
WIP: Updating CS1 to a 21st-Century
Model of Computing

David P. Bunde∗, April R. Crockett†, Gerald C. Gannod†, Jaime Spacco∗,
Neena Thota‡, and Charles C. Weems‡

∗Knox College, USA, {dbunde,jspacco}@knox.edu, 0000-0001-6334-356X, 0000-0001-6955-0754
†Tennessee Tech, USA, {acrockett,jgannod}@tntech.edu, 0000-0003-1050-1557, 0000-0003-1008-7931

‡University of Massachusetts Amherst, USA, {nthota,weems}@cs.umass.edu, 0000-0002-3795-6060, 0000-0002-8535-0258

Abstract—This work in progress innovative practice paper doc-
uments ways in which current introductory computing courses
are designed for an earlier generation of computers. We describe
our plans for updating these courses for modern systems and
programming practices and share details of the development of
exemplar courses that will be adoptable by diverse institutions
and programs teaching introductory programming courses.

I. INTRODUCTION

Twenty-first century computation pervasively employs par-
allel and distributed computing (PDC), making extensive use
of networks to access data as well as utilizing multicore
processors locally. Users interact with computers through
graphical user interfaces and applications are built on frame-
works and application programming interfaces (APIs). The
development process is test-driven, with a significant focus
on security. By contrast, introductory Computer Science (CS)
education has focused on single-threaded, sequential program-
ming that provides little connection to these current practices.

In this paper, we document the disconnect between the
modern paradigm of computing and current curricula at two
levels. First, we present data gathered by conducting focus
group discussions with employers. In general, they reported
that recent graduates struggle to write modern software, which
builds on an established code base, composes solutions from
disparate libraries, accommodates remote data repositories,
and takes advantage of concurrency.

Second, we survey current textbooks for introductory pro-
gramming (CS1), finding that they present a sequential model
of computing where input-output (I/O) is achieved through the
console and local file system. Furthermore, most programs are
written from an empty code file and make little use of APIs
beyond basic built-in libraries. Clearly, these books have their
roots in texts written for previous generations of computers
and programmers.

These issues go beyond a single course, but updating the
introductory course to better reflect modern systems and prac-
tices is an essential first step. As such, we present our initial
efforts to develop materials to modernize CS1 to maximize
their adoption potential, with an eye towards using multiple
effective evaluation methodologies. The remainder of this
paper is organized as follows. Section II discusses previous
efforts to revise CS1. The next two sections document the
need for changes by summarizing our stakeholder survey on

the current state of CS practice and curricula (Section III)
and our survey of popular introductory textbooks (Section IV).
Then we present our efforts to modernize CS1 in Section V.
Finally, in Section VI, we draw conclusions and suggest future
investigations.

II. RELATED WORK

Many people and groups have previously advocated changes
to CS1. An early effort to introduce PDC topics and include
more graphics centered on an early introduction to events [4],
which led to a CS1 course [5] supported by a textbook [3]
that has unfortunately not been updated. At least one other
book [8] attempted to show how CS1 could introduce event-
based user interfaces, but was also not updated, due to a lack
of market interest. Also specifically focusing on early courses
is an effort to generate Unplugged activities for PDC topics
[17].

Another big push for updating CS1 was Media Computation
[12], [13], with the use of images, sound, and video as motivat-
ing examples for programming concepts. This overlaps with
our idea of modernizing CS1, which also includes graphics
and which we also think will motivate students by making the
course closer to their experience with computers. Our goals go
beyond motivation, however, because modernizing the course
will better prepare students for their future careers.

An older effort to change the content was the Objects
First movement, which sought to introduce object-oriented
(OO) features earlier in the curriculum. The debate between
presenting objects earlier or later in CS1 is summarized
by Ehlert and Schulte [9], whose study suggests that each
approach leads to similar student learning but different student
perceptions of topic difficulty. Both approaches are used in the
textbooks examined in this paper, including two books by the
same author whose main difference is in when OO features
are presented [10], [11].

Curricular recommendations have also moved in the di-
rection we suggest. Incorporating PDC topics was the focus
of a large curricular recommendation for undergraduates,
which included CS1 and other core courses [7]. Many of
these recommendations were adopted in CC2001 [14], the
joint recommendations by two of the largest CS professional
organizations. The newest set of recommendations [6] includes



other features of modern development, including the use of
software APIs and removes specific references to console I/O.

III. STAKEHOLDER SURVEY

In preparation for our curricular development project, we
conducted a two-year study that involved four community
input meetings with members of twelve stakeholder groups
(faculty, administrators, students, industry, government, fund-
ing agencies, authors, publishers, professional societies, ac-
creditation bodies, PDC and CS education projects, inter-
national education agencies), with 97 total participants. The
meetings used a the World Cafe model [2], in which a large-
group discussion is split into smaller discussions by different
subgroups to seek both different ideas and common themes.
The discussions produced hundreds of pages of notes, which
were thematically analyzed. The goal was to identify areas
where curricula are lacking, what is impeding progress, what
kinds of changes and activities are needed to modernize the
curriculum, what actors have a role to play in such an effort,
and how to make this change.

Employer stakeholders reported that it takes between six
months and two years of additional training before new
computer science graduates become productive software devel-
opers. They expressed frustration that students are still taught a
model of computational thinking that is purely sequential and
uses only local data, only learn to build everything up from
primitives, typically work individually rather than in a team,
learn poor interface design and testing methodology, ignore
security, and write software that doesn’t scale.

Educators reported that there are no course exemplars,
curricula, or textbooks for teaching a modern model, and that
most instructors lack the expertise to make changes. They said
the curriculum is already full, but also observed that it covers
many obsolete coding patterns. Students said that they lack
the knowledge to demand change. Administrators said change
is hard, especially if students and faculty are not asking for
it, and it isn’t required for accreditation. Textbook authors
and publishers reported no market for books using a modern
computing model because nobody is teaching such courses.
Accreditation bodies and professional societies said they look
to faculty for direction. CS education projects observed that
there is not enough funding to develop materials and training
for a complete revision of the introductory courses, with proper
evaluation of the effectiveness of the changes.

IV. TEXTBOOK SURVEY

Now we document how the disconnect between modern
computing and current curricula begins in CS1 by survey-
ing current textbooks for the course. From our stakeholder
survey, we know that the three most popular introductory
programming languages are Java, Python, and C++. For our
textbook survey, we focus on Java because it was developed
for the internet age, and is the only one of the three that has
built-in support for graphical user interfaces (GUI), threads,
and networking. Thus, if any introduction to programming
textbook were to take an approach that incorporates all of

TABLE I
JAVA CS1 TEXTBOOKS BEING PROMOTED AT SIGCSE TS 2024

Java illuminated by Anderson and Franceschi (6th) [1]
Starting out with Java: Control structures through objects
by Gaddis (8th) [11]
Starting out with Java: Early objects by Gaddis (6th) [10]
Java software solutions: Foundations of program design
by Lewis and Loftus (10th) [15]
Introduction to Java: Programming and data structures
by Liang (12th) [16]
Programming fundamentals using Java by McAllister
and Fritz (2nd) [18]

these modern concepts, it would most likely be one written
in Java. We selected the books by surveying publisher booths
at the ACM SIGCSE Technical Symposium (SIGCSE TS) in
2023 and 2024 to see what was featured. Because this is the
largest computer science education conference in the US, all
of the major publishers attend. While publishers do not state
which of their books is the most widely used, those are the
ones they usually display, along with their newest releases.
Thus, we believe that the books selected for our survey on
this basis represent what the majority of students in the US
are currently using to learn to program in Java. This process
identified 6 books, listed in Table I.

Examination of these books shows that students are indeed
focused on a sequential, non-networked model of computing.
Only two of the books had any discussion of threads and
parallelism, one in the very last chapter [18] and one [16] in an
online-only supplement. Because of this placement, students
are unlikely to see this material and definitely will not spend
much time practicing it even if they use the books where
it appears. Networking receives similarly light and optional
coverage; two books [1], [18] never use the network in a
program and one [15] uses it only to load images via URLs.
The others include significant networking coverage, but only
in high-numbered chapters: two of the books [11], [10] cover
accessing a remote database, including the idea of transactions
to maintain consistency, and the last [16] also introduces
remote method invocation (RMI), servlets, and web services.
Notably, the last is a two-course book and all of this material
is in its online-only supplement.

The coverage of graphics also varies widely between books,
but it is generally less than what students likely expect from
modern applications. Three of the books [11], [10], [16] teach
graphics only in late chapters. One [1] introduces JavaFX
for drawing graphics fairly early (Chapter 4 of 17), but only
uses them as an output medium, not introducing GUIs and
interactivity until the last two chapters, which are online-only.
Another book [15] uses and covers graphics in sections of
nearly every chapter, but these are organized as an optional
“Graphics Track” that can be completely skipped and thus
graphics are not used in the bulk of the book’s code samples.
The heaviest use of graphics is a game-oriented text [18],
which gives an early introduction to graphics; it was the only
one to give a graphical example before a console-based one
using Scanner. It uses a custom graphics library for most



of the book and does include a version of event handling for
input, but many of the graphical examples are output-only.

In general, the books focus on small programs, the kind a
student can write in their entirety from scratch. They use large
libraries for graphics or advanced concepts in late chapters, but
otherwise restrict themselves to basic utility APIs (Scanner,
Math, File). The Collections framework is used in late chapters
if at all. One book [1] does include a small number of “Team
projects”, which would require more work. It also includes
numerous questions that ask students to modify the text’s
sample programs, giving a taste of working with an existing
code base, though these programs are all small.

In terms of development process, only one book [16] teaches
a test framework (JUnit) and that’s in a late chapter. (Earlier,
it writes programs that print the correct answer and the result
of a function call, essentially the same idea, but with the user
providing the comparison.) Another [1] includes a category of
questions on interpreting error messages. Several of them [11],
[10], [15] give paragraph-sized pieces of buggy code and ask
the reader to identify the error.

V. APPROACH

As a result of our surveys of stakeholders and CS1 text-
books, we have obtained funding from the US National
Science Foundation to develop exemplar courses for the first
year of the CS curriculum that incorporate PDC concepts
in the model of computational thinking used by students.
Our focus is on addressing the large gap between current
computing education (with a sequential approach) and the
needs of modern applications and workforce (that deal with
concurrency, asynchrony, and distributed objects). A robust
evaluation framework will gather data on the effectiveness of
our implementations.

We have begun work developing a pair of example CS1
courses that illustrate the potential and benefits of modernizing
the CS1 curriculum to a 21st century computing paradigm
that can be broadly adoptable in a diverse set of contexts.
Our exemplar development and evaluation approach is a com-
bination of two development teams and six test teams. The
development teams are at two different types of institutions
using two different programming languages. One development
team is at Knox College, a private, four-year liberal arts college
with approximately 1,100 students, where the introductory
computer science courses are taught with Java. The other
development team is at Tennessee Tech, a public, Ph.D. grant-
ing, research university, with approximately 10,000 students,
where the introductory computer science courses are taught
with C++.

To ensure that the exemplars we develop are suitable for
widespread adoption, they will be evaluated by testing teams
at a variety of institutions: four public universities, ranging in
size from 4,000 to 19,000 students, one community college,
and one private college with 1,900 students. Specifically, each
development team’s materials will be adopted by test teams
with a very different profile. The C++ materials developed
by Tennessee Tech (a university) will be tested at the private

TABLE II
CS1 CONTENT MAPPING BETWEEN INSTITUTIONS

college and community college. The Java materials developed
by Knox (a liberal arts college) will be tested at 3 larger public
universities. In addition, one of the public universities uses
C#, enabling evaluation of conversion to another language.
(Note that we chose not to include Python in our initial efforts,
because of how its global interpreter lock hinders easy use of
concurrency.) We will be training test team instructors on how
to incorporate PDC concepts into their CS1 courses using the
framework developed by the development teams.

In Fall 2023, one of the first activities of the two devel-
opment teams was to compare and contrast our CS1 courses.
Semester terms at Knox run for 10 weeks, whereas Tennessee
Tech uses 15-week semesters. Table II shows the mapping
between the two courses, with each color marking shared
content. As an example of the differences we identified, it
can be seen that Knox introduces classes and objects in week
2, whereas Tennessee Tech spends time at the beginning of
the course on basics such as computational thinking and types
of instructions and doesn’t teach classes until week 14. As
another example, Tennessee Tech’s CS1 course includes C++
pointers and structures, which don’t have direct equivalents
in Java. Below we list commonalities between the courses at
both institutions, although they may differ in where they are
addressed in the courses.

• variables, identifiers, and data types
• strings
• conditionals / branching
• loops and algorithms using loops
• functions



• outputs and inputs
• arrays
• objects

Another Fall 2023 activity was designing evaluation instru-
ments to measure student understanding of PDC concepts. We
used these to gather baseline data for the current courses and
will use them again on the new versions. The development
teams are currently creating exemplars that introduce PDC
components into their own CS1 courses, but coordinating so
the same concepts are covered. Both courses will remain
focused on teaching the foundations of programming and
developing basic programming skills such as program under-
standing, documenting, specifications, analysis, and testing.

The PDC concepts we are introducing in CS1 are in three
categories: data parallelism, distributed computing, and event
handling. These categories were chosen because we believe
that these aspects of modern computing can be introduced
even in a low-level course; we want to teach CS1 students a
more accurate model of computing, but must also be mindful
of their limited background and avoid excessive conceptual or
syntactic complexity.

We have also developed preliminary learning goals for each
of these areas. For data parallelism, the learning goals are the
following:

• Students will demonstrate the ability to identify algorith-
mic solutions that are representative of data parallelism.

• Students will have the ability to implement algorithmic
solutions that are representative of data parallelism.

Note that these can be met even if the implementation does
not use parallel processing; our goal is to promote a way
of thinking rather than to speed up the code. One way we
foresee doing this is to teach for-each or range-based for loops
to process a collection of data, which emphasize that each
element is processed rather than giving operations to do so
sequentially. Students will also use lambda functions with a
collection API, again emphasizing the operation rather than
the order, and this time forcing the operation on each element
to be independent.

For distributed computing, we have the following learning
goals:

• Students will demonstrate the ability to identify when
a problem solution requires interaction with a remote
service.

• Students will be able to develop and implement algorith-
mic solutions for interacting with a remote service.

For these goals, students will learn to pull data objects from
a remote repository, for example using JSON or similar
methods, and develop an algorithmic solution for processing
and displaying the data.

For event handling, we have the following learning goal:

• Students will have be able to recognize when an algo-
rithmic solution can benefit from the use of multiple
threads that communicate via events or similar means of
interaction, and implement that interaction.

To meet this goal, students could build a simple GUI that
responds to button presses via an event handler, a GUI that
uses background processing while remaining responsive to
the user, or an application that invokes remote processing
and responds to events associated with it returning data or
completing.

In Summer 2024, the development teams trained the test
teams in how to use our instrumentation to gather data from
runs of their existing courses, and also previewed the CS1
changes for early feedback.

In Fall 2024, the development teams will incorporate the
new material in their CS1 courses as a trial run and work
with the test teams to transfer the exemplars to their six
institutions. The development teams will also be working on
creating exemplars for the second programming course (CS2)
so that it builds on the concepts introduced in the first.

We are using extensive evaluation processes to document
the effectiveness of the interventions. The primary evaluation
will be of the exemplars’ effectiveness in terms of student
learning outcomes. Direct approaches use quantitative perfor-
mance assessments such as: (i) pretest-posttest comparisons
of learning; (ii) standardized tests of disciplinary knowledge;
(iii) course evaluations (during the semester and at the end
of the semester); (iv) surveys of student attitudes (about new
pedagogy, curriculum); and (v) analysis of assignments to
test conceptual understanding (e.g., concept maps, exams).
Indirect approaches use qualitative or mixed method perfor-
mance assessments such as: (i) focus groups, (ii) structured
and open-ended interviews, (iii) surveys that ask students for
reflections on their learning, and (iv) class observations and
teacher journals/portfolio.

In early 2024, we collected baseline data in CS1. In Fall
2024, we will collect data in CS1 for analyzing the effective-
ness of the new material in teaching PDC concepts. We will
also collect baseline data in CS2. The baseline surveys ask
students to rate their overall experience with computers and
programming. It then asks about their experience with varying
programming languages and programming constructs such as
data types, arithmetic expressions, branching, loops, functions,
arrays, and classes/objects. Pointers and structures are also
included for C++. The students are then asked to rate their
experience with parallel processing, distributed computing,
and event handling.

VI. DISCUSSION

In this paper we have presented results of our stakeholder
study, which showed that employers are frustrated by new
CS graduates’ lack of understanding of modern computing
models and practices. The study also showed that academic
institutions and associated organizations are held back from
modernization by multiple factors, but especially a lack of
course exemplars. We corroborated these findings by showing
that, with few exceptions, popular textbooks for the first
programming course continue to present an obsolete model
of computational thinking and devote significant space to
teaching older patterns.



We then described our effort to develop exemplar modern-
ized CS1 courses that can be broadly adopted. To our knowl-
edge, this is the only effort where such development is being
coordinated across two significantly different (size, course
length, language, public vs. private) types of institutions, with
subsequent testing of the exemplars by six additional teams at
an even more diverse set of institutions, all while employing
a robust evaluation strategy.

One change in modern computing practice that we are not
addressing here is the use of generative AI tools. One of our
development teams is attempting to teach CS1 using these
tools, following the method used in a recent Python textbook
[19], but this is still preliminary and it is not clear whether
other teams in our project will adopt this aspect of the course
due to questions about this technology and the downstream
effects of introductory students learning with it.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation through awards OAC-2321020, OAC-2321015,
OAC-2321016, OAC-2321017, and OAC-1924023.

REFERENCES

[1] J. Anderson and H. Franceschi. Java Illuminated. Jones & Bartlett
Learning, 6th edition, 2024.

[2] J. Brown. The World Café: Living Knowledge through Conversations
that Matter. PhD thesis, Fielding Graduate University, 2001.

[3] K. Bruce, A. Danyluk, and T. Murtagh. Java: An eventful approach.
Prentice Hall, 2005.

[4] K.B. Bruce, A.P. Danyluk, and T.P. Murtagh. Event-driven programming
is simple enough for CS1. In Proc. 6th Ann. Conf. Innovation and
technology in computer science education (ITiCSE), pages 1–4, 2001.

[5] Kim B. Bruce, Andrea Danyluk, and Thomas Murtagh. Introducing
concurrency in CS 1. In Proc. 41st SIGCSE Technical Symp. Computer
Science Education (SIGCSE TS), pages 224–228, 2010.

[6] CC2020 Task Force. Computing Curricula 2020: Paradigms for Global
Computing Education, 2021. https://www.acm.org/binaries/content/
assets/education/curricula-recommendations/cc2020.pdf.

[7] A. Chtchelkanova, S. Das, C. Das, F. Dehne, M. Gouda, A. Gupta,
J. Jaja, K. Kant, A. La Salle, R. LeBlanc, A. Lumsdaine, D. Padua,
M. Parashar, S. Prasad, V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni,
B. Shirazi, A. Sussman, C. Weems, and J. Wu. NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing— core topics
for undergraduates. version 1, http://tcpp.cs.gsu.edu/curriculum/?q=
system/files/NSF-TCPP-curriculum-version1.pdf, 2012.

[8] Nell Dale, Chip Weems, and Mark Headington. Introduction to Java
and Software Design. Jones & Bartlett Learning, 1st edition, 2001.

[9] A. Ehlert and C. Schulte. Empirical comparison of objects-first and
objects-later. In Proc. 5th Intern. Workshop Computing Education
Research (ICER), pages 15–26, 2009.

[10] T. Gaddis. Starting out with Java: Early objects. Pearson Education
Inc., 6th edition, 2018.

[11] T. Gaddis. Starting out with Java: Control Structures through Objects.
Pearson Education Inc., 8th edition, 2022.

[12] M. Guzdial. A media computation course for non-majors. In Proc. 8th
Ann. SIGCSE Conf. Innovation and Technology in Computer Science
Education (ITiCSE), pages 104–108, 2003.

[13] M. Guzdial. Exploring hypotheses about media computation. In Proc.
9th Ann. ACM Conf. Intern. Computing Education Research (ICER),
pages 19–26, 2013.

[14] Joint task force on computing curricula, IEEE Computer Society and
Association for Computing Machinery. Computing Curriculum 2001:
Report of the joint task force on computing curricula, 2001. http://
www.sigcse.org/cc2001/.

[15] J. Lewis and W. Loftus. Java Software Solutions: Foundations of
Program Design. Pearson Education Inc., 10th edition, 2024.

[16] Y.D. Liang. Introduction to Java: Programming and Data Structures.
Pearson Education Inc., 12th edition, 2020.

[17] S.J. Matthews. PDCUnplugged: A free repository of unplugged parallel
& distributed computing activities. In Proc. 10th NSF/TCPP workshop
on parallel and distributed computing education (EduPar), 2020.

[18] W. McAllister and S.J. Fritz. Programming fundamentals using Java.
Mercury Learning and Information, 2nd edition, 2021.

[19] Leo Porter and Daniel Zingaro. Learn AI-Assisted Python programming.
Manning Publications Co., 2024.


