Improved Combination of Online Algorithms for Acceptance and Rejection

David P. Bunde
Department of Computer Science
Univ. Illinois at Urbana-Champaign
Urbana, IL 61801
bunde@uiuc.edu

Yishay Mansour†
School of Computer Science
Tel-Aviv University
Tel-Aviv, 69978, Israel
mansour@tau.ac.il

ABSTRACT
Given two admission control algorithms that are c_A-accept-competitive and c_R-reject-competitive respectively, we give two ways to make an algorithm that is simultaneously $O(c_A)$-accept-competitive and $O(c_{ACR})$-reject-competitive. The combined algorithms make no reference to the offline optimal solution. In addition, one of the algorithms does not require knowing the value of either c_A or c_R. This improves on work of Azar, Blum, and Mansour, whose combined algorithm was $O(c_A^2)$-accept-competitive, involved computing offline optimal solutions, and required knowing the values of both c_A and c_R. online, where it is not possible to find an optimal solution. Two types of competitive algorithms have been devised. One type of algorithm tries to maximize the value of accepted calls, called its benefit and denoted $B^{ALG}(\sigma)$ for input σ. We say that an online algorithm A is c-accept-competitive if $B^A(\sigma) \geq (1/c)B^{OPT}(\sigma)$ for all σ, where OPT is the offline optimal algorithm. The other type of competitive algorithm tries to minimize the value of rejected calls, called its cost and denoted $C^{ALG}(\sigma)$. An online algorithm R is c-reject-competitive if $C^R(\sigma) \leq cC^{OPT}(\sigma)$ for all σ. Although OPT both maximizes benefit and minimizes cost, accept-competitive and reject-competitive algorithms are incomparable in general. For example, consider a 2-accept-competitive algorithm A and a 2-reject-competitive algorithm R. If OPT accepts 98% of the input, algorithm R accepts at least 96%, but algorithm A may accept only 49%. However, if OPT accepts 50% of the input, algorithm A accepts at least 25%, but algorithm R may accept nothing.

Azar, Blum, and Mansour [1] cite examples of each type of algorithm and give an algorithm $SWITCH$ to combine a c_A-accept-competitive algorithm A and a c_R-reject-competitive algorithm R into an algorithm that is simultaneously $O(c_A^2)$-accept-competitive and $O(c_{ACR})$-reject-competitive. The main idea behind $SWITCH$ is to alternately run algorithms A and R depending on the proportion of calls accepted by an offline optimal solution for σ_1, the input up to time t. It requires explicitly knowing the values of c_A and c_R. In this paper, we give two algorithms that are simultaneously $O(c_A)$-accept-competitive and $O(c_{ACR})$-reject competitive. Neither requires finding optimal solutions. The first, S_2, is a modification of $SWITCH$ that no longer requires knowing the value of c_R. The second, RO, is new and does not require knowing the value of either c_A or c_R.

Model. Our model is identical to that of Azar et al. [1]. One call arrives at each time step. If the call is accepted and not later preempted, the algorithm accrues benefit one. If the call is rejected (or later preempted), it accrues cost one. Thus, $|\sigma| = B^{ALG}(\sigma) + C^{ALG}(\sigma)$ for all inputs σ and all algorithms ALG. The only assumption about the resources made by algorithm S_2 is monotonicity; any subset of a feasible set of calls is also feasible. In addition, algorithm RO must be able to tell when two calls cannot be satisfied concurrently, but neither algorithm requires an explicit representation of the resources.
2. ALGORITHM S2

Now we describe algorithm S2. Internally, S2 simulates algorithms A and R on the input. At any time, S2 is in either an A phase or an R phase. We call the algorithm corresponding to the current phase the phase algorithm. S2 accepts, rejects, and preempts calls in exactly the same way as the phase algorithm. At each time step, S2 decides its current phase by calculating \(r_t = B^R(\sigma_t) / t \). S2 is in an R phase if \(r_t > 1 - \tau \), where \(\tau = 1/(8c_Ac_R) \), and in an A phase if \(r_t < \tau \). Whenever S2 switches phases, it preempts any accepted calls that the new phase algorithm did not accept. Thus, the calls accepted by S2 are feasible since they are a subset of the calls accepted by the phase algorithm.

2.1 Analysis of Rejections

Suppose S2 is in an A phase at time \(t \). Then \(B^R(\sigma_t) < \tau t \) and \(C^R(\sigma_t) = t - B^R(\sigma_t) \geq \tau t \). Since algorithm R is cr-reject-competitive, \(C^{OPT}(\sigma_t) > \tau t / c_R = t/(8c_Ac_R) \). Even if S2 rejects every call, its rejection competitive ratio is at most \(8c_Ac_R = O(c_Ac_R) \).

Now suppose that S2 began an R phase at time \(T + 1 \) and is still in it at time \(t + 1 \). We may assume \(T > 0 \) since otherwise S2 has been in an R phase since the beginning of the input and is thus cr-reject-competitive. Since S2 was in an A phase at time \(T \), \(C^R(\sigma_t) > \tau t \). Thus, \(C^{OPT}(\sigma_T) > \tau T / c_R = T/(8c_Ac_R) \). Adding calls cannot decrease rejections so \(C^{OPT}(\sigma_{T+1}) \geq C^{OPT}(\sigma_T) \geq T/(8c_Ac_R) \). S2 rejected at most \(T \) calls before the current R phase and at most \(C^R(\sigma_{T+1}) \) during the R phase. Thus, the rejection competitive ratio is at most

\[
\frac{T}{T/(8c_Ac_R)} + \frac{C^R(\sigma_{T+1})}{C^{OPT}(\sigma_{T+1})/c_R} = 8c_Ac_R + c_R = O(c_Ac_R)
\]

2.2 Analysis of Acceptances

We define calls rejected because of algorithm R to be those rejected or preempted during an R phase and denote their number at time \(t \) with \(R^R(t) \).

LEMMA 1. At time \(t \), \(R^R(t) \leq B^{OPT}(\sigma_t) / (7t) \).

PROOF. If time \(t \) is during an R phase, the lemma follows from \(B^{OPT}(\sigma_t) \geq C^R(\sigma_t) \geq \tau t \geq (1-\tau) \geq 7t/8 \) and \(R^R(t) \leq C^R(\sigma_t) \leq \tau t / (8c_A) \).

Consider time \(t \) in an A phase. If S2 has not had an R phase, \(R^R(t) = 0 \) so the lemma holds. Otherwise, let the latest R phase end at time \(t' \). By the argument above, \(R^R(t') \leq B^{OPT}(\sigma_{t'}) / (7t') \). Since S2 was in an A phase since time \(t' \), \(R^R(t) = R^R(t') \leq B^{OPT}(\sigma_{t'}) / (7t') \). Since optimal benefit grows with the input, \(R^R(t) \leq B^{OPT}(\sigma_t) / (7t) \).

Now we can prove that S2 is \(O(c_A) \)-accept-competitive. We do this by bounding the number of calls accepted by both algorithms, which is a lower bound on the number of calls accepted by S2. Since algorithm A is \(c_A \)-accept-competitive, \(B^A(\sigma) \geq B^{OPT}(\sigma) / c_A \). By the lemma, algorithm R causes \(R^R(t) \leq B^{OPT}(\sigma_t) / (7t) \) additional rejections. Thus, \(B^{S2}(\sigma) \geq B^{OPT}(\sigma) / c_A - B^{OPT}(\sigma_t) / (7t) \geq 6B^{OPT}(\sigma) / (7tc_A) \) and the accept-competitive ratio is at most \((7/6)c_A = O(c_A) \).

3. ALGORITHM RO

Now we describe algorithm RO. Internally, it keeps times \(t_A \) and \(t_R \), plus input prefixes \(\sigma_A \) and \(\sigma_R \) of these lengths. It maintains simulations of algorithms A and R on inputs \(\sigma_A \) and \(\sigma_R \) respectively, marking calls rejected by either. Times \(t_A \) and \(t_R \) advance in phases, which are paused and resumed as necessary so that max \(\{ t_A, t_R \} \) = \(t \). Phase \(k \) has an R subphase, advancing time \(t_R \), until \(C^R(\sigma_R) = 4^k \), followed by an A subphase, advancing time \(t_A \), until \(B^A(\sigma_A) = 8 \cdot 4^k \). RO rejects marked calls that cannot be satisfied concurrently with the accepted calls. The idea of using marks to delay rejections as long as possible is called lazy rejection.

3.1 Analysis of Rejections

One call comes per unit time, so \(C^A(\sigma_A) = t_A - B^A(\sigma_A) \). Similarly, \(B^{OPT}(\sigma_A) \geq t_A - c_A B^A(\sigma_A) \), since \(B^{OPT}(\sigma_A) \leq c_A B^A(\sigma_A) \). Combining these gives \(C^A(\sigma_A) \leq C^{OPT}(\sigma_A) + c_A B^A(\sigma_A) \). During phase \(k \), \(B^R(\sigma_R) \leq 4^k \), \(C^{OPT}(\sigma_R) \geq 4^{k-1} \), and \(B^A(\sigma_A) \leq 8 \cdot 4^k \). Thus, the competitive ratio is at most

\[
4^k + C^{OPT}(\sigma_A) + c_A B^A(\sigma_A) = O(c_Ac_R)
\]

3.2 Analysis of Acceptances

First, consider the case \(k = 0 \). In the R subphase, RO rejects no calls and is optimal. The A subphase begins when algorithm R rejects a call \(C \). RO accepts the same calls as algorithm A except possibly for \(C \). However, \(B^{RO}(\sigma_A) \geq 8 \cdot 4^k \) and \(B^A(\sigma_A) \leq 8 \cdot 4^{k-1} \) = \(2 \cdot 4^k \). Thus, \(B^{RO}(\sigma_A) = (1/2) B^A(\sigma_A) \). Thus, \(B^{RO}(\sigma_A) \geq (1/2) B^A(\sigma_A) \) and RO is \(2c_A \)-accept-competitive.

Finally, consider \(k > 0 \) and \(t_A \geq t_R \). Since \(C^R(\sigma_R) \leq 4^k \) and \(B^A(\sigma_A) \leq 8 \cdot 4^k \), this gives \(B^{OPT}(\sigma_R) \leq t_R \leq B^{RO}(\sigma_R) + C^A(\sigma_A) + 4^k < B^{RO}(\sigma_A) + c_A B^A(\sigma_A) \leq 8 \cdot 4^k \). Because \(B^A(\sigma_A) \geq 8 \cdot 4^k \) and \(C^R(\sigma_R) \leq 4^k \), \(B^A(\sigma_A) < C^R(\sigma_R) \leq 4^k \). Thus, the accept-competitive ratio of RO is

\[
\frac{B^{OPT}(\sigma_R)}{B^{RO}(\sigma_R)} \leq \frac{1 + c_A 8 \cdot 4^k + 4^k}{4^k} = \frac{2 + 8c_A}{4^k} = O(c_A)
\]

4. REFERENCES