
This handout leads you through three brief exercises that demonstrate features of the CUDA architecture.
They are designed for use in a Computer Organization course where the students have minimal background;
some are just out of CS 2 in Java and have no prior experience with C. That said, I think they serve as
simple illustrations of particular concepts for more advanced students (and you!).

Transfer time

The first exercise emphasizes the cost of transfering data between the main system (called the host) and
GPU. This exercise uses the file addVectors.cu, which is a simple program that adds two vectors of integers.
First, compile and run the program:

nvcc -o addVectors addVectors.cu
./addVectors

You should get a printout with a time, which is how long the program took to add two vectors (of length
1,000,000).

Now let’s examine the code itself. Right near the top is the definition of the function kernel:

__global__ void kernel(int* res, int* a, int* b) {
//function that runs on GPU to do the addition
//sets res[i] = a[i] + b[i]; each thread is responsible for one value of i

int thread_id = threadIdx.x + blockIdx.x*blockDim.x;
if(thread_id < N) {
res[thread_id] = a[thread_id] + b[thread_id];

}
}

This is a pretty standard function to add the vectors a and b, storing the sum into vector res.
Let’s see how this time breaks down between the data transfer between the main system and the GPU.

Open the file and comment out the line that calls the kernel:

kernel<<<blocks,threads>>>(res_dev, a_dev, b_dev);

(This is the 3rd time “kernel” appears in the file and occurs near the middle of main.) Then recompile
and run the program again. The program is now transferring the data back and forth, but not actually
performing the addition. You’ll see that the running time hasn’t changed much. This program spends most
of its time transferring data because the computation does very little to each piece of data and can do that
part in parallel.

To see this another way, open the file again and uncomment the kernel call. Then comment out the
lines that transfer the data to the GPU; these are in the the paragraph commented as “transfer a and b
to the GPU”. Then modify the kernel to use thread id instead of a[thread id] and b[thread id]. (The
program initializes a[i] and b[i] to both be i; see the “set up contents of a and b” paragraph.) The
resulting program should be equivalent to the original one except that instead of having the CPU initialize
the vectors and then copy them to the graphics card, the graphics card is using its knowledge of their value
to compute the sum, thus avoiding the first data transfer. Recompile and rerun this program; now it is
considerably faster. (We’re no longer copying the two vectors, which are each a million entries long...)

This example shows the cost of transfering data, which can limit performance, particularly for an oper-
ation such as vector addition which is very computation light.

Thread divergence

Now we move on to our second factor affecting the performance of GPU programs. The factor is thread
divergence, the phenomenon in which the program will run more slowly when the threads in a warp wish to
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execute different instructions. Essentially, the system allows one cycle for each instruction that any thread
in the warp wishes to run. All threads spend a cycle for each such instruction, with threads not wishing to
execute that instruction running a nop instead.

To illustrate this property, we use the file divergence.cu. This file contains two kernels, creatively
named kernel 1 and kernel 2. Examine them and verify that they should produce the same result, which
is to count the number of threads whose id takes on each remainder when divided by 32.

Compile and run this program:

nvcc -o divergence divergence.cu
./divergence

Then modify the code to use the other kernel, recompile, and rerun. You’ll see that the running times are
quite different.

That there is a difference is not terribly surprising since the kernels do use different code. To further
explore this difference, change the number of cases enumerated in kernel 2 (either delete some or use
cut-and-paste to add more). You’ll see that its running time changes, which should not happen; switch
statements typically have running time independent of the number of cases.since they’re just a table lookup.

This example emphasizes the SIMD nature of CUDA hardware and the danger of having control flow
that varies between threads.

Constant memory

The third example shows one of the special kinds of memory in CUDA, constant memory. This memory
is for values that will not be changed. Using it allows the hardware to cache values as a way of reducing
memory traffic. It also uses another optimization for this goal: the result of reads to constant memory are
broadcast to all threads in a half-warp, greatly speeding up the code if these threads all want the same value.

The code to illustrate this is in the constMemory and constMemory-noX directories. If you’re on the
servers we provided, use the noX version. If you’re on your own system (and X works), use the other one
so you get the graphical output. This code is taken from Chapter 6 of “CUDA by Example” by Sanders
and Kandrot (modified only to compile with all the headers in the same directory and to remove the X calls
for that version). The application creates an image of randomly placed spheres. Each pixel determines the
closest pixel down the z axis from its location and sets its color accordingly.

There are two implementations of this in separate source files. Compile them both by typing make. The
program noconst (made from ray noconst.cu) is a “plain vanilla” implementation, while const (made from
ray.cu) puts the sphere information into constant memory to exploit the fact that each thread examines
them in the same order. The program generate the same output (up to differences in the random numbers
used to place the spheres), but the constant memory version runs faster.

Examine the code to see the differences in declaring the variable s for the spheres and populating it.
Then change the for loop in the kernel so its first two lines are the following:

for(int j=0; j<SPHERES; j++) {
int i = (j+threadIdx.x) % SPHERES;

This has the effect of making different threads in a half warp examine the spheres in a different order, slowing
the program by making the broadcast of values from constant memory into a disadvantage since the requests
are serialized. Clearly memory usage needs to be considered carefully in order to keep the many simultaneous
threads running smoothly.

For questions after the conference: David Bunde (dbunde@knox.edu)
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