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Abstract—We present our view that teaching concurrent pro-
gramming to a broad audience will require adapting materials
developed by the High-Performance Computing (HPC) commu-
nity to the different goals and interests of students outside this
community. Specifically, in many applications achieving peak
performance is less important than in HPC applications. Instead,
students can be taught to focus on scalability and rapid imple-
mentation, only aggressively optimizing their programs if initial
performance is unacceptable. In addition, new examples must
be developed to teach concurrent programming, deemphasizing
computational science in favor of applications that students find
more intrinsically motivating. We list some of these examples and
look forward to hearing additional ideas from others.

Until recently, programmers got a “free lunch” in the
sense that they could expect clock speed to increase in each
processor generation, speeding up their programs without any
additional effort on the programmer’s part. With the topping
out of processor speeds, increasing performance will depend
on exploiting higher core counts. This will require many
more programmers to write concurrent applications. Doing
so was previously considered a specialized skill, one pri-
marily practiced in the High-Performance Computing (HPC)
community. A great challenge of our time is to teach a
much broader group of computer scientists this skill so they
can expose the concurrency of their applications and exploit
multicore hardware. It is our contention that, although the HPC
community has a lot to offer in meeting this challenge, we
cannot simply teach all computer scientists an existing high-
performance computing curriculum. Rather, we believe that
teaching concurrent programming to the broader community
of computer science students requires a shift away from the
traditional focus on absolute peak performance, focusing in-
stead on students’ ability to write correct programs that scale,
and the development of teaching materials with examples that
are more appealing to students.

We begin by addressing the issue of peak performance. This
is a long-standing goal in the HPC community, which strives to
minimize the “time to science” for applications. Extraordinary
effort is made to achieve this goal, with applications being
carefully tuned using detailed knowledge of the hardware. The
pursuit of higher performance leads to the construction of large
systems, epitomized by those on the Top 500 list, as well

as the exploitation of special types of hardware, such as the
Cell processor and GPUs. All of this effort is appropriate for
applications requiring absolute peak performance.

In contrast to this, the aggressive pursuit of performance
is not central to most courses in a typical CS curriculum.
Instead, the courses that explicitly compare ideas based on
performance, data structures and algorithms, do so at a high
level and typically ignore the implementation details so crucial
to HPC-level performance. In typical programming courses,
correctness is almost always the main goal, with poor perfor-
mance only penalized in the most egregious cases. This em-
phasis on correctness occurs even in courses such as computer
organization and operating systems whose material is crucial
for achieving high performance, because it is hard enough for
beginners to write correct programs. Once students can reliably
write correct programs, they generally begin taking electives
such as AI and graphics, where the focus is again on achieving
a desired result rather than on performance per se.

We believe that this emphasis on correctness and capability
over performance is appropriate even after the adoption of
manycore hardware. This is not to say that performance is
completely unimportant; multicore hardware has no reason for
existing except to surpass serial performance. It is just that
most programmers and most applications do not require peak
performance. Consider the current practice of most sequential
programmers: get a reasonable design working and then op-
timize it only if better performance is needed. This strategy
places a high value on programmer time, avoids unnecessary
optimization, and works well in a marketplace that often
rewards being first to market. Analogously, we expect that an
effective strategy for the multicore world is to write an initial
program, focusing on correctness and scalability, and then
further optimizing performance only if necessary. By including
scalability in the initial design, the programmer ensures that
the code benefits from successive hardware generations, just
as in the era of increasing clock speed.

Since we do not advocate a focus on peak performance,
we believe that it is appropriate to teach with high-level
languages or frameworks that allow the programmer to express
parallelism even if they hide some details and impede low-
level optimization. This situation is analogous to the way



that many introductory courses currently use Java, which
provides automatic memory management, array bounds check-
ing, and extensive libraries, but at the cost of runtime over-
head. Many potentially-suitable parallel languages and frame-
works have been developed to facilitate concurrent program-
ming; interesting examples include NESL [1], Fortress [2],
Hadoop/MapReduce [3], Charm++ [4], and Cilk++ [5].

Whatever programming environment is used, the goal of
core computer science courses should be to teach students
key principles and techniques of concurrent programming
such as mutual exclusion, load balancing, grain size, parallel
prefix, and divide and conquer. These ideas will apply to any
concurrent environment the students find themselves using in
the future and form a foundation of “algorithmic taste”, the
intuition our students will use to select initial designs with
the desired scalability properties. In addition, we must teach
our students how to analyze and improve their algorithm or
implementation if its initial performance is unacceptable.

We expect the study of core concepts to still be relevant even
if the main exploitation of parallelism takes place in libraries
written by specialists, as some foresee. For the same reason
that model curricula currently include linked lists, binary trees,
and other elementary data structures, programmers in the
future will need some understanding of the implementation
of parallel libraries in order to use them effectively. A firm
understanding of core concepts also forms the foundation
for more performance-focused programmers to develop their
expertise. Just as some areas such as HPC and games require
greater performance optimization in sequential systems, we
expect some programmers to strive for higher levels of parallel
performance. Note that we are not hostile to programmers
squeezing all possible performance from the silicon; we just
see an important distinction between this and concurrent pro-
gramming as it should be introduced to all computer scientists.

The other change we see as necessary to adapt an HPC
curriculum into one aimed at a broader group of students
is the development of appropriate examples and assignments.
HPC is focused primarily on scientific applications, a fact that
is strongly reflected in textbook presentations of concurrent
programming. Typical applications used as examples are ma-
trix operations (matrix-vector or matrix-matrix multiplication,
LU decomposition, etc), numerical integration, finite element
computations, and FFTs. Although important, these applica-
tions are not intrinsically motivating to students without a
background in computational science. This lack is particularly
apparent to us in our classrooms at liberal arts colleges,
where limits on the number of courses we can require mean
that our students often do not take as many science courses
as in engineering programs. Even in engineering programs,
however, strong prerequisites for concurrent programming
would force it to remain a specialized area. To expand the
study of concurrent programming out of advanced courses, it
must be presented using applications with broad appeal.

Of course, finding applications with broad appeal is easier
said than done, but a couple of nice examples are known.
Several textbooks talk about game tree evaluation, tapping into

the eternal popularity of AI. Another good example in use is
generating the Mandelbrot set, a simple computation with a
visually-appealing result. (Other fractals would also be ap-
propriate.) Other simple but visually-appealing examples can
be taken from the graphical approaches being developed for
introductory CS (e.g. media computation [6]). More advanced
examples from graphics would be ray tracing or animation
rendering. Another area of exciting applications is using tools
like MapReduce on large data sets to do collaborative filtering
or other socially-based computations. We view expanding this
list of appealing examples as a challenging but important task.

With the rise of multicore hardware, it is crucial that our
graduates achieve basic proficiency with concurrent program-
ming. To accomplish this, we need to keep in mind the goal,
which is to prepare students to write programs that scale
reasonably well, rather than focusing entirely on peak per-
formance. Students need a basic understanding of key issues
of concurrency, including an intuitive “algorithmic taste” as
well as the tools for aggressive optimizations when these
are needed. We see the need to develop teaching materials
on concurrent programming that are specifically designed to
reach a broad audience, using applications that resonate with
students. This will necessarily be a group effort and we look
forward to being part of the discussion.
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