Where to teach CUDA?

Special topics course

* Varying levels possible
* Popular with students

* Lots of projects possible

Parallel programming course

* “Advanced topic” in parallel course
— Commonly used in HPC
— Good introduction to heterogeneity

* Re-emphasize concepts of data parallelism
and locality

Computer Organization

* Again “advanced topic”
* Tie to idea of general story of hardware/
software interaction

— data parallelism (vector instructions)
— introduction to system heterogeneity

— memory levels and access times

Two approaches

 Game of Life application
— visually noticeable speedup

— students get to play with significant code

* Concept-oriented lab
— short code segments to illustrate specific features
— possible with limited background

Game of Life

* Break simulation region into cells and time
Into steps

e Cells live or die based

oh neighbors

— Living cells die unless 2 or 3 are alive
— Dead cells become alive if 3 are alive

Conceptual unit goals

ldea of parallelism
Benefits and costs of system heterogeneity
Data movement and NUMA

Generally, the effect of architecture on
program performance

My constraints

e Brief time: Course has lots of other goals
— One 70-minute lab and parts of 2 lectures

* Relatively inexperienced students
— Some just out of CS 2
— Many didn’t know C or Unix programming

Conceptual exercises

* Data transfer time via vector addition
* Thread divergence via “bucketing”
* Constant memory via image generation

Data transfer time

Host

1. transfer input vectors

-

-

3. transfer results

GPU

2. perform
addition

J

Thread divergence

* Threads organized into warps of 32 threads

* All threads in a warp execute the same
Instruction

Thread divergence

* Threads organized into warps of 32 threads

* All threads in a warp execute the same
Instruction

if(condition) {
statementl;

} else {
statement?2;

Thread divergence

* Threads organized into warps of 32 threads

* All threads in a warp execute the same
Instruction

all threads =» if(condition) {
statement];
}else {
statement?2;

Thread divergence

* Threads organized into warps of 32 threads

* All threads in a warp execute the same
Instruction

if(condition) {
some threads = statementl;
}else {
some threads = statement2;

}

void kernel _1(int* a) { void kernel _2(int* a) {

int cell = threadldx.x % 32; int cell = threadlndx.x %32;
al[cell]++]; switch(cell) {
} case 0: a[0]++; break;

case 1: a[1]++; break;
case 2: a[2]++; break;
case 3: a[3]++; break;
default: a[cell]++;

Constant memory

* Different but essentially the same calls
* Not allowed to change it

Constant memory

Different but essentially the same calls
Not allowed to change it

Allows GPU to cache values
Values are broadcast to half-warps

Constant memory

Different but essentially the same calls
Not allowed to change it

Allows GPU to cache values

Values are broadcast to half-warps

— Serializes requests if different threads in a half-
warp request different memory addresses

“Ray tracing” application

[“CUDA by Example” by Sanders and Kandrot]

* Each pixel traverses
sphere array to find
closest intersection

* Accesses to array all
in same order

Key part of kernel
for(int i=0; i<SPHERES; i++) {

float t = s[i].hit(x, y, &n);
if (t > maxz) {
//set color to sphere i
maxz = t;
}
}

Key part of kernel

for(int i=0; i<SPHERES; i++) { for(int j=0; j<SPHERES; j++) {
i = (j+threadldx.x) % SPHERES;

float t = s[i].hit(x, y, &n); float t = s[i].hit(x, y, &n);
if (t > maxz) { if (t > maxz) {
//set color to sphere i //set color to sphere i
maxz = t; maxz = t;
} }

Using conceptual exercises

* |Introductory lecture
— GPUs: massively parallel, outside CPU, kernels, SIMD

* Lab illustrating features of CUDA architecture
— Data transfer time
— Thread divergence
— Memory types

* “Lessons learned” lecture
— Reiterate architecture
— Demonstrate speedup with Game of Life
— Talk about use in Top 500 systems

