at time T + 1
and is still in it at time T + t. We may assume T > 0 since
otherwise S2 has been in an R phase since the beginning of
the input and is thus cR-reject-competitive. Since S2 was in
an A phase at time T , CR(σT) > τ̄T . Thus, COPT (σT) >
τ̄T/cR = T/(8cAcR). Adding calls cannot decrease rejec-
tions so COPT (σT+t) ≥ COPT (σT) ≥ T/(8cAcR). S2 re-
jected at most T calls before the current R phase and at
most CR(σT+t) during the R phase. Thus, the rejection
competitive ratio is at most

T

T/(8cAcR)
+

CR(σT+t)

CR(σT+t)/cR

= 8cAcR + cR = O(cAcR)

2.2 Analysis of Acceptances
We define calls rejected because of algorithm R to be those

rejected or preempted during an R phase and denote their
number at time t with RR(t).

Lemma 1. At time t, RR(t) ≤ BOPT (σt)/(7cA).

Proof. If time t is during an R phase, the lemma follows
from BOPT (σt) ≥ BR(σt) ≥ tτ = t(1 − τ̄) ≥ 7t/8 and
RR(t) ≤ CR(σt) ≤ τ̄ t = t/(8cA).

Consider time t in an A phase. If S2 has not had an R
phase, RR(t) = 0 so the lemma holds. Otherwise, let the lat-
est R phase end at time t′. By the argument above, RR(t′) ≤
BOPT (σt′)/(7cA). Since S2 was in an A phase since time t′,
RR(t) = RR(t′) ≤ BOPT (σt′)/(7cA). Since optimal benefit
grows with the input, RR(t) ≤ BOPT (σt)/(7cA).

Now we can prove that S2 is O(cA)-accept-competitive.
We do this by bounding the number of calls accepted by
both algorithms, which is a lower bound on the number
of calls accepted by S2. Since algorithm A is cA-accept-
competitive, BA(σ) ≥ BOPT (σ)/cA. By the lemma, algo-
rithm R causes RR(t) ≤ BOPT (σ)/(7cA) additional rejec-
tions. Thus, BS2(σ) ≥ BOPT (σ)/cA − BOPT (σ)/(7cA) =
6BOPT (σ)/(7cA) and the accept-competitive ratio is at most
(7/6)cA = O(cA).

3. ALGORITHM RO
Now we describe algorithm RO. Internally, it keeps times

tA and tR, plus input prefixes σA and σR of these lengths. It
maintains simulations of algorithms A and R on inputs σA

and σR respectively, marking calls rejected by either. Times
tA and tR advance in phases, which are paused and resumed
as necessary so that max{tA, tR} = t at time t. Phase k has
an R subphase, advancing time tR until CR(σR) = 4k, fol-
lowed by an A subphase, advancing time tA until BA(σA) =
8 · 4k. RO rejects marked calls that cannot be satisfied con-
currently with the accepted calls. The idea of using marks
to delay rejections as long as possible is called lazy rejection.

3.1 Analysis of Rejections
One call comes per unit time, so CA(σA) = tA −BA(σA).

Similarly, COPT (σA) ≥ tA − cABA(σA), since BOPT (σA) ≤
cABA(σA). Combining these gives CA(σA) < COPT (σA) +
cABA(σA). During phase k, CR(σR) ≤ 4k, COPT (σR) ≥
4k−1/cR, and BA(σA) ≤ 8 · 4k. Thus, the competive ratio is
at most

4k + COPT (σA) + cABA(σA)

COPT (σt)
= O(cAcR)

3.2 Analysis of Acceptances
First, consider the case k = 0. In the R subphase, RO

rejects no calls and is optimal. The A subphase begins when
algorithm R rejects a call C. RO accepts the same calls as
algorithm A except possibly for C. However, BRO(σt) ≥ 1
since RO uses lazy rejection. Thus, BRO(σt) ≥ BA(σt) if
BA(σt) = 1 and BRO(σt) ≥ BA(σt)− 1 otherwise, so RO is
2cA-accept-competitive.

Now, consider k > 0 and tA ≥ tR. Since CR(σR) ≤ 4k and
BA(σA) ≥ 8 · 4k−1 = 2 · 4k, CR(σR) ≤ (1/2)BA(σA). Thus,
BRO(σt) ≥ (1/2)BA(σt) and RO is 2cA-accept-competitive.

Finally, consider k > 0 and tA < tR. Since BA(σA) ≥
8 · 4k−1 and CR(σA) ≤ CR(σR) ≤ 4k, BA(σA) ≥ CR(σA).
Thus, CA(σA) = tA −BA(σA) ≤ tA −CR(σA) = BR(σA) ≤
BOPT (σA). Algorithm A is cA-accept-competitive, so
BOPT (σA) ≤ cABA(σA) ≤ cA8 · 4k, implying CA(σA) <
cA8 · 4k. With CR(σt) ≤ 4k, this gives BOPT (σt) ≤ t ≤
BR(σt) + 4k ≤ BRO(σt) + CA(σA) + 4k < BRO(σt) + cA8 ·
4k + 4k. Because BA(σA) ≥ 8 · 4k−1 while CR(σR) ≤ 4k,
BRO(σt) ≥ BA(σA)−CR(σR) ≥ 4k. Thus, the accept com-
petitive ratio of RO is

BOPT (σ)

BRO(σ)
≤ 1 +

cA8 · 4k + 4k

4k
= 2 + 8cA = O(cA)

4. REFERENCES
[1] Y. Azar, A. Blum, and Y. Mansour. Combining online

algorithms for rejection and acceptance. In Proc. 15th

Ann. ACM Symp. Parallelism in Algorithms and

Architectures, pages 159–163, 2003.

