
Backfilling with guarantees granted upon job
submission

Alexander M. Lindsay1?, Maxwell Galloway-Carson2, Christopher R. Johnson2,
David P. Bunde2, and Vitus J. Leung3

1 iBASEt, aml.lindsay@gmail.com
2 Knox College, {mgallowa,crjohnso,dbunde}@knox.edu

3 Sandia National Laboratories, vjleung@sandia.gov

Abstract. In this paper, we present scheduling algorithms that simul-
taneously support guaranteed starting times and favor jobs with system-
desired traits. To achieve the first of these goals, our algorithms keep a
profile with potential starting times for every unfinished job and never
move these starting times later, just as in Conservative Backfilling. To
achieve the second, they exploit previously unrecognized flexibility in the
handling of holes opened in this profile when jobs finish early. We find
that, with one choice of job selection function, our algorithms can consis-
tently yield a lower average waiting time than Conservative Backfilling
while still providing a guaranteed start time to each job as it arrives. In
fact, in most cases, the algorithms give a lower average waiting time than
the more aggressive EASY backfilling algorithm, which does not provide
guaranteed start times. Alternately, with a different choice of job selec-
tion function, our algorithms can focus the benefit on the widest sub-
mitted jobs, the reason for the existence of parallel systems. In this case,
these jobs experience significantly lower waiting time than Conservative
Backfilling with minimal impact on other jobs.

1 Introduction

Backfilling has been a standard feature of multiprocessor scheduling algo-
rithms since it was introduced by Lifka [7] in the Extensible Argonne Scheduling
sYstem (EASY). In a survey of parallel job scheduling, Feitelson et al [4] charac-
terize backfilling with three parameters, the number of reservations or jobs with
guaranteed start times, the order of queue jobs, and the amount of lookahead
into the queue. In this paper, we describe variations of backfilling where all jobs
are given a guarantee upon their arrival, Conservative Backfilling [8]. However,
unlike Conservative Backfilling, we are interested in supporting job priorities
other than First-Come-First-Serve (FCFS) [10]. Also, while we do not use any
lookahead into the queue, one of our algorithms does delay making decisions
until more data is available. Thus, our algorithms add a fourth parameter, when
decisions are made, to the three parameters mentioned above.

? Work done while Alex was a student at Knox College.



A key benefit of Conservative Backfilling is that each job is granted a guar-
anteed starting time when it is submitted. (It may start earlier, but will not
be delayed later than this time.) These guarantees lead Conservative Backfilling
to benefit wide jobs, jobs requiring many processors, relative to other backfill-
ing strategies (e.g. [13]). From a fairness standpoint, this guarantee ensures that
wide or long jobs, which are less likely to benefit from backfilling, are not harmed
by jobs that backfill more easily. These guarantees also make the scheduler more
predictable since each user has a bound on when their jobs will run.

Conservative backfilling maintains a profile containing a tentative schedule
for all jobs. When a job arrives, it is placed in the earliest possible spot within the
profile, i.e. it is scheduled to start at the earliest time that does not disturb any
previously-placed job. The only other profile changes occur when a job finishes
early, creating a “hole” that potentially allows other jobs to move earlier. In this
case, Conservative initiates compression, the reexamination of each job in the
order of its current starting time in the profile. Each job is removed from the
schedule and then reinserted at the earliest possible time. Compression never
delays a job since the job can always fit back into the profile at the same spot,
but some jobs move earlier, into a hole or spaces vacated by jobs that have
themselves moved. Since no job’s planned start time is ever delayed, each job’s
initial reservation is an upper bound on its actual starting time.

Because Conservative compression reschedules jobs based on the profile’s
order, intuition suggests that it tends to preserve job order, closing holes by
sliding the end of the profile earlier. (Of course, job order does change when a
job fits into a hole that earlier jobs could not use.) Since the profile is built as
jobs arrive, this gives Conservative a FCFS tendency. This is desirable from a
fairness perspective, but may not support a specific system’s goals. For example,
some systems may wish to favor short jobs to improve average response time
and systems oriented toward capability computing may wish to favor wide jobs.

Backfilling algorithms have been designed to support these goals (e.g. [14, 5,
1, 11]), but they do so by reordering the profile, which sacrifices the key benefit of
Conservative scheduling: its ability to give jobs guaranteed starting times when
they are submitted. In this paper, we present scheduling algorithms that simul-
taneously support guaranteed starting times and favor jobs with system-desired
traits. To achieve the first of these goals, our algorithms keep a profile with poten-
tial starting times for every unfinished job and never delay these starting times,
just as in Conservative. To achieve the second, they exploit previously unrecog-
nized flexibility in the handling of holes that appear in the profile. Specifically,
we present two algorithms using the following kinds of flexibility:

– job selection: Although Conservative always tries to move the next job in
the profile into a hole, any job that fits can be moved into a hole. (This idea
is also used in [9].)

– timing: Although Conservative closes holes as soon as they form, the sched-
uler is only required to identify jobs that it wants to start immediately. Thus,
some decisions can be deferred until more information (e.g. more job arrivals
or early completions) is available.



We analyze our algorithms using an event-based simulator run with traces
from the Parallel Workloads Archive [3]. From the traces, our simulator takes an
arrival time, a required number of processors, a running time, and an estimated
running time for each job. The estimated running time gives the scheduler an
upper bound on the job’s running time, but most jobs “end early”, with actual
running time less than their estimate. Throughout, we assume that jobs need
exactly the requested number of processors (rigid jobs), that each processor can
run at most one job at a time (pure space-sharing) and that each job finishes in
exactly its given running time (no interference between jobs).

We find that, with one choice of job selection function, our algorithms consis-
tently yield a lower average waiting time than Conservative while still providing
each job a guaranteed start time when it arrives. In fact, in most cases, our
algorithms give better waiting times than the more aggressive EASY algorithm
[7], which does not provide guaranteed start times. Alternately, with another
job selection function, our algorithms significantly lower waiting times for the
widest jobs with minimal impact on other jobs.

The rest of the paper is organized as follows. We describe our algorithms in
Section 2 and relevant related work in Section 3. Then we give our experimental
results in Section 4 and conclude in Section 5.

2 Algorithms

Now we present our algorithms to exploit the flexibility discussed above.

2.1 Prioritized Compression

Our first algorithm is conservative with Prioritized Compression (PC). This
algorithm maintains two data structures, a profile with the tentative schedule
and a compression queue of jobs ordered by a system-specific priority function.

When a job arrives into the system, it is placed into the profile exactly as
in Conservative and also added to the compression queue. When a job finishes
early and creates a hole, PC compresses the schedule by trying to reschedule
each job in the order given by the compression queue; it tries to reschedule the
first job in the compression queue, then the second, and so on. This differs from
Conservative, which considers jobs in the order they occur in the profile, but PC
preserves the key feature that no job moves later in the profile; a job accepts
rescheduling only when it benefits and a job is only permitted to make moves
that do not interfere with any other job.

By using a customized order for compression, PC allows high-priority jobs
to benefit from the hole even if they begin much later in the profile. Doing so
adds another wrinkle to the compression operation, however. Consider the profile
shown in Figure 1(a); time is on the x-axis, with the current time at the far left.
Suppose job A finishes early and is removed. If the resulting profile is compressed
with the order E, C, D (Longest Job First), only jobs C and D are rescheduled.
This yields the profile shown in Figure 1(b), with job E delayed even though it
could also be started. To avoid unnecessary idle time like this, the compression
algorithm for PC returns to the front of the compression queue each time a job



is rescheduled. (Conservative does not need to do so since rescheduling one job
cannot benefit a previously-considered job when the profile order is used.)

time

B

A

D

C
E

(a) (b)

compression queue: E C D

E

B

C D

time

Fig. 1. Profile showing need to return to beginning of the compression queue after each
successful rescheduling. (a) Initial profile before job A terminates early. (b) Profile after
rescheduling jobs E, C, and D once each in that order.

The downside of returning to the beginning of the compression queue after
each successful rescheduling operation is that jobs can be moved more than once.
For example, consider the profile depicted in Figure 2(a) and suppose again that
job A finishes early. If the profile is compressed with the order D, C (Widest Job
First), the first rescheduling operation improves the planned start time of job D,
producing the profile shown in Figure 2(b). Once job C is rescheduled, however,
job D can be moved again, resulting in the profile shown in Figure 2(c).

time time time

A

B
C

D

(a) (b) (c)

compression queue: D C

B

D
DB

C

C

Fig. 2. Example where PC compression moves the same job twice. (a) Initial profile
before job A terminates early. (b) Profile after first compression of job D. (c) Profile
after compressing job C and then job D again.

Since jobs can move more than once, a natural question is how long com-
pression will take. We return to this question in Section 4.3.

2.2 Delayed Compression

Our second algorithm is conservative with Delayed prioritized Compression
(DC). It keeps a prioritized compression queue just like PC, but also exploits
flexibility in the timing of compression by deferring some rescheduling opera-
tions. Specifically, when a job finishes early, DC’s compression operation only



reschedules jobs that can begin immediately, deliberately leaving holes in the
profile. For example, consider the profile depicted in Figure 3(a) and suppose
job A finishes early. If DC compresses with order D, E, F (Longest Job First),
it would leave the profile as depicted in Figure 3(b), with a hole after job C even
though the planned starting time of job F could be improved. By deferring this
improvement, algorithm DC leaves itself flexibility in case a high-priority job
arrives or another job finishes early. Note that once the running system reaches
the hole, the scheduler must fill the hole; this requires an additional check when
a job finishes and the profile indicates idle time for some of its processors.

compression queue: D F C E

B

C

B

CD

D F

E E

F

(a) (b)
time time

A

Fig. 3. Example where the DC algorithm deliberately leaves a hole in the profile. (a)
Initial profile before job A terminates early. (b) Profile after compression.

One issue with deliberately leaving holes in the profile is that newly-arrived
jobs can backfill into them. For example, suppose a short job arrived after the
compression operation shown in Figure 3. If this job fits into the hole left when
job D was moved, it can backfill there and bypass job F as well as any later
jobs. While this backfill operation may be fine if the scheduler wishes to favor
short jobs, it can completely undermine the scheduler’s priority mechanism if
a different priority function is being used. To avoid this, DC also handles job
arrivals differently than Conservative. Rather than immediately adding a new job
to the profile, DC instead adds it to the compression queue. The algorithm then
reschedules any job before the new job in the compression queue whose new start
time would be before the estimated completion of the new job, i.e. those higher-
priority jobs that could be delayed by the new job. Once the new job is reached
in the compression queue, it is scheduled and compression ends. This modified
treatment of job arrivals closes holes when necessary to protect rescheduling
opportunities for high-priority jobs. In the example shown in Figure 3, DC would
reschedule F if a lower-priority job arrives and could be scheduled to finish after
the end of C (the earliest possible start time of F ). Alternately, the hole could
be occupied by a new job with higher priority.

3 Related Work

Backfilling was introduced by Lifka [7] in the Extensible Argonne Scheduling
sYstem (EASY). In a survey of parallel job scheduling, Feitelson et al [4] charac-
terize variations in backfilling with three parameters, the number of reservations,



the order of queue jobs, and the amount of lookahead into the queue. We add a
fourth parameter, when the profile can be reordered.

Reservations have been used since the early days of parallel batch schedulers
[2]. EASY [7] uses one reservation. At the other extreme, Conservative Backfilling
[8] gives all jobs a reservation. Talby and Feitelson [14] and Srinivasan et al
[13] suggest an adaptive number of reservations. The Maui Scheduler [5] has a
parameterized number of reservations. Chiang et al [1] suggest that four is a
good number of reservations.

EASY and Conservative Backfilling use First-Come-First-Serve (FCFS) or-
der. The FCFS Scheduling Algorithm has been analyzed by Schwiegelshohn and
Yahyapur [10]. Perkovic and Keleher [9] study Conservative Backfilling with
random queue ordering both with and without sorting by length and random re-
ordering as well. Reordering the backfill queue for EASY is proposed by Tsafrir
et al [15].

Talby and Feitelson [14] combine three types of priorities in the order of queue
jobs. The Maui Scheduler has even more components in its order of queue jobs.
Chiang et al [1] propose generalizations of the Shortest Job First (SJF) schedul-
ing algorithm to order queue jobs. They also use fixed and dynamic reservations.
With dynamic reservations, job reservations and the ordering of job reservations
can change with each new job arrival or if the priorities of waiting jobs change.
With fixed reservations, job reservations can only move earlier in order, even if a
job has no reservation or a job that has a later reservation attains a higher prior-
ity. Leung et al [6] study fixed and dynamic variations of Conservative Backfilling
in the context of fairness.

All the above algorithms use no lookahead. Shmueli and Feitelson [11] use
one reservation, various queue orderings, and lookahead into the queue. All of
these algorithms reorder the profile when a job arrives or terminates early. All
of our algorithms give every job a reservation, use various queue orderings based
on the length or width of the jobs, and use no lookahead into the queue, a
combination that is not used by any of the algorithms above. Additionally, some
of our algorithms delay to varying degrees when the profile is reordered. Our PC
algorithm reorders the profile when a job arrives or terminates early like all of
the algorithms above. Our DC algorithm reorders the profile only when a job
arrives or can run immediately.

4 Experimental Results

As described in the introduction, we evaluate our algorithms with an event-
based simulator running traces from the Parallel Workloads Archive [3]. Figure 4
lists the traces used. These are all traces with estimated running times except
for LLNL-uBGL, which is omitted because its waiting time shows almost no
variation for any of the algorithms we examined. Jobs in these traces without user
estimates are given accurate estimates. (Simulations by Smith et al. [12] suggest
that better estimates reduce average waiting time for Conservative scheduling.
The effect of inaccurate estimates on EASY is the subject of many papers; Tsafrir
and Feitelson [16] summarize and attempt to settle the issue.)



Name Full file name # jobs % w/ estimates

CTC-SP2 CTC-SP2-1996-2.1-cln.swf 77,222 99.99
DAS2-fs0 DAS2-fs0-2003-1.swf 219,571 100
DAS2-fs1 DAS2-fs1-2003-1.swf 39,348 100
DAS2-fs2 DAS2-fs2-2003-1.swf 65,380 100
DAS2-fs3 DAS2-fs3-2003-1.swf 66,099 100
DAS2-fs4 DAS2-fs4-2003-1.swf 32,952 100
HPC2N HPC2N-2002-1.1-cln.swf 202,876 100
KTH-SP2 KTH-SP2-1996-2.swf 28,489 100
LANL-CM5 LANL-CM5-1994-3.1-cln.swf 122,057 90.75
LLNL-Atlas LLNL-Atlas-2006-1.1-cln.swf 38,143 84.85
LLNL-Thunder LLNL-Thunder-2007-1.1-cln.swf 118,754 32.47
LPC-EGEE LPC-EGEE-2004-1.2-cln.swf 220,679 100
SDSC-BLUE SDSC-BLUE-2000-3.1-cln.swf 223,669 100
SDSC-DS SDSC-DS-2004-1.swf 85,006 100
SDSC-SP2 SDSC-SP2-1998-3.1-cln.swf 54,041 99.94

Fig. 4. Traces used in simulations

The trace job counts given in Figure 4 differ from the values given in the
Parallel Workloads Archive [3] because we ignored jobs that were partial execu-
tions (they were checkpointed and swapped out; status 2, 3, or 4) and jobs that
were cancelled before starting (status 5 and running time ≤ 0). We also ignored
8 jobs in the SDSC-DS trace with running time -1 (unknown).

4.1 Increasing Responsiveness

Since user-perceived performance is the typical goal of scheduling, we first
consider how our algorithms can improve average waiting time. For this metric,
it is beneficial to run short jobs before long ones so we use Shortest Job First as
our priority function. Figure 5 presents the results as a percent improvement over
the average waiting time achieved by Conservative. We also include EASY for
comparison since it backfills aggressively, benefiting short jobs since they backfill
more easily. The exact results vary by traces, but our algorithms outperform
Conservative on all traces except DAS2-fs3. In fact, they outperform EASY in
the majority of cases. The most notable exception is the LLNL-Thunder trace,
which has the lowest percent of jobs with user estimates (only 32%; see Figure 4).
This may explain the relatively poor performance of our algorithms on that trace
since jobs without estimates do not finish early, reducing the number of holes
our algorithms can exploit. Of our algorithms, DC generally beats PC.

Furthermore, our algorithms achieve these benefits without greatly delaying
other jobs. To see this we looked at the average waiting time for the 5% of jobs
with the greatest waiting time. See Figure 6 for the results, again presented as a
percent improvement over Conservative’s performance on the same measure. As
in the overall average waiting time, our algorithms generally outperform Con-
servative, though there are more exceptions (DAS2-fs3, LANL-CM5, and SDSC-
SP2). Comparing to EASY yields a similar picture as well, again with LLNL-
Thunder as the outlier. The pattern remains when looking at the 1% of jobs with



D
A

S
2−

fs
3

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��
��

��
��
��
��
��

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

���
���
���
���

�
�
�

�
�
�
����

%
 im

p.
 in

 a
ve

. w
ai

tin
g 

tim
e 

ov
er

 C
on

se
rv

at
iv

e

LP
C

−
E

G
E

E

LL
N

L−
A

tla
s

C
T

C
−

S
P

2

D
A

S
2−

fs
0

D
A

S
2−

fs
2

K
T

H
−

S
P

2

D
A

S
2−

fs
4

LA
N

L−
C

M
5

H
P

C
2N

EASY
PC (shortest)
DC (shortest)

LL
N

L−
T

hu
nd

er

S
D

S
C

−
B

LU
E

S
D

S
C

−
D

S

S
D

S
C

−
S

P
2

−0.1 −0.05

D
A

S
2−

fs
1

�
�
�
�

−10

 70

 60

 50

 40

 30

 20

 10

 0

 80

Fig. 5. Average waiting time relative to Conservative

the greatest waiting time (see Figure 7); our algorithms give significantly better
performance for the DAS2-fs2, DAS2-fs4, LLNL-Atlas, and LPC-EGEE traces,
significantly worse performance for the LANL-CM5 and SDSC-SP2 traces, and
comparable (within 10%) or mixed performance for the others.

We have shown that our algorithms significantly improve the average waiting
time when using the shortest job first priority function. It is worth noting that
they mostly outperform Conservative under this measure with other natural
priority functions as well. Specifically, we considered the priority functions FIFO,
Widest (most requested processors) Job First, Longest (in estimated time) Job
First, Shortest Job First, and Narrowest (fewest requested processors) Job First
for both of our algorithms. Out of 150 combinations of trace, algorithm, and
priority function, only 49 (33%) of them were worse than Conservative. Most of
the differences were small (generally < 10%, many < 2%), with a majority of
the big improvements appearing in Figure 5 and the significantly negative values
generally associated with the Longest Job First or Widest Job First priority
functions. (The worst single value is -38% for DC with Longest Job First.)

Overall, DC with Shortest Job First seems to be a very good choice for
increasing responsiveness. It gave better average waiting time than Conservative
and EASY in eleven out of fifteen traces. It only had worst average waiting time
than both Conservative and EASY in one trace and just EASY in three others.

4.2 Favoring Wide Jobs

To demonstrate the flexibility of our algorithms, we also look at a different
scheduling goal: improving the performance of wide jobs. These are jobs that,
because of a large computational or memory requirement, must run on many
processors. From a capability perspective, wide jobs are the reason to build
large systems since they cannot run otherwise.



EASY

��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

����
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

���
���
���
���

%
im

p.
 in

 a
ve

. o
f t

op
 5

%
 o

f w
ai

tin
g 

tim
es

C
T

C
−

S
P

2

D
A

S
2−

fs
0

D
A

S
2−

fs
1

D
A

S
2−

fs
2

D
A

S
2−

fs
3

D
A

S
2−

fs
4

H
P

C
2N

K
T

H
−

S
P

2

LA
N

L−
C

M
5

LL
N

L−
A

tla
s

LL
N

L_
T

hu
nd

er

LP
C

−
E

G
E

E

S
D

S
C

−
B

LU
E

S
D

S
C

−
D

S

S
D

S
C

−
S

P
2

−0.3 −0.1 −0.2 −0.05

0.30.7

PC (shortest)
DC (shortest)

 80

−10

 0

 10

 20

 30

 40

 50

 60

 70

−20

Fig. 6. Average of top 5% of waiting times relative to Conservative

DC (shortest)���
���
���
���

�
�
�
�
��
��
��
�� ��

��
��
��
��

��
��
��
��

�
�
�
���
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
���
��
��

��
��
��

����
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

%
im

p.
 in

 a
ve

. o
f t

op
 1

%
 o

f w
ai

tin
g 

tim
es EASY

−0.1 −0.4 −0.7 −0.06

D
A

S
2−

fs
1

D
A

S
2−

fs
0

C
T

C
−

S
P

2

D
A

S
2−

fs
2

D
A

S
2−

fs
3

D
A

S
2−

fs
4

K
T

H
−

S
P

2

H
P

C
2N

LA
N

L−
C

M
5

LL
N

L−
T

hu
nd

er

LL
N

L−
A

tla
s

LP
C

−
E

G
E

E

S
D

S
C

−
B

LU
E

S
D

S
C

−
D

S

S
D

S
C

−
S

P
2

PC (shortest)

 20

−20

 0

−40

 40

 60

 80

Fig. 7. Average of top 1% of waiting times relative to Conservative



To benefit these jobs, we run our algorithms with the Widest Job First prior-
ity function. We measure schedule quality with the average waiting time of the
widest 10% of the jobs in each trace. Figure 8 shows the results as a percent im-
provement over Conservative. The LGC-EGEE trace is not included since each
of its jobs requests a single processor. On the other traces, our algorithms outper-
form Conservative on all traces except LLNL-Thunder, the trace with relatively
few user estimates. (The improvement on the DAS2-fs3 trace is admittedly neg-
ligible.) It is unclear which of them is preferable. Our algorithms also outperform
EASY, which is not surprising since wide jobs have difficulty backfilling and thus
benefit from the guaranteed start times given by our algorithms.

%
im

p.
 in

 a
ve

. w
ai

tin
g 

tim
e 

of
 w

id
es

t 1
0%

 o
f j

ob
s

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

����
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�

EASY
PC (widest)
DC (widest)

C
T

C
−

S
P

2

D
A

S
2−

fs
1

D
A

S
2−

fs
2

K
T

H
−

S
P

2

LA
N

L−
C

M
5

LL
N

L−
A

tla
s

S
D

S
C

−
B

LU
E

LL
N

L−
T

hu
nd

er

S
D

S
C

−
D

S

S
D

S
C

−
S

P
2

H
P

C
2N

D
A

S
2−

fs
3

D
A

S
2−

fs
0

D
A

S
2−

fs
4

0.
3

−
0.

3

0.
01

0.
00

09

 20

 30

 40

−10

 0

 10

Fig. 8. Average waiting time of widest 10% of the jobs relative to Conservative

As when we tried to improve overall system responsiveness, we investigate
the performance of non-favored jobs. Figure 9 plots average waiting time of all
jobs, again relative to Conservative. The results are mixed, but not consistently
bad and the negative values are of fairly small magnitude. Thus, it seems that
our algorithms benefit wide jobs without greatly impairing overall performance.

4.3 Scheduler Running Time

As mentioned in Section 2.1, there is a question as to how long compression
will take with our algorithms, particularly PC. We instrumented our simulations
of Conservative and PC to measure the work required for compression. Specif-
ically, we counted how many times the algorithms looked at an event (a job’s
planned start or end time) in the profile. In the worst case (Longest Job First
priority on DAS2-fs0), PC examined nearly 580 times as many events as Con-
servative. This case is an extreme outlier; in only two other traces (HPC2N and



K
T

H
−

S
P

2

��
��
��
��

�
�
�
���
��
��
��

�
�
�
���
��
��

��
��
��

��
�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

�
�
�
�
���� �

�
�
�
����

%
im

p.
 in

 a
ve

. w
ai

tin
g 

tim
e 

ov
er

 C
on

se
rv

at
iv

e

S
D

S
C

−
S

P
2

S
D

S
C

−
D

S

S
D

S
C

−
B

LU
E

LP
C

−
E

G
E

E

LL
N

L−
T

hu
nd

er

LL
N

L−
A

tla
s

D
A

S
2−

fs
1

D
A

S
2−

fs
2

LA
N

L−
C

M
5

DC (widest)
PC (widest)

EASY

−
0.

1

−
0.

05
−

0.
05

0.
4

0.
3

C
T

C
−

S
P

2

D
A

S
2−

fs
0

D
A

S
2−

fs
3

D
A

S
2−

fs
4

H
P

C
2N

��

−20

 60

 50

 40

 30

 20

 10

 0

−10

 70

Fig. 9. Average waiting time relative to Conservative

DAS2-fs3) did PC examine more than 43 times as many events as Conservative
(127 and 72 times, respectively). Even in the outlier case, however, the scheduler
running time was not excessive; the total simulation time for that trace was less
than 24 hours on a laptop, meaning the scheduler spent less than 0.4 seconds
scheduling and rescheduling each job on average.

5 Discussion

We have presented a couple of algorithms that exploit flexibility in Conserva-
tive backfilling to improve various measures of performance while still retaining
its ability to give jobs a guaranteed starting time as they arrive. We are im-
pressed by the potential of these algorithms, but there is ample room for future
research. More work is needed to understand why the algorithms perform better
on some traces than others and to distinguish between the algorithms. It would
also be interesting to consider other priority functions, including user-assigned
job priorities, to further explore the flexibility in job selection. For the flexibility
in timing, one of our algorithms closes holes as soon as possible and the other
closes holes only when more jobs arrive or a job can run. We can further explore
the flexibility in timing by closing holes only when a job can run.

Acknowledgments

A.M. Lindsay, M. Galloway-Carson, C.R. Johnson, and D.P. Bunde were
partially supported by contracts 763836 and 899808 from Sandia National Lab-
oratories. Sandia is a multipurpose laboratory operated by Sandia Corporation,
a Lockheed-Martin Company, for the United States Department of Energy un-
der Contract No. DE-AC04-94AL85000. We also thank all those who contributed
traces to the Parallel Workloads Archive.



References

1. S.-H. Chiang, A. Arpaci-Dusseau, and M.K. Vernon. The impact of more accurate
requested runtimes on production job scheduling performance. In Proc. 8th Work-
shop on Job Scheduling Strategies for Parallel Processing, number 2537 in LNCS,
pages 103–127, 2002.

2. D. Das Sharma and D. K. Pradhan. Job scheduing in mesh multicomputers. In
Proc. Intern. Conf. on Parallel Processing Workshops, pages 251–258, 1994.

3. D. Feitelson. The parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload/index.html.

4. D. G. Feitelson, L. Randolph, and U. Schwiegelshohn. Parallel job scheduling – a
status report. In Proc. 10th Workshop on Job Scheduling Strategies for Parallel
Processing, number 3277 in LNCS, pages 1–16, 2004.

5. D. Jackson, Q. Snell, and M. Clement. Core algorithms of the maui scheduler. In
Proc. 7th Workshop on Job Scheduling Strategies for Parallel Processing, number
2221 in LNCS, pages 87–102, 2001.

6. V. Leung, G. Sabin, and P. Sadayappan. Parallel job scheduling policies to improve
fairness - a case study. In Proc. 6th Intern. Workshop on Scheduling and Resource
Management for Parallel and Distributed Syst., 2010.

7. D. Lifka. The ANL/IBM SP scheduling system. In Proc. 1st Workshop on Job
Scheduling Strategies for Parallel Processing, number 949 in LNCS, pages 295–303,
1995.

8. A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans.
on Parallel and Distributed Syst., 12(6):529–543, 2001.

9. D. Perković and P.J. Keleher. Randomization, speculation, and adaptation in batch
schedulers. In Proc. 2000 ACM/IEEE Conf. on Supercomputing, 2000.

10. U. Schwiegelshohn and R. Yahyapour. Analysis of first-come-first-serve parallel
job scheduling. In Proc. 9th ACM/SIAM Symp. on Discrete Algorithms, pages
629–638, 1998.

11. E. Shmueli and D. G. Feitelson. Backfilling with lookahead to optimize the per-
formance of parallel job scheduling. In Proc. 9th Workshop on Job Scheduling
Strategies for Parallel Processing, number 2862 in LNCS, pages 228–251, 2003.

12. W. Smith, V. Taylor, and I. Foster. Using run-time predictions to estimate queue
wait times and improve scheduler performance. In Proc. 5th Workshop on Job
Scheduling Strategies for Parallel Processing, number 1659 in LNCS, pages 202–
219, 1999.

13. S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective reserva-
tion strategies for backfill job scheduing. In Proc. 8th Workshop on Job Scheduling
Strategies for Parallel Processing, number 2537 in LNCS, pages 55–71, 2002.

14. D. Talby and D. G. Feitelson. Supporting priorities and improving utilization of
the IBM SP scheduler using slack-based backfilling. In Proc. 13th Intern. Parallel
Processing Symp., pages 513–517, 1999.

15. D. Tsafrir, Y. Etsion, and D.G. Feitelson. Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. on Parallel and Dis-
tributed Systems, 18(6):789–803, 2007.

16. D. Tsafrir and D.G. Feitelson. The dynamics of backfilling: Solving the mystery
of why increased inaccuracy may help. In Proc. IEEE Intern. Symp. on Workload
Characterization, pages 131–141, 2006.


