Average Rate Speed Scaling*

Nikhil Bansal', David P. Bunde?, Ho-Leung Chan?, and Kirk Pruhs®

L IBM T. J. Watson Research Center,
nikhil@us.ibm.com
2 Computer Science Department, Knox College
dbunde@knox.edu
3 Computer Science Department, University of Pittsburgh
{hlchan,kirk}@cs.pitt.edu

Abstract. Speed scaling is a power management technique that involves
dynamically changing the speed of a processor. This gives rise to dual-
objective scheduling problems, where the operating system both wants
to conserve energy and optimize some Quality of Service (QoS) measure
of the resulting schedule. Yao, Demers, and Shenker [8] considered the
problem where the QoS constraint is deadline feasibility and the objective
is to minimize the energy used. They proposed an online speed scaling
algorithm Average Rate (AVR) that runs each job at a constant speed
between its release and its deadline. They showed that the competitive
ratio of AVR is at most (2a))*/2 if a processor running at speed s uses
power s¥. We show the competitive ratio of AVR is at least ((2—9)a)*/2,
where ¢ is a function of « that approaches zero as o approaches infinity.
This shows that the competitive analysis of AVR by Yao, Demers, and
Shenker is essentially tight, at least for large a. We also give an alterna-
tive proof that the competitive ratio of AVR is at most (2a)*/2 using a
potential function argument. We believe that this analysis is significantly
simpler and more elementary than the original analysis of AVR in [8].

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor
to be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technolo-
gies allow the Windows XP operating system to dynamically change the speed
of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a speed
scaling policy to determine the speed at which the job will be run. In current
CMOS based processors, the speed satisfies the well-known cube-root-rule, that
the speed is approximately the cube root of the power. Energy consumption is
power integrated over time. The operating system is faced with a dual objective
optimization problem as it both wants to conserve energy, and optimize some
Quality of Service (QoS) measure of the resulting schedule.

* D.P. Bunde was supported in part by Howard Hughes Medical Institute grant
52005130. Ho-Leung Chan and Kirk Pruhs were supported in part by NSF grants
CNS-0325353, CCF-0514058 and IIS-0534531.

The first theoretical worst-case study of speed scaling algorithms was in the
seminal paper [8] by Yao, Demers, and Shenker. Their QoS objective was deadline
feasibility and the objective was to minimize the energy used. More precisely,
each job ¢ has a release time r; when it arrives in the system, a work requirement
w;, and a deadline d; by which the job must be finished. If job ¢ runs at constant
speed s, then it completes in w;/s units of time. In this setting, an optimal
job selection policy is Earliest Deadline First (EDF). They assumed a speed to
power function P(s) = s, where o > 1 is some constant. If the cube-root rule
holds, then @ = 3. Yao, Demers, and Shenker [8] showed that the optimal energy
feasible schedule is found by a simple greedy algorithm that we call YDS.

Yao, Demers, and Shenker [8] also proposed an online speed scaling algorithm,
Average Rate (AVR). Conceptually, AVR runs each job i at speed w;/(d; — r;)
throughout interval [r;,d;], independent of other jobs. This spreads the work
of each job as evenly over time as possible. By the convexity of the speed to
power function, this even spreading is energy optimal if the instance consists of
only one job. The speed of the processor at any time ¢ is then just the sum of
the speeds of the jobs active at that time, that is Zi:te[m,d,;] d% AVR is an
appealing speed scaling algorithm because in some sense it is perfectly fair to
all jobs, and each job runs as if it were the only job in the instance.

Yao, Demers, and Shenker [8] showed that the competitive ratio, with respect
to energy, of AVR is at least a®. They also showed that the competitive ratio
of AVR, with respect to energy, is at most (2)%*/2. We now outline this upper
bound competitive analysis of AVR. A job is defined to be of type A if the optimal
schedule is always ahead of AVR on this job. A job is defined to be of type B if
AVR is always ahead of the optimal schedule on this job. A schedule is bitonic if
every job is of type A or type B. [8] observes that there is a worst-case instance
that is bitonic, and that the competitive ratio of AVR is at most 2¢~! times
the competitive ratio of AVR on instances of jobs of just one type (A or B).
[8] then considers instances consisting only of type-A jobs. [8] then introduces
an auxiliary objective function that is related to, but is not exactly, the energy
used. In a somewhat involved reduction, [8] shows that with respect to this
auxiliary objective, there is a worst-case instance where the optimal schedule is
non-preemptive, each job starts when it is released, and the spans of the jobs
are nested (where the span of job i is the interval [r;, d;]). When o = 2, [8] then
shows that for such instances, optimizing the auxiliary objective function can
be represented in terms of the eigenvalues of a particular tree-induced matrix,
and shows how to bound the largest eigenvalue for such tree-induced matrices.
[8] states that this argument can be readily generalized to an arbitrary «, and
using Hoélder’s inequality, give a bound on the £, norm of a certain tree-induced
matrix that would replace the eigenvalue argument used in the o = 2 case.

So the natural question left open is, “What is the exact competitive ratio of
AVR?” Based on simulation results, [8] conjectured that the competitive ratio of
AVR is exactly o®. That is, that the lower bound in [8] is correct, and intuitively,
that AVR can not simultaneously be losing badly on both type-A and type-B
jobs. In the case that the cube-root rule holds, a® = 3% = 27 is the best known

competitive ratio for any online algorithm. If the conjecture from [8] was true,
this would be evidence in favor of adopting the AVR speed scaling policy. Not
only would AVR have the best known competitive ratio in the case that the
cube-root rule holds, but AVR is appealingly fair to all jobs.

Unfortunately, in section 4, we show that the upper bound on the competitive
ratio from [8] is essentially tight, at least for larger a. More precisely, we show
that AVR has competitive ratio at least ((2—9)a)®/2, where ¢ is a function of «
that approaches zero as « approaches infinity. In the case obeying the cube-root
rule, we get a lower bound of approximately 48 on the competitive ratio of AVR.

In section 5, we give an alternative proof that the competitive ratio of AVR
is at most (2a)*/2. Our analysis uses a potential function argument. We believe
that this analysis is significantly simpler and more elementary than the original
analysis of AVR in [8]. Our competitive analysis of AVR branches off from the
analysis in [8] outlined above after the observation that the competitive ratio
of AVR is at most 2%~ ! times the competitive ratio of AVR on jobs of just one
type. We give a potential function argument that AVR is a®-competitive on
type-A jobs. We include a complete analysis of AVR in this paper, including the
elements of the analysis from [8] that we use. In principle, verifying this analysis
requires only basic algebra, except that some basic calculus is used to verify the
positivity /negativity of certain polynomials over particular ranges.

2 Other Related Results

There are now enough speed scaling papers in the literature that it is not prac-
tical to survey all such papers here. We limit ourselves to those papers most
related to the results presented here.

Yao, Demers, and Shenker [8] also proposed another online speed scaling al-
gorithm, Optimal Available (OA). The algorithm OA runs at the optimal speed
(which can be computed using the YDS algorithm) assuming the current state
and that no more jobs will be released in the future. [8] showed that the com-
petitive ratio of OA is at least a®. Using a potential function analysis, Bansal,
Kimbrel, and Pruhs [2] showed that OA is actually a®-competitive.

Bansal, Kimbrel, and Pruhs [2] also introduced an online speed scaling al-
gorithm that we call BKP. Intuitively, BKP tries to mimic the offline YDS
schedule in some way. Formally, at time ¢ BKP runs at speed e v(t) where
v(t) = maxys¢ %:tl))t’t’) and w(t,t1,t2) is the amount of work that has
release time at least t1, deadline at most ¢, and that has already arrived by
time ¢. [2] showed that BKP is simultaneously O(1)-competitive for total en-
ergy, maximum temperature (assuming cooling obeys Fourier’s law), maximum
power, and maximum speed. Specifically, [2] showed that the competitive ratio
of BKP with respect to energy is at most 2(a/(ac—1))*e®. With respect to max-
imum speed, [2] showed that BKP is e-competitive and that this competitive
ratio is optimal among randomized algorithms.

A naive implementation of YDS runs in time O(n?). This can be improved
to O(n?) if the intervals have a tree structure [4]. Li, Yao and Yao [5] gave an

implementation that runs in O(n?logn) time for the general case. For hard real-
time jobs with fixed priorities, Yun and Kim [9] showed that it is NP-hard to
compute a minimum-energy schedule. They also gave a fully polynomial time
approximation scheme for the problem. Kwon and Kim [3] gave a polynomial
time algorithm to schedule a processor with discrete speeds. Li and Yao [6] gave
an algorithm with running time O(d - nlogn) where d is the number of speeds.

Albers, Miiller, and Schmelzer [1] consider the problem of finding energy-
efficient deadline-feasible schedules on multiprocessors. [1] showed that the of-
fline problem is NP-hard, and gave O(1)-approximation algorithms. [1] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times.

3 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time r;, a deadline
d; > r;, and work w; > 0. In the online version of the problem, the scheduler
learns about a job only at its release time; at this time, the scheduler also learns
the exact work requirement and the deadline of the job. We assume that time
is continuous. A schedule specifies for each time a job to be run and a speed at
which to run the job. The speed is the amount of work performed on the job
per unit time. A job with work w run at a constant speed s thus takes % time
to complete. More generally, the work done on a job during a time period is the
integral over that time period of the speed at which the job is run. A schedule
is feasible if for each job 4, work at least w; is done on job ¢ during [r;, d;]. Note
that the times at which work is performed on job ¢ do not have to be contiguous.
If a job is run at speed s, then the power is P(s) = s* for some constant a > 1.

The energy used during a time period is the integral of the power over that
time period. Our objective is to minimize the total energy used by the schedule.

If A is a scheduling algorithm, then A(I) denotes the schedule output by A
on input /. A schedule is R-competitive for a particular objective function if the
value of that objective function on the schedule is at most R times the value of
the objective function on an optimal schedule. An online scheduling algorithm
A is R-competitive, or has competitive ratio R, if A(I) is R-competitive for all
instances.

For a schedule T, let sp ;(t) denote the speed job j runs at time ¢ in the
schedule T, and let s7(t) = >, s1,j(t) denote the speed of the processor at time
t in schedule 7. If U is a subcollection of jobs, let sp (t) denote the sum of the
speeds of the jobs in U at time ¢ in the schedule 7. We will also substitute an
algorithm for a schedule in this notation. So for example, sy r(t) is the speed
of the algorithm AVR at time t. We use OPT to denote a particular optimal
schedule. We say that job i is active between its release time and its deadline.
We call w;/(d; — r;) the density of job i since this is the job’s work divided by
the length of the interval in which it is active.

Algorithm AVR: At all times ¢, run the earliest-deadline job at speed say g (t) =

> i 72—, where the sum is over jobs i active at time ¢.
T k3

Consider a fixed optimum schedule OPT. A job is said to be of type A if

t t .
/ sopr.;(t)dt > / it for all r; < t < d;

T T dl —T;

J

Intuitively, these are the jobs that OPT runs consistently ahead of their density.
Similarly, the jobs of type B are those that OPT runs consistently behind their

density, meaning they satisfy

i~ Tq

t t
/ sopr,;(t)dt < / 7 Wi dt for all m; <t <d;.

T T

In general, a job need not be of either type (or it can also be of both types, in
which case OPT executes exactly as in AVR). We say an instance is bitonic if
every job is of type A, type B, or both (in which case it is arbitrarily assigned
one of the types). A simple observation (Lemma 5) shows that if AVR is ¢-
competitive for bitonic instances, then it is also c-competitive in general.

4 The Lower Bound

We give an instance on which AVR uses up at least ((2 — d)a)®/2 times the
energy used by an energy optimum solution, where ¢ is a function of « that
tends to zero as « increases.

Instance Description: For convenience we will work with a continuous version
of the job instance. We say that work arrives at rate a(t) at time ¢ to mean that
a(t)dt units of work arrive during the infinitesimally small interval [t, ¢ + dt].

The instance consists of two sets of jobs A and B. The work in A arrives
during the time interval [0,1 — €], at rate

1
o) = Ty

and all the work in A has deadline 1. Here € > 0 is an arbitrarily small but fixed
constant. The work in B arrives during the interval [1 —1/¢,1 — €/c] (where ¢ is
a constant that will be set to a — 1 later) at rate

c
b(t) = A/a(l - t)t/a

and the work in B arriving at time ¢ has deadline 1 + ¢(1 — ¢).

Lemma 1. On the instance above, the optimal algorithm uses total energy at
most 21n(1/e).

Proof: It suffices to give some feasible schedule that uses energy 2In(1/¢). Con-
sider the schedule that completes all jobs in A by running at speed a(t) during
[0,1 — €]. The energy usage is

| @y =m0l =1/

For jobs in B, note that they are released before time 1 and have deadlines
in [1 4+ ¢,2]. Consider any time x € [1 + ¢, 2]. The jobs with deadline in [1 + €, z]
z—1

are released during [1 — ==, 1 — £]. Their total amount of work is

/16/6 () 1—¢/c ¢
b(t)dt = / ——dt
1—(z—1)/c 1—(a—1)/c €/ (1 —t)1/e

Let y =14 ¢(1 —t). Then dy = —c - dt, and the amount of work equals

/l—e/c c 1+4€ -1 x 1
L :/ Ty :/ Ly
1—(z—1)/c Cl/a(l - t)l/a T (y - 1)1/a 14€ (y - 1)1/a

Therefore, consider the schedule that processes jobs in B at speed B(y) = m
continuously during [1 +¢,2]. For any = € [1 +¢, 2], the amount of work done by
time = equals the amount work with deadline by z. So the schedule completes

each job in B by its deadline. The energy usage to complete all jobs in B is

2
[)eds = inty ~ 1) =11/
14+e€

Since the intervals of execution of work in A and B do not overlap, the total
energy used is 21n(1/¢) and the lemma follows. O

Lemma 2. On the instance above, AVR wuses total energy at least
a“(1+ chl))a In(1/e) + K, where K is a constant independent of e.

Proof: Consider the work in A. The work released at time ¢ is scheduled by AVR
uniformly during the interval [¢,1]. Thus, at any time x € [0, 1], the density due
to work in A is

dena(x):/owa(t)'ll_tdt:/ow a —1t)1/a . litdt:OZ((li)l/a_l)

Now consider the work in B. Note that for work released at time t, the
duration between its release time and deadline is 1+ ¢(1 —t) —t = (¢ +1)(1 —¢t).

Thus, at any time = € [1 — %, 1 — £], the density due to work in B is

C

z c 1
d = . dt
ens(z) // i et DA -1

o C o 1 —Cl/a
/(e +1) (1—)t/

During the interval [1— %7 1—¢€], AVR runs at speed equal to the total density
due to work in A and B. Therefore, the energy usage of AVR is at least

/1 T deng () + deny(1))" dt

—1/c

1—e a

¢ 1 2c+1
- 1 : - dt (1
/11/0 (a (RPvEY P 1)) 1—nfe “er > (1)

LetY:1+ch+l).Notethatforallte[1—%,1—6],Wehavethat1—t§1/c
and hence
2c+1 (1—t)1/0‘<2c+1 1 c/%(c+1) o241
c+1 Y T c+1 e cla(e+1)+c” (c+1)+c

Then, by factoring QYW,

1—e _ 1 a\ %
1 2¢+1 (11—t
/ a’ye poZexl (=) dt
1_1/0 1—+¢ C+1 Y

the right side of (1) can be written as

17 acye 2c+1 (1—t)l/
2/ @ (l—ac+ ())dt asl—ar<(1—a)*forz<1
1—1/C 1 —t c+ 1 Y
1—e
1
_ ay o _ _ n\(1/a)-1 _ a2c¢+1)
_/11/ca Y (l—t Z(1-1) >dt where Z = 755
1—e
= aoY® [f In(1—t) +aZ(1 - t)l/a] /
1-1/c
ay o 1/« 1 1 1/«
=a%Y*| —lne+ aZe —|—lng—o¢Z(E)
ay o ay o 1 1 1/« .
> a“Y*In(1/e) + a®Y lng—aZ(E) since € > 0
Since a, ¢, Y and Z are independent of € the lemma follows. a

Theorem 3. The competitive ratio of AVR is at least ((2—0)a)*/2, where § is
a function of « that tends to zero as « increases.

Proof: By Lemma 1 and 2, when € tends to zero, the competitive ratio of AVR is

1-1/a
at least ((1+ “7

(1+ W)a)“ﬂ7 which equals ((2 — §)a)*/2 where § =1 — w
Note that for large « (in particular for @ > 2, we have that

Ja)®/2. Putting ¢ = o — 1, the competitive ratio is at least

§=1—(a—1)veo=1
(0%

— 1= /ema-n g - L

a
1 1
gl—(l—aln(a—1)>(1—a) using e® > 1+ z for <0

_ In(av — 1) . 1 In(a — 1))

a @ a?
Hence § approaches zero as o approaches infinity. a
We remark that our bound ((2 — §)a)®/2 is asymptotically 20~ q>~1/2=0(1)
for large o, and hence within «!/27°() of the best known upper bound. To see
this, by (2), we obtain that

lim (i)ég lim (m(a—1)+ ! —ln(o‘_l)):L

a—oo \In o a—o0 In o Ino alno

Similarly,

al—1/a 1 1 Ina
§>1— =1—-———>1- =
= o c(naja) = l+ilha a+ha’

and hence o o
lim (—)52 lim — & —1
a—00 lna a—0o0 (¥ + h’l (8%

Thus the expression (2 — §)®a®/2 = 22~ 1a®(1 — §/2)* ~ 20 La¥q 0/ (2Ine) =
2047104040[71/270(1)

5 An Elementary Proof that AVR is 24 la®competitive

This section gives a complete elementary proof that AVR is 2~ a®-competitive.
This proof uses some elements of the analysis of AVR in [8] and some variations
on elements of the analysis of OA in [2]. We start with the analysis of AVR on
instances consisting of only type-A jobs. The analysis for general instances then
follows along the same lines as in [8], and is included here for completeness.

Lemma 4. For instances consisting of only type-A jobs, AVR is a®-competitive
with respect to energy.

Proof: We use an amortized local competitiveness argument (for more informa-
tion on such arguments in scheduling problems, see [7]). At any time ¢, either
a task arrives or finishes, or else an infinitesimal interval of time dt elapses and
AVR consumes sy g(t)“dt units of energy. We will define a potential function
¢(t) that satisfies the following properties:

— The potential function ¢(¢) has value 0 before any jobs arrive and after the
last deadline.

— The potential function ¢(t) does not increase as a result of AVR completing
a job, OPT completing a job, or the release of a job.

— At any time t,
SAVR(t)a + d(fliit) < OzaSopT(t)a. (3)
Integrating equation 3 over time and using the other two stated properties, we
can conclude the desired result.

Before we can define the potential function we need to introduce some no-
tation. Let to denote the current time and t; denote the time of the it" dead-
line occurring after ty. Then let I; denote the interval of time [t;,¢;+1). Let
T; = t;x1 — t; be the length of interval I;. Let s; denote the speed at which
AVR will work during interval I; if no new jobs arrive. This can be computed by
summing the densities of active jobs whose deadline is at or after time ¢;,1. Let
WAVR,; = 5;T; denote the amount of work that AVR plans to complete during
interval I;. Let wopr,; be the portion of the work AVR allocates to interval I;
that OPT has not yet completed. Because all jobs are of type A, all work that

is unfinished by OPT is also unfinished by AVR. Without loss of generality, we
assume that when OPT is working on a job j, work is removed from the term
wopr, that contains work from job j with the smallest index ¢. That is, OPT
removes work from the earlier intervals first.

We define the potential function ¢(¢) as follows:

P(t) = Z s¢ N wavr, — cwopr,:) (4)
i>0

This potential function is a slight modification of the potential function used in
[2] to analyze the algorithm OA. The difference is that their potential function
uses wopr,; to denote the work of jobs unfinished for OPT with deadline in ;.

Now we show that ¢ has the claimed properties. This function is clearly 0
when there are no active jobs. The completion of a job by OPT also has no effect
since the potential is a continuous function of wopr,;. The situation when AVR
completes a job is slightly more complicated. Observe that a job completes under
AVR if and only if the size of the interval I shrinks to 0, i.e. when the current
time ¢y becomes equal to ¢;, which shifts all the indices. At the moment this
happens AVR has completed all the work allocated to Ip and hence way r,o = 0.
Because all jobs are of type A, OPT has also completed the work allocated to
I so wopr,0 = 0. Thus, the potential is continuous even in this case. (This is
the only time we use that all the jobs are of type A.)

Arrival Case: The next case to consider is when a new job j arrives. First
observe that adding a zero work job with deadline d; does not change the value
of the potential function ¢. Thus, we may assume that the new job’s deadline
is t; for some k. Let y be the density of the new job. Then the release increases
the density of intervals Iy, I1,...,Ix_1 by y, increasing the weight of interval I;
by y7; for 0 < i < k — 1. This changes the potential function by

k—1 a—1
w i T YT
Ab=aY (M) (wavrs +y7) — alworrs + 7))

i=0 Ti
k—1 w a—1
AV R,i
—a) (Tl) (wavR,i — awopT,)- (5)
i=0 ‘

This expression can be rearranged into

>
I
—

(6% _
— <(wAVR,i +y7)* N wavr: — awopr,; — (a — 1)ym;)

T

s
Il
=)

a—1
— Wiy g (WAVR — awopm))

By making the substitutions ¢ = wav g, 0 = y7; and r = wopr,; each term of
this sum becomes a quantity shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs com-
plete. Each s;, including sg, remains fixed during this time. We have to show

do(t
savr(to)® —a®sopr(te)™ + % <0 (6)
or equivalently,
d _
s§ —a%sopr(to)® + %(a Z% s Nwavri — awopr)) <0)

As AVR works, wav o is decreasing at rate so, and way g, remains fixed
for all ¢ > 1. Since OPT takes work from a single interval I, only one of the
wopr,; changes; let it be wopr . Then equation (7) is equivalent to

s§ —a“sopr(to)* + (—0438‘7130 + Oé2sgilSOPT(t0)) <0
Since a job active during one interval is also active in all earlier intervals, s < sq
and it suffices to show that

(1 —a)sy + a?s5 tsopr(to) — a®sopr(te)® <0
Substituting z = so/sopr(to) gives
(1—a)z% 4?2271 —a* <0 (8)

Let u(z) be the polynomial on the left hand side of inequality 8. Note that
u(0) = —a® and u(+00) = —oco. In addition, the derivative of u(z) is 0 at only
the point z = a. Since u(a) = 0, we conclude that u(z) is non-positive for z > 0,
which holds because of the definition of z. This establishes inequality 6. a

Lemma 4 and the argument of Yao, Demers, and Shenker [8] proves the
29~ 1o competitiveness of AVR. We now give their argument for completeness.

Lemma 5. [8] Among those instances on which AVR has it worst-case compet-
itive ratio, there is a bitonic instance.

Proof: Consider a worst-case instance I that is not bitonic. We explain how to
transform [into another worst-case instance that is bitonic. There must be a
job i that is of neither type A nor type B. By the definition of the types, there
has to be some times s, u, with s < u, for which one of AVR or OPT is ahead
of the other on job ¢ at time s, but behind at time u. By the intermediate value
theorem, there must be a time ¢ € (s,u) where AVR and OPT have completed
an equal amount of work w on job i. We say that the lead changes at such a
time t. We now create a new instance I’ from I by replacing job i with two
jobs: one with work w released at time r; with deadline ¢, and one with work
w; — w released at time ¢ with deadline d;. It is easy to see that both AVR and
OPT always run at the same speed in I’ that they did in I. This transformation
however reduces the number of lead changes by one. Since there can only be a
bounded number of lead changes between YDS = OPT and AVR, a bounded
number of applications of this transformation leads to a bitonic instance. a

Lemma 6. [8] AVR is 2%~ ta®-competitive on bitonic instances.

Proof Sketch: Given a bitonic instance, let A be the set of type-A jobs and B
be the others. Let AVR 4 and AVRp denote the energy attributable to A and
B in the AVR schedule, respectively. Define OPT 4 and OPTpg similarly with
reference to the schedule OPT.

Next observe that the roles of type-A jobs and type-B jobs can be swapped
by reversing time and swapping the release time and deadline for each job. Both
YDS and AVR give the same schedule to the forward and backwards versions
so Lemma 4 implies that AVR is simultaneously a®-competitive with respect to
energy attributable to type-A jobs and energy attributable to type-B jobs.

The proof follows by combining the schedules for the jobs of different types.
The optimal cost is clearly at least OPT 4 + OPTp. To bound the cost of AVR,
define savr a(t) and savr p(f) as the speed of AVR on type-A and type-B jobs
respectively. Then the cost of AVR is at most

/SAVR(t)adt = /(SAVR,A(t) + savr,p(t)" dt

< /2‘171 (savr,A(t)* + savr,p(t)*)dt
=2°"1(AVR, + AVRp)
<27 1a*(OPT 4 4+ OPTp),

which gives the desired ratio. a
Thus we reach our final theorem, which is an immediate consequence of
Lemma 4, Lemma 5, and Lemma 6.

Theorem 7. AVR is 2~ 1a®-competitive.
The following lemma from [2] was used in the proof of Lemma 4:

Lemma 8. [2] Let ¢,r,6 >0 and o > 1. Then (¢ +6)* (g — ar — (a — 1)§) —
¢* (g —ar) <0.

Proof: The lemma is equivalent to showing that
(@—ar)llg+6)* =" = (¢ +0)*(a=1) <0

Since [(q +6)*~! — ¢*~1] > 0, it suffices to show that

alla+0)* " = ¢ = (g+0)*Ha-1)0 <0
Let 6 = zq, which implies z > 0. The left hand side of the above becomes
¢“l(1+2)°7 =1 = ¢*[(1 +2)* H(a — 1)7]

Factoring out ¢® and differentiating the rest with respect to z gives
(=11 +2)"?1 = (a=1)z]+ (1+2)* " (~a+1))
=((a=1DA+2)2?[1 - (a—1)z—(1+2)]
= —a(a—1)z(1 + 2)>2

This is non-positive since a > 1 and z > 0. Thus, the expression is maximized
at z = 0, where it has value 0. This implies the result. a

6 Conclusion

Even though AVR is not optimally competitive, one could imagine situations
where a system designer might still adopt AVR because AVR is in some sense
fair to each job. This is analogous to the reason that Processor Sharing (Round
Robin) is adopted in some systems even though Processor Sharing is known not
to have the best competitive ratio for the standard QoS measures.

Acknowledgments: We thank Don Coppersmith for helpful discussions.

References

1. S. Albers, F. Miiller, and S. Schmelzer. Speed scaling on parallel processors. In
Proc. ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
289-298, 2007.

2. N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temper-
ature. JACM, 54(1), 2007.

3. W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically
variable voltage processors. In Proc. ACM-IEEE Design Automation Conf., pages
125-130, 2003.

4. M. Li, B. J. Liu, and F. F. Yao. Min-energy voltage allocation for tree-structured
tasks. Journal of Combinatorial Optimization, 11(3):305-319, 2006.

5. M. Li, A. C. Yao, and F. F. Yao. Discrete and continuous min-energy schedules
for variable voltage processors. In Proc. of the National Academy of Sciences USA,
volume 103, pages 3983-3987, 2006.

6. M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. on Computing, 35:658-671, 2005.

7. K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perfor-
mance FEvaluation Review, 34(4):52-58, 2007.

8. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In Proc. IEEE Symp. Foundations of Computer Science, pages 374-382, 1995.

9. H. Yun and J. Kim. On energy-optimal voltage scheduling for fixed priority hard
real-time systems. ACM Trans. on Embedded Computing Systems, 2(3):393-430,
2003.

