
Brief Announcement: Coloring-based Task Mapping for
Dragonfly Systems

Ink Chinavinijkul

Knox College

Galesburg, IL, USA

cchinavinijkul@knox.edu

Jacob Newcomb

Knox College

Galesburg, IL, USA

jlnewcomb@knox.edu

Lingzhi Xi

Knox College

Galesburg, IL, USA

lxi@knox.edu

David P. Bunde

Knox College

Galesburg, IL, USA

dbunde@knox.edu

ABSTRACT
Task mapping is the assignment of job tasks to nodes. Traditionally,

the goal of task mapping is to maximize locality, reducing the

number of network hops needed to deliver messages as a way of

reducing bandwidth consumption. We show that on a Dragonfly

topology, such a strategy can be counterproductive because, while

traffic is reduced, it is also concentrated on only a few global links,

creating hot spots. We formulate the balanced adjacency coloring

problem to design mappings that evenly spread network traffic,

give optimal algorithms to solve it for a number of cases, and use

simulations to show that mappings based on these algorithms can

reduce the communication time of a stencil job by up to 20%.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms;

KEYWORDS
Dragonfly topology; task mapping; stencil communication; bal-

anced adjacency coloring

ACM Reference Format:
Ink Chinavinijkul, Jacob Newcomb, Lingzhi Xi, and David P. Bunde. 2018.

Brief Announcement: Coloring-based Task Mapping for Dragonfly Systems.

In SPAA ’18: 30th ACM Symposium on Parallelism in Algorithms and Architec-
tures, July 16–18, 2018, Vienna, Austria. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3210377.3210665

1 INTRODUCTION
This paper looks at task mapping for stencil jobs on Dragonfly

systems. Dragonfly [7] is a hierarchical network topology based on

a tuple of parameters (p,a,h). To construct a Dragonfly system, p
compute nodes are connected to each network switch. The switches

are organized into groups of size a, with all switches in a group

connected by local links. In addition, each switch also has h global
links to other groups, arranged to give a single global link between

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5799-9/18/07.

https://doi.org/10.1145/3210377.3210665

each pair of groups. A big selling point for Dragonfly is its constant

network diameter; each pair of switches is separated by at most

three hops, one local link within the group of the source switch,

one global link to the group of the destination switch, and then a

final local link to the destination switch.

A stencil job is one using a nearest neighbor communication

pattern in which tasks correspond to cells of a 2D or 3D grid and

each task communicates with the adjacent tasks, those with whom

it shares an edge in 2D or a face in 3D. This is an important commu-

nication pattern for scientific computations, with each task simu-

lating its geographic region and periodically exchanging boundary

conditions with its neighbors.

Task mapping is the assignment of job tasks to nodes. It is per-

formed after the job is started, meaning that the job has already

been assigned specific nodes. For jobs running MPI, task mapping

is the assignment of roles to MPI ranks. Task mapping has been

shown to significantly effect stencil job performance on a mesh

topology [3]. Several researchers have previously considered its

effect for stencil jobs on Dragonfly systems [1, 2, 5, 6, 8]. Several of

these, starting with Bhatele et al. [1], utilize blocking, which maps a

contiguous group of cells to the nodes of each switch and/or group.

Blocking increases the proportion of communication that stays

within a switch or group. Unfortunately, it can interact poorly with

the hierarchical structure of Dragonfly. For example, consider the

blocked mapping shown in Figure 1(a), in which a mesh is divided

into 2 × 5 blocks, each assigned to a single group (numbers shown).

With this mapping, group 1 needs to exchange 5 cells of boundary

information in the horizontal direction with group 2, 2 cells worth

in the vertical direction with group 6, and nothing with any other

group. If the network uses shortest path routing, this causes a large

network load imbalance, which would worsen with mesh size.

The network imbalance of blocking led some to advocate for

random mapping of cells to nodes [1], but this has been shown to

lose about half the potential throughput in several cases [6]. Instead,

we propose a type of coloring called balanced adjacency coloring
that balances the number of times each pair of colors is adjacent. A

mapping based on this coloring is shown in Figure 1(b). Every pair

of groups is adjacent 4 times, giving perfect network load balance.

A possible alternative to clever taskmapping is improved routing.

The strategy of always using the local-global-local link pattern is

calledminimal routing. As observed above, this can lead to hotspots

on global links. One solution, called Valiant routing [7], routes each

https://doi.org/10.1145/3210377.3210665
https://doi.org/10.1145/3210377.3210665


2

4 15

5

4

10

41

4

9

4

7

4

6

4

1

4

7

4

1

48

73

7

7 3

7

7

3

7

7

3

7

7

3

6

6

3

6

6

3

6

6

3

6

6

3

6

1

2

(b)

2

12

4

2 1

2

(a)

2

1

2

6

2

1

2

1

3

2

1

3

8 109

10

10

10

10

10

10

10

10

10

5

5

5

5

5

5

5

5

5 9

9

9

9

9

9

9

9

9 8

8

8

8

8

8

8

8

8

Figure 1: Two mappings (group numbers shown). (a) Block-
ing. (b) Balanced adjacency coloring.

message by way of a randomly-chosen intermediate group. This in-

creases the maximum distance between switches to five hops: local

link, global link to intermediate group, local link within intermedi-

ate group, global link to destination group, and local link. Although

it uses longer paths, Valiant routing spreads traffic more evenly

among the links. Work on routing continues (e.g. [4]), with most

of the focus on adaptive routing, which adjusts the routing based

on the congestion level. We use UGAL-L [7] as a representative of

adaptive routing; it chooses between minimal and Valiant routing

on a per-packet basis using an estimate of network latency. Our

results show that balanced mapping achieves better performance

than good routing on top of a baseline mapping.

Also related is work of Zhang et al. [9] on allocation, the assign-

ment of nodes to jobs. Their algorithm strives to localize small jobs,

but to spread out large jobs to balance the global link load. The goal

is thus similar to ours, but their algorithm does not apply in this

work, which concerns jobs occupying the entire machine.

2 BALANCED ADJACENCY COLORING
We define a balanced adjacency coloring of an n × m mesh as a

coloring using k colors with the following properties:

(1) Every color is used either ⌊nm/k⌋ or ⌈nm/k⌉ times.

(2) Each pair of colors is adjacent ⌊A/
(k
2

)
⌋ or ⌈A/

(k
2

)
⌉ times,

where A is the number of adjacent cells with distinct colors.

The conditions balance the group workload and the load on global

links, respectively.

Chakaravarthy et al. [2] also proposed a coloring problem to

capture task mapping in a Dragonfly system, but they required

that all neighbors of each color be distinct. Balanced adjacency

coloring is a generalization of their notion. Their algorithms are

fairly restricted, but incomparable with the results of this paper.

Our main algorithm colors an n × n mesh with n colors. Initially,

assume n is even. The algorithm begins with a permutation of the

colors on one row, which we call the reference row.
To extend the coloring of the reference row to the rest of the

mesh, we consider a collection of lines and cycles in a visualization

of the mesh with square unit cells as shown in Figure 2(b). The

two lines are created by joining opposite corners. Each cycle has a

starting point (x ,n) satisfying 1 < x < n with x even. It proceeds

at slope -1 to the mesh’s right edge (x = n). Each time an edge of

(a)

3

6

3

6

2

6

2

1

2

6

2

2

1

6

6

4

3

7

4

1

1

7

3

7

3

7

6

7

5

4

5

1

5

4

5

6

5

45

1

5

4

5

7

3

4

3

1

2 4

2 7

2

3

7

(b)

1

8

8

8

8

8

8

8

8

Figure 2: An 8 × 8 balanced adjacency coloring. (a) Coloring
itself. (b) Lines and cycles generating it.

the mesh is encountered, change the slope as if it is reflecting off

that edge. We say a mesh cell is on a line or cycle if the line or cycle

passes through the cell’s geometric center.

It is not hard to show that every mesh cell is on one line or cycle.

To assign colors based on the lines and cycles, we copy colors of

the reference row along them. The reference row has one cell on

each line and we copy the color of this cell to all the line’s cells. The

reference row has two cells on each cycle and we alternate these

colors around the cycle. Following this process using the lines and

cycles in Figure 2(b) gives the coloring in Figure 2(a).

This algorithm uses every color n times, either because it occu-

pies an entire diagonal or because it alternates around a cycle which

is twice as long. The remaining step to show we have a balanced

adjacency coloring is to count color adjacencies:

Lemma 1. Each pair of colors is adjacent 4 times in the coloring.

Proof. We count the adjacencies within and between the lines

and cycles. Lines contain no adjacent cells. This is true of cycles ex-

cept at the 4 mesh boundaries, when they reflect and cross adjacent

cells, each making one adjacency between the cycle’s colors.

The two lines intersect once. Since lines contain only a single

color, each diagonally-opposite pair of cells around the intersection

point have a shared color. These pairs of cells make four adjacencies.

Consider a line-cycle intersection. The diagonally-opposite cells

along the line share its color. Since colors alternate on the cycle,

each of the other cells has a distinct color of the cycle. Each of these

is adjacent with the line’s color twice. The line and cycle intersect

twice, doubling the number of adjacencies to four.

In a cycle-cycle intersection, diagonally-opposite cells are split

between the cycle’s colors. Thus, the intersection forms 1 adjacency

for each pair of colors in different cycles. Each pair of cycles has 4

intersections, creating 4 adjacencies between their colors. □

Generalizations. The algorithm when n is odd is the same as

the even case except only one line is used. It also generalizes to

algorithms for an n ×n mesh using 2n colors (use 4 colors per cycle

and two per line) and an n × n × n cube (color 2D slices).

3 MAPPINGS
The obvious way to turn a balanced adjacency coloring into a map-

ping is to assign each mesh cell to a node in the group indicated



Mesh

Groups System System

used (p, a, h) nodes

8×8 8 (2, 4, 2) 72

32×32 32 (4, 8, 4) 1,056

72×72 72 (6, 12, 6) 5,256

128×128 128 (8, 16, 8) 16,512

200×200 200 (10, 20, 10) 40,200

Figure 3: Description of simulated systems and jobs.

by its color. This puts all communication over global links and

performs poorly. Thus, our algorithm uses a small amount of block-

ing. Specifically, we divide the job into 2 × 2 submeshes to form

a (n/2) × (n/2) mesh of task units, each containing 4 tasks. The

mesh of task units is then colored using the generalization that

uses twice as many colors as the mesh dimensions. These colors

are used to assign the task units to groups. We call this algorithm

Blocking Balanced Adjacency Coloring (B-BAC) because it uses some

blocking to increase traffic within groups but primarily follows the

coloring.

As a baseline, we use the Blocked Supernodes Mapping (BSM) by

Bhatele et al. [1]. It maximizes locality by assigning a contiguous

block for each group and contiguous subblocks for each switch.

We compare the mappings with simulations of a capability work-
load, where a single job runs on most of the machine. This is an

important workload for the largest systems, whose construction is

justified by the need to run huge jobs. We tested a range of job and

system sizes, shown in Figure 3. All jobs are square and use all but

one group of a system. All systems have 2p = a = 2h for balance.

We used a packet-level simulator, with local and global link

latencies of 100, virtual channel buffer sizes of 256, and ISLIP for

buffer allocation with an internal speedup of 1.5. We assume a

communication-intensive job, with boundary exchanges sending

30 packets each way. Each task sends to its neighbors, waits for

their message, computes for 5 time units, and repeats for 10 rounds.

Figure 4 shows the simulation results comparing the blocking-

based baseline strategy with B-BAC. Looking just at the results for

minimal routing (first two bars for each mesh size), we see that

B-BAC is very slightly worse than the baseline for the smallest

size (less than 0.02%), but then consistently better, with a percent

improvement generally in the mid-teens (16%, 8%, 14%, 17.5% re-

spectively). Looking at the results for UGAL-L routing (last two

bars for each size), B-BAC is worse for the two smaller sizes (by

1.5% and 4%), but better at the larger sizes (by 5%, 7%, and 20%). For

both routing algorithms, B-BAC wins at larger job sizes.

Of particular note is that B-BAC with minimal routing outper-

forms both mappings with adaptive routing in nearly all cases. In

fact, for a given mapping, UGAL-L routing is nearly always worse

than minimal routing. This is initially surprising since UGAL-L is

adaptive and can always revert to minimal routing. In intense com-

munication patterns such as ours, however, the penalty for extra

hops can be particularly high since they consume extra bandwidth.

With B-BAC mapping, nearly all global links are equally loaded

so Valiant routes are nearly always bad. The baseline strategy has

many unused global links, but the results show that adaptive routing

cannot compensate for the initial poor link load balance.

Blocked, UGAL routing

200x200128x12872x7232x328x8

B−BAC, UGAL routing

Blocked, min−routing

B−BAC, min−routing

 0

T
im

e
 u

n
it

s

 8000

 7000

 6000

 5000

 4000

 3000

 2000

 1000

 9000

Figure 4: Simulated job times for different mesh sizes. Com-
pares blocking-based mapping and coloring-based (B-BAC)
for minimal and UGAL-L routing.

4 DISCUSSION
Our results show the potential of spreading the network traffic

more fairly, even at the cost of increasing the total amount of global

traffic. Going forward, one idea is to block at the switch level so that

all nodes of a switch are working on a single mesh submesh. We

used 2 × 2 submeshes since non-square submeshes make the traffic

sent between neighbors depend on the direction due to the different

number of cells along each boundary. This could be overcomewith a

weighted coloring. Another goal is to find colorings for non-square

meshes and graphs representing other communication patterns.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Founda-

tion under grant CNS-1423413 and the Paul K. and Evalyn Richter

Memorial Funds.

REFERENCES
[1] A. Bhatele, N. Jain, W.D. Gropp, and L.V. Kale. 2011. Avoiding hot-spots on two-

level direct networks. In Proc. Conf. High Performance Computing, Networking,
Storage and Analysis (SC).

[2] V.T. Chakaravarthy, M. Kedia, Y. Sabharwal, N.P.K. Katta, R. Rajamony, and A.

Ramanan. 2012. Mapping Strategies for the PERCS Architecture. In Proc. 19th
Intern. Conf. High Performance Computing (HiPC).

[3] M. Deveci, S. Rajamanickam, V.J. Leung, K.T. Pedretti, S.L. Olivier, D.P. Bunde, Ü.V.

Çatalyürek, and K.D. Devine. 2014. Exploiting Geometric Partitioning in Task

Mapping for Parallel Computers. In Proc. 28th IEEE Intern. Parallel and Distributed
Processing Symp. (IPDPS).

[4] P. Faizian, M.A. Mollah, Z. Tong, X. Yuan, and M. Lang. 2017. A Comparative

Study of SDN and Adaptive Routing on Dragonfly Networks. In Proc. Conf. High
Performance Computing, Networking, Storage and Analysis (SC).

[5] N. Jain, A. Bhatele, X. Ni, N.J. Wright, and L.V. Kale. 2014. Maximizing throughput

on a dragonfly network. In Proc. Conf. High Performance Computing, Networking,
Storage and Analysis (SC).

[6] A. Jokanovic, B. Prisacari, G. Rodriguez, and C. Minkenberg. 2013. Randomizing

task placement does not randomize traffic (enough). In Proc. 2013 Interconnection
Network Architecture: On-Chip, Multi-Chip (IMA-OCMC). 9–12.

[7] J. Kim, W. Dally, S. Scott, and D. Abts. 2008. Technology-Driven, Highly-Scalable

Dragonfly Topology. In Proc. 35th Ann. Intern. Symp. Comput. Arch. (ISCA). 77–78.
[8] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg, and T. Hoefler.

2014. Efficient Task Placement and Routing in Dragonfly Networks. In Proc. 23rd
ACM Intern. Symp. High-Performance Parallel and Distributed Computing (HPDC).

[9] Y. Zhang, O. Tuncer, F. Kaplan, K. Olcoz, V.J. Leung, and A.K. Coskun. 2018. Level-

Spread: A new job allocation policy for Dragonfly networks. In Proc. 32nd IEEE
Intern. Parallel and Distributed Processing Symp. (IPDPS).


	Abstract
	1 Introduction
	2 Balanced adjacency coloring
	3 Mappings
	4 Discussion
	References

