
Average Rate Speed Scaling

Nikhil Bansal∗ David P. Bunde† Ho-Leung Chan‡ Kirk Pruhs§

December 28, 2009

Abstract

Speed scaling is a power management technique that involves dynamically changing the speed of a
processor. This gives rise to dual-objective scheduling problems, where the operating system both wants
to conserve energy and optimize some Quality of Service (QoS) measure of the resulting schedule. Yao,
Demers, and Shenker [6] considered the problem where the QoS constraint is deadline feasibility and
the objective is to minimize the energy used. They proposed an online speed scaling algorithm Average
Rate (AVR) that runs each job at a constant speed between its release and its deadline. They showed that
the competitive ratio of AVR is at most (2α)α/2 if a processor running at speed s uses power sα. We
show the competitive ratio of AVR is at least ((2− δ)α)α/2, where δ is a function of α that approaches
zero as α approaches infinity. This shows that the competitive analysis of AVR by Yao, Demers, and
Shenker is essentially tight, at least for large α. We also give an alternative proof that the competitive
ratio of AVR is at most (2α)α/2 using a potential function argument. We believe that this analysis is
significantly simpler and more elementary than the original analysis of AVR in [6].

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor to be changed dynami-
cally. Intel’s SpeedStep and AMD’s PowerNOW technologies allow the Windows XP operating system to
dynamically change the speed of such a processor to conserve energy. In this setting, the operating system
must not only have a job selection policy to determine which job to run, but also a speed scaling policy to
determine the speed at which the job will be run. In current CMOS based processors, the speed satisfies the
well-known cube-root-rule, that the speed is approximately the cube root of the power. Energy consumption
is power integrated over time. The operating system is faced with a dual objective optimization problem
as it both wants to conserve energy, and optimize some Quality of Service (QoS) measure of the resulting
schedule.

The first theoretical worst-case study of speed scaling algorithms was in the seminal paper [6] by Yao,
Demers, and Shenker. Their QoS objective was deadline feasibility and the objective was to minimize
the energy used. More precisely, each job i has a release time ri when it arrives in the system, a work
requirement wi, and a deadline di by which the job must be finished. If job i runs at constant speed s, then

∗IBM T. J. Watson Research Center, nikhil@us.ibm.com
†Computer Science Department, Knox College, dbunde@knox.edu. Supported in part by Howard Hughes Medical Institute

grant 52005130.
‡Department of Computer Science, The University of Hong Kong, hlchan@cs.hku.hk. This work was done when the author

was a postdoc in University of Pittsburgh.
§Computer Science Department, University of Pittsburgh, kirk@cs.pitt.edu. supported in part by NSF grants CNS-0325353,

CCF-0514058, IIS-0534531, and CCF-0830558, and an IBM Faculty Award.

1

it completes in wi/s units of time. In this setting, an optimal job selection policy is Earliest Deadline First
(EDF). They assumed a speed to power function P (s) = sα, where α > 1 is some constant. If the cube-root
rule holds, then α = 3. Yao, Demers, and Shenker [6] showed that the optimal energy feasible schedule is
found by a simple greedy algorithm that we call YDS.

Yao, Demers, and Shenker [6] also proposed an online speed scaling algorithm, Average Rate (AVR).
Conceptually, AVR runs each job i at speed wi/(di − ri) throughout interval [ri, di], independent of other
jobs. This spreads the work of each job as evenly over time as possible. By the convexity of the speed to
power function, this even spreading is energy optimal if the instance consists of only one job. The speed
of the processor at any time t is then just the sum of the speeds of the jobs active at that time, that is∑

i:t∈[ri,di]
wi

di−ri
. AVR is an appealing speed scaling algorithm because in some sense it is perfectly fair to

all jobs, and each job runs as if it were the only job in the instance.
Yao, Demers, and Shenker [6] showed that the competitive ratio, with respect to energy, of AVR is at

least αα. They also showed that the competitive ratio of AVR, with respect to energy, is at most (2α)α/2.
We now outline this upper bound competitive analysis of AVR. A job is defined to be of type A if the
optimal schedule is always ahead of AVR on this job. A job is defined to be of type B if AVR is always
ahead of the optimal schedule on this job. A schedule is bitonic if every job is of type A or type B. [6]
observes that there is a worst-case instance that is bitonic, and that the competitive ratio of AVR is at most
2α−1 times the competitive ratio of AVR on instances of jobs of just one type (A or B). [6] then considers
instances consisting only of type-A jobs. [6] then introduces an auxiliary objective function that is related
to, but is not exactly, the energy used. In a somewhat involved reduction, [6] shows that with respect to
this auxiliary objective, there is a worst-case instance where the optimal schedule is non-preemptive, each
job starts when it is released, and the spans of the jobs are nested (where the span of job i is the interval
[ri, di]). When α = 2, [6] then shows that for such instances, optimizing the auxiliary objective function can
be represented in terms of the eigenvalues of a particular tree-induced matrix, and shows how to bound the
largest eigenvalue for such tree-induced matrices. [6] states that this argument can be readily generalized to
an arbitrary α, and using Hölder’s inequality, give a bound on the `p norm of a certain tree-induced matrix
that would replace the eigenvalue argument used in the α = 2 case.

So the natural question left open is, “What is the exact competitive ratio of AVR?” Based on simulation
results, [6] conjectured that the competitive ratio of AVR is exactly αα. That is, that the lower bound in [6]
is correct, and intuitively, that AVR can not simultaneously be losing badly on both type-A and type-B jobs.
In the case that the cube-root rule holds, αα = 33 = 27 is the best known competitive ratio for any online
algorithm. If the conjecture from [6] was true, this would be evidence in favor of adopting the AVR speed
scaling policy. Not only would AVR have the best known competitive ratio in the case that the cube-root
rule holds, but AVR is appealingly fair to all jobs.

Unfortunately, in section 4, we show that the upper bound on the competitive ratio from [6] is essentially
tight, at least for larger α. More precisely, we show that AVR has competitive ratio at least ((2− δ)α)α/2,
where δ is a function of α that approaches zero as α approaches infinity. In the case obeying the cube-root
rule, we get a lower bound of approximately 48 on the competitive ratio of AVR.

In section 5, we give an alternative proof that the competitive ratio of AVR is at most (2α)α/2. Our
analysis uses a potential function argument. We believe that this analysis is significantly simpler and more
elementary than the original analysis of AVR in [6]. Our competitive analysis of AVR branches off from
the analysis in [6] outlined above after the observation that the competitive ratio of AVR is at most 2α−1

times the competitive ratio of AVR on jobs of just one type. We give a potential function argument that
AVR is αα-competitive on type-A jobs. We include a complete analysis of AVR in this paper, including
the elements of the analysis from [6] that we use. In principle, verifying this analysis requires only basic

2

algebra, except that some basic calculus is used to verify the positivity/negativity of certain polynomials
over particular ranges.

2 Other Related Results

There are now enough speed scaling papers in the literature that it is not practical to survey all such papers
here. We limit ourselves to those papers most related to the results presented here. Surveys that cover speed
scaling include [4, 5].

Yao, Demers, and Shenker [6] also proposed another online speed scaling algorithm, Optimal Available
(OA). The algorithm OA runs at the optimal speed (which can be computed using the YDS algorithm) as-
suming the current state and that no more jobs will be released in the future. [6] showed that the competitive
ratio of OA is at least αα. Using a potential function analysis, Bansal, Kimbrel, and Pruhs [3] showed that
OA is actually αα-competitive.

Bansal, Kimbrel, and Pruhs [3] also introduced an online speed scaling algorithm that we call BKP.
Intuitively, BKP tries to mimic the offline YDS schedule in some way. Formally, at time t BKP runs at
speed e v(t) where v(t) = maxt′>t

w(t,et−(e−1)t′,t′)
e(t′−t) and w(t, t1, t2) is the amount of work that has release

time at least t1, deadline at most t2, and that has already arrived by time t. [3] showed that BKP is si-
multaneously O(1)-competitive for total energy, maximum temperature (assuming cooling obeys Newton’s
law), maximum power, and maximum speed. Specifically, [3] showed that the competitive ratio of BKP
with respect to energy is at most 2(α/(α − 1))αeα. [2] introduce another algorithm qOA and show that it
is 4α/(2

√
eα) competitive. [2] give a lower bound of eα−1/α. on the competitive ratio of any deterministic

algorithm.
Albers, Müller, and Schmelzer [1] consider the problem of finding energy-efficient deadline-feasible

schedules on multiprocessors. [1] showed that the offline problem is NP-hard, and gave O(1)-approximation
algorithms. [1] also gave online algorithms that are O(1)-competitive when job deadlines occur in the same
order as their release times.

3 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline di > ri, and work wi > 0.
In the online version of the problem, the scheduler learns about a job only at its release time; at this time,
the scheduler also learns the exact work requirement and the deadline of the job. We assume that time is
continuous. A schedule specifies for each time a job to be run and a speed at which to run the job. The speed
is the amount of work performed on the job per unit time. A job with work w run at a constant speed s thus
takes w

s time to complete. More generally, the work done on a job during a time period is the integral over
that time period of the speed at which the job is run. A schedule is feasible if for each job i, work at least
wi is done on job i during [ri, di]. Note that the times at which work is performed on job i do not have to be
contiguous. If a job is run at speed s, then the power is P (s) = sα for some constant α > 1.

The energy used during a time period is the integral of the power over that time period. Our objective is
to minimize the total energy used by the schedule.

If A is a scheduling algorithm, then A(I) denotes the schedule output by A on input I . A schedule is
R-competitive for a particular objective function if the value of that objective function on the schedule is at
most R times the value of the objective function on an optimal schedule. An online scheduling algorithm A
is R-competitive, or has competitive ratio R, if A(I) is R-competitive for all instances I .

3

For a schedule T , let sT,j(t) denote the speed job j runs at time t in the schedule T , and let sT (t) =∑
j sT,j(t) denote the speed of the processor at time t in schedule T . If U is a subcollection of jobs, let

sT,U (t) denote the sum of the speeds of the jobs in U at time t in the schedule T . We will also substitute
an algorithm for a schedule in this notation. So for example, sAV R(t) is the speed of the algorithm AVR at
time t. We use OPT to denote a particular optimal schedule. We say that job i is active between its release
time and its deadline. We call wi/(di − ri) the density of job i since this is the job’s work divided by the
length of the interval in which it is active.

Algorithm AVR: At all times t, run the earliest-deadline job at speed sAV R(t) =
∑

i
wi

di−ri
, where the sum

is over jobs i active at time t.

Consider a fixed optimum schedule OPT. A job is said to be of type A if∫ t

rj

sOPT,j(t)dt ≥
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj

Intuitively, these are the jobs that OPT runs consistently ahead of their density. Similarly, the jobs of type
B are those that OPT runs consistently behind their density, meaning they satisfy∫ t

rj

sOPT,j(t)dt ≤
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj .

In general, a job need not be of either type (or it can also be of both types, in which case OPT executes
exactly as in AVR). We say an instance is bitonic if every job is of type A, type B, or both (in which case it is
arbitrarily assigned one of the types). A simple observation (Lemma 5) shows that if AVR is c-competitive
for bitonic instances, then it is also c-competitive in general.

4 The Lower Bound

We give an instance on which AVR uses up at least ((2 − δ)α)α/2 times the energy used by an energy
optimum solution, where δ is a function of α that tends to zero as α increases.

Instance Description: For convenience we will work with a continuous version of the job instance. We
say that work arrives at rate a(t) at time t to mean that a(t)dt units of work arrive during the infinitesimally
small interval [t, t + dt].

The instance consists of two sets of jobs A and B. The work in A arrives during the time interval
[0, 1− ε], at rate

a(t) =
1

(1− t)1/α

and all the work in A has deadline 1. Here ε > 0 is an arbitrarily small but fixed constant. The work in B
arrives during the interval [1− 1/c, 1− ε/c] (where c is a constant that will be set to α− 1 later) at rate

b(t) =
c

c1/α(1− t)1/α

and the work in B arriving at time t has deadline 1 + c(1− t).
Before proceeding with the formal proof, we give some intuition. The rate that type A work arrives

increases rapidly from time 0 to time 1 − ε. When type A work is almost finished arriving, type B work

4

starts arriving, and continues arriving a bit after the type A work stops arriving. The rate that type B work
arrives is a constant factor larger than the rate that type A work arrives, but has a much later deadline. The
optimal schedule will complete type A work at the rate that it arrives, and then process type B work at as
even rate as possible, from the time that type A work stops arriving, until the deadline for the type B work.
In Lemma 1 we calculate the cost of this optimal schedule. So intuitively the optimal strategy processes as
little work as possible during the critical time interval [1− 1/c, 1− 1/ε] when both type A and type B work
is arriving. However, since AVR processes work at an even rate, it processes too much work during this
critical interval. In Lemma 2 we calculate the cost to AVR during this critical interval. We then obtain our
lower bound on the competitive ratio of AVR by computing the ratio of these two calculations.

Lemma 1 On the instance above, the optimal algorithm uses total energy at most 2 ln(1/ε).

Proof: It suffices to give some feasible schedule that uses energy 2 ln(1/ε). Consider the schedule that
completes all jobs in A by running at speed a(t) during [0, 1− ε]. The energy usage is∫ 1−ε

0
(a(t))αdt = [− ln(1− t)]1−ε

0 = ln(1/ε)

For jobs in B, note that they are released before time 1 and have deadlines in [1 + ε, 2]. Consider any
time x ∈ [1 + ε, 2]. The jobs with deadline in [1 + ε, x] are released during [1 − x−1

c , 1 − ε
c]. Their total

amount of work is ∫ 1−ε/c

1−(x−1)/c
b(t)dt =

∫ 1−ε/c

1−(x−1)/c

c

c1/α(1− t)1/α
dt

Let y = 1 + c(1− t). Then dy = −c · dt, and the amount of work equals∫ 1−ε/c

1−(x−1)/c

c

c1/α(1− t)1/α
dt =

∫ 1+ε

x

−1
(y − 1)1/α

dy =
∫ x

1+ε

1
(y − 1)1/α

dy

Therefore, consider the schedule that processes jobs in B at speed b̂(y) = 1
(y−1)1/α continuously during

[1 + ε, 2]. For any x ∈ [1 + ε, 2], the amount of work done by time x equals the amount work with deadline
by x. So the schedule completes each job in B by its deadline. The energy usage to complete all jobs in B
is ∫ 2

1+ε
(b̂(t))αdt = [ln(y − 1)]21+ε = ln(1/ε)

Since the intervals of execution of work in A and B do not overlap, the total energy used is 2 ln(1/ε) and
the lemma follows.

Lemma 2 On the instance above, AVR uses total energy at least
αα(1 + c

c1/α(c+1)
)α ln(1/ε) + K, where K is a constant independent of ε.

Proof: Consider the work in A. The work released at time t is scheduled by AVR uniformly during the
interval [t, 1]. Thus, at any time x ∈ [0, 1], the density due to work in A is

dena(x) =
∫ x

0
a(t) · 1

1− t
dt =

∫ x

0

1
(1− t)1/α

· 1
1− t

dt = α

(
1

(1− x)1/α
− 1
)

5

Now consider the work in B. Note that for work released at time t, the duration between its release time
and deadline is 1 + c(1− t)− t = (c + 1)(1− t). Thus, at any time x ∈ [1− 1

c , 1−
ε
c], the density due to

work in B is

denb(x) =
∫ x

1−1/c

c

c1/α(1− t)1/α
· 1
(c + 1)(1− t)

dt

=
c

c1/α(c + 1)
· α
(

1
(1− x)1/α

− c1/α

)
During the interval [1− 1

c , 1− ε], AVR runs at speed equal to the total density due to work in A and B.
Therefore, the energy usage of AVR is at least∫ 1−ε

1−1/c
(dena(t) + denb(t))

α dt

=
∫ 1−ε

1−1/c

(
α

(
1 +

c

c1/α(c + 1)

)
· 1
(1− t)1/α

− α
2c + 1
c + 1

)α

dt (1)

Let Y = 1 + c
c1/α(c+1)

. Note that for all t ∈ [1− 1
c , 1− ε], we have that 1− t ≤ 1/c and hence

2c + 1
c + 1

· (1− t)1/α

Y
≤ 2c + 1

c + 1
· 1
c1/α

· c1/α(c + 1)
c1/α(c + 1) + c

≤ 2c + 1
(c + 1) + c

= 1

Then, by factoring αY 1
(1−t)1/α , the right side of (1) can be written as

∫ 1−ε

1−1/c
ααY α 1

1− t

(
1− 2c + 1

c + 1
· (1− t)1/α

Y

)α

dt

≥
∫ 1−ε

1−1/c

ααY α

1− t

(
1− α

2c + 1
c + 1

· (1− t)1/α

Y

)
dt as 1− αx ≤ (1− x)α for x ≤ 1

=
∫ 1−ε

1−1/c
ααY α

(
1

1− t
− Z(1− t)(1/α)−1

)
dt where Z = α(2c+1)

Y (c+1)

= ααY α
[
− ln(1− t) + αZ(1− t)1/α

]1−ε

1−1/c

= ααY α

(
− ln ε + αZε1/α + ln

1
c
− αZ(

1
c
)1/α

)
≥ ααY α ln(1/ε) + ααY α

(
ln

1
c
− αZ(

1
c
)1/α

)
since ε > 0

Since α, c, Y and Z are independent of ε the lemma follows.

Theorem 3 The competitive ratio of AVR is at least ((2− δ)α)α/2, where δ is a function of α that tends to
zero as α increases.

Proof: By Lemma 1 and 2, when ε tends to zero, the competitive ratio of AVR is at least ((1 + c1−1/α

c+1)α)α/2.

Putting c = α − 1, the competitive ratio is at least ((1 + (α−1)1−1/α

α)α)α/2, which equals ((2 − δ)α)α/2

where δ = 1− (α−1)1−1/α

α .

6

Note that for large α (in particular for α ≥ 2, we have that

δ = 1− (α− 1)−1/α α− 1
α

= 1− e(−1/α) ln(α−1)(1− 1
α

)

≤ 1−
(

1− 1
α

ln(α− 1)
)

(1− 1
α

) using ex ≥ 1 + x for x < 0

=
ln(α− 1)

α
+

1
α
− ln(α− 1)

α2
(2)

Hence δ approaches zero as α approaches infinity.

We remark that our bound ((2 − δ)α)α/2 is asymptotically 2α−1αα−1/2−o(1) for large α, and hence
within α1/2+o(1) of the best known upper bound. To see this, by (2), we obtain that

lim
α→∞

(α

lnα

)
δ ≤ lim

α→∞

(
ln(α− 1)

lnα
+

1
lnα

− ln(α− 1)
α lnα

)
= 1.

Similarly,

δ ≥ 1− α1−1/α

α
= 1− 1

e(ln α/α)
≥ 1− 1

1 + 1
α lnα

=
lnα

α + lnα
,

and hence
lim

α→∞

(α

lnα

)
δ ≥ lim

α→∞

α

α + lnα
= 1.

Thus the expression (2− δ)ααα/2 = 2α−1αα(1− δ/2)α ≈ 2α−1ααα−δα/(2 ln α) = 2α−1ααα−1/2−o(1).

5 An Elementary Proof that AVR is 2α−1αα-competitive

This section gives a complete elementary proof that AVR is 2α−1αα-competitive. This proof uses some
elements of the analysis of AVR in [6] and some variations on elements of the analysis of OA in [3]. We
start with the analysis of AVR on instances consisting of only type-A jobs. Recall that a job is type A if the
optimal schedule is always ahead of AVR on this job, and is type B if AVR is always ahead of the optimal
schedule on this job. The analysis for general instances then follows along the same lines as in [6], and is
included here for completeness.

Lemma 4 For instances consisting of only type-A jobs, AVR is αα-competitive with respect to energy.

Proof: We use an amortized local competitiveness argument. At any time t, either a task arrives or finishes,
or else an infinitesimal interval of time dt elapses and AVR consumes sAV R(t)αdt units of energy. We will
define a potential function φ(t) that satisfies the following properties:

• The potential function φ(t) has value 0 before any jobs arrive and after the last deadline.

• The potential function φ(t) does not increase as a result of AVR completing a job, OPT completing
a job, or the release of a job.

7

• At any time t,

sAV R(t)α +
dφ(t)

dt
≤ ααsOPT (t)α. (3)

Integrating equation 3 over time and using the other two stated properties, we can conclude the desired
result. For a more detailed treatment of amortized local competitiveness arguments, see [5]).

Before we can define the potential function we need to introduce some notation. Let t0 denote the
current time and ti denote the time of the ith deadline occurring after t0. Then let Ii denote the interval of
time [ti, ti+1). Let τi = ti+1 − ti be the length of interval Ii. Let si denote the speed at which AVR will
work during interval Ii if no new jobs arrive. This can be computed by summing the densities of active jobs
whose deadline is at or after time ti+1. Let wAV R,i = siτi denote the amount of work that AVR plans to
complete during interval Ii. Let wOPT,i be the portion of the work AVR allocates to interval Ii that OPT
has not yet completed. Because all jobs are of type A, all work that is unfinished by OPT is also unfinished
by AVR. Without loss of generality, we assume that when OPT is working on a job j, work is removed
from the term wOPT,i that contains work from job j with the smallest index i. That is, OPT removes work
from the earlier intervals first.

We define the potential function φ(t) as follows:

φ(t) = α
∑
i≥0

sα−1
i (wAV R,i − αwOPT,i) (4)

This potential function is a slight modification of the potential function used in [3] to analyze the algorithm
OA. The difference is that the potential function in [3] uses wOPT,i to denote the work of jobs unfinished
for OPT with deadline in Ii.

Now we show that φ has the claimed properties. This function is clearly 0 when there are no active jobs.
The completion of a job by OPT also has no effect since the potential is a continuous function of wOPT,i.
The situation when AVR completes a job is slightly more complicated. Observe that a job completes under
AVR if and only if the size of the interval I0 shrinks to 0, i.e. when the current time t0 becomes equal to
t1, which shifts all the indices. At the moment this happens AVR has completed all the work allocated to I0

and hence wAV R,0 = 0. Because all jobs are of type A, OPT has also completed the work allocated to I1

so wOPT,0 = 0. Thus, the potential is continuous even in this case. (This is the only time we use that all the
jobs are of type A.)

Arrival Case: The next case to consider is when a new job j arrives. First observe that adding a zero work
job with deadline dj does not change the value of the potential function φ. Thus, we may assume that the
new job’s deadline is tk for some k. Let y be the density of the new job. Then the release increases the
density of intervals I0, I1, . . . , Ik−1 by y, increasing the weight of interval Ii by yτi for 0 ≤ i ≤ k− 1. This
changes the potential function by

∆φ = α

k−1∑
i=0

(
wAV R,i + yτi

τi

)α−1

((wAV R,i + yτi)− α(wOPT,i + yτi))

−α

k−1∑
i=0

(
wAV R,i

τi

)α−1

(wAV R,i − αwOPT,i). (5)

8

This expression can be rearranged into

k−1∑
i=0

α

τα−1
i

(
(wAV R,i + yτi)α−1(wAV R,i − αwOPT,i − (α− 1)yτi)

−wα−1
AV R,i(wAV R,i − αwOPT,i)

)
By making the substitutions q = wAV R,i, δ = yτi and r = wOPT,i each term of this sum becomes a quantity
shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs complete. Each si, including s0,
remains fixed during this time. We have to show

sAV R(t0)α − ααsOPT (t0)α +
dφ(t)

dt
≤ 0 (6)

or equivalently,

sα
0 − ααsOPT (t0)α +

d

dt
(α
∑
i≥0

sα−1
i (wAV R,i − αwOPT,i)) ≤ 0 (7)

As AVR works, wAV R,0 is decreasing at rate s0, and wAV R,i remains fixed for all i ≥ 1. Since OPT
takes work from a single interval Ii, only one of the wOPT,i changes; let it be wOPT,k. Then equation (7) is
equivalent to

sα
0 − ααsOPT (t0)α + (−αsα−1

0 s0 + α2sα−1
k sOPT (t0)) ≤ 0

Since a job active during one interval is also active in all earlier intervals, sk ≤ s0 and it suffices to show
that

(1− α)sα
0 + α2sα−1

0 sOPT (t0)− ααsOPT (t0)α ≤ 0

Substituting z = s0/sOPT (t0) gives

(1− α)zα + α2zα−1 − αα ≤ 0 (8)

Let u(z) be the polynomial on the left hand side of inequality 8. Note that u(0) = −αα and u(+∞) =
−∞. In addition, the derivative of u(z) is 0 at only the point z = α. Since u(α) = 0, we conclude that u(z)
is non-positive for z ≥ 0, which holds because of the definition of z. This establishes inequality 6.

Lemma 4 and the argument of Yao, Demers, and Shenker [6] proves the 2α−1αα-competitiveness of
AVR. We now give their argument for completeness.

Lemma 5 [6] Among those instances on which AVR has it worst-case competitive ratio, there is a bitonic
instance.

Proof: Consider a worst-case instance I that is not bitonic. We explain how to transform I into another
worst-case instance that is bitonic. There must be a job i that is of neither type A nor type B. By the
definition of the types, there has to be some times s, u, with s < u, for which one of AVR or OPT is ahead
of the other on job i at time s, but behind at time u. By the intermediate value theorem, there must be a
time t ∈ (s, u) where AVR and OPT have completed an equal amount of work w on job i. We say that
the lead changes at such a time t. We now create a new instance I ′ from I by replacing job i with two
jobs: one with work w released at time ri with deadline t, and one with work wi − w released at time t

9

with deadline di. It is easy to see that both AVR and OPT always run at the same speed in I ′ that they did
in I . This transformation however reduces the number of lead changes by one. Since there can only be a
bounded number of lead changes between YDS = OPT and AVR, a bounded number of applications of
this transformation leads to a bitonic instance.

Lemma 6 [6] AVR is 2α−1αα-competitive on bitonic instances.

Proof Sketch: Given a bitonic instance, let A be the set of type-A jobs and B be the others. Let AVRA and
AVRB denote the energy attributable to A and B in the AVR schedule, respectively. Define OPTA and
OPTB similarly with reference to the schedule OPT.

Next observe that the roles of type-A jobs and type-B jobs can be swapped by reversing time and swap-
ping the release time and deadline for each job. Both YDS and AVR give the same schedule to the forward
and backwards versions so Lemma 4 implies that AVR is simultaneously αα-competitive with respect to
energy attributable to type-A jobs and energy attributable to type-B jobs.

The proof follows by combining the schedules for the jobs of different types. The optimal cost is clearly
at least OPTA +OPTB . To bound the cost of AVR, define sAV R,A(t) and sAV R,B(t) as the speed of AVR
on type-A and type-B jobs respectively. Then the cost of AVR is at most∫

sAV R(t)αdt =
∫

(sAV R,A(t) + sAV R,B(t))α dt

≤
∫

2α−1 (sAV R,A(t)α + sAV R,B(t)α) dt

= 2α−1 (AVRA + AVRB)
≤ 2α−1αα(OPTA + OPTB),

which gives the desired ratio.

Thus we reach our final theorem, which is an immediate consequence of Lemma 4, Lemma 5, and
Lemma 6.

Theorem 7 AVR is 2α−1αα-competitive.

The following lemma from [3] was used in the proof of Lemma 4:

Lemma 8 [3] Let q, r, δ ≥ 0 and α ≥ 1. Then (q + δ)α−1(q − αr − (α− 1)δ)− qα−1(q − αr) ≤ 0.

Proof: The lemma is equivalent to showing that

(q − αr)[(q + δ)α−1 − qα−1]− (q + δ)α−1(α− 1)δ ≤ 0

Since [(q + δ)α−1 − qα−1] ≥ 0, it suffices to show that

q[(q + δ)α−1 − qα−1]− (q + δ)α−1(α− 1)δ ≤ 0

Let δ = zq, which implies z ≥ 0. The left hand side of the above becomes

qα[(1 + z)α−1 − 1]− qα[(1 + z)α−1(α− 1)z]

10

Factoring out qα and differentiating the rest with respect to z gives

((α− 1)(1 + z)α−2[1− (α− 1)z] + (1 + z)α−1(−α + 1))
= ((α− 1)(1 + z)α−2[1− (α− 1)z − (1 + z)]
= −α(α− 1)z(1 + z)α−2

This is non-positive since α > 1 and z ≥ 0. Thus, the expression is maximized at z = 0, where it has value
0. This implies the result.

6 Conclusion

Even though AVR is not optimally competitive, one could imagine situations where a system designer might
still adopt AVR because AVR is in some sense fair to each job. This is analogous to the reason that Processor
Sharing (Round Robin) is adopted in some systems even though Processor Sharing is known not to have the
best competitive ratio for the standard QoS measures.

Acknowledgments: We thank Don Coppersmith for helpful discussions.

References

[1] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In Proc. ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 289–298, 2007.

[2] N. Bansal, H.-L. Chan, D. Katz, and K. Pruhs. Improved bounds for speed scaling in devices obeying
the cube-root rule. In International Colloquium on Automata Languages and Programming, pages 144–
155, 2009.

[3] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. JACM, 54(1),
2007.

[4] S. Irani and K. R. Pruhs. Algorithmic problems in power management. SIGACT News, 36(2):63–76,
2005.

[5] K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Performance Evaluation
Review, 34(4):52–58, 2007.

[6] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc. IEEE Symp.
Foundations of Computer Science, pages 374–382, 1995.

11

