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Abstract—High-performance computing systems are shifting
away from traditional interconnect topologies to exploit new
technologies and to reduce interconnect power consumption.
The Dragonfly topology is one promising candidate for new
systems, with several variations already in production. It is
hierarchical, with local links forming groups and global links
joining the groups. At each level, the interconnect is a clique,
with a link between each pair of switches in a group and a
link between each pair of groups.

This paper shows that the intergroup links can be made
in meaningfully different ways. We evaluate three previously-
proposed approaches for link organization (called global link
arrangements) in two ways. First, we use bisection bandwidth,
an important and commonly-used measure of the potential
for communication bottlenecks. We show that the global link
arrangements often give bisection bandwidths differing by 10s
of percent, with the specific separation varying based on the
relative bandwidths of local and global links. For the link band-
widths used in a current Dragonfly implementation, it is 33%.
Second, we show that the choice of global link arrangement
can greatly impact the regularity of task mappings for nearest
neighbor stencil communication patterns, an important pattern
in scientific applications.

Keywords-Dragonfly, parallel interconnect topology, bisection
bandwidth, task mapping

I. INTRODUCTION

There are several key challenges that must be addressed

to continue improving the capabilities of high-performance

computing (HPC) systems [1]. One of these challenges

concerns the node interconnect; simply scaling up traditional

interconnects will not work because such a network would

require too much power and face severe bandwidth limita-

tions as an increasing number of nodes attempt to split link

bandwidth between more communicating pairs.

New interconnect topologies are being developed to ad-

dress these challenges by exploiting two technology changes.

The first change is the availability of high-radix routers

[2], which use increasing bandwidth to increase the number

of ports rather than the bandwidth per port. This large

number of ports allows many destinations to be within a

few hops. Reducing the number of hops saves energy since

less equipment handles each message and reduces contention

since each message consumes bandwidth on fewer links.

✼✵ � ✷ ✁ ✹ ✂ ✻

Figure 1. Group of switches forming a virtual switch

The second technology change is economical optical

links. Optical links can be longer than electrical ones, en-

abling long distances to be covered in fewer hops, providing

room for all the equipment in an HPC system. They also

require less energy per unit distance that the message travels.

Several systems using high-radix routers have been pro-

posed [3], [4], [5], [6]. Our focus here is the Dragonfly

topology [6], which has been attracting significant academic

interest and variations of which have recently been used to

implement the Cray XC [7], [8] and PERCS [9].

A Dragonfly system is constructed from switches that

are organized into groups. Each switch has nodes attached

to it using traditional electrical links. Electrical links also

connect every pair of switches in a group. In addition to

these electrical links, each switch has outgoing optical links

that connect to switches in other groups. This is done so that

every group has a link to each other group. Effectively the

switches of a group form a virtual switch of very high radix

connecting all nodes associated with its group to the virtual

switches associated with each other group. Figure 1 shows

a virtual switch constructed from 4 physical switches. This

connects 8 nodes (the circles) to 8 outgoing ports for optical

links. Figures 2, 3, and 4 show three ways that 9 of these

virtual switches can be connected into a Dragonfly system.1

Each virtual switch is marked with a dashed line circling the

physical switches in its group. To simplify the figures, they

do not depict the electrical links or the nodes themselves.

Because of their different roles, the electrical links in a

Dragonfly system are called local links while the optical

1The figures depict a (p, 4, 2)-Dragonfly, meaning each group has 4
switches, each with 2 optical links. The notation is defined in Section II.
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Figure 2. Absolute global link arrangement for (p, 4, 2)

✩
✪ ✫ ✬ ✭

✮
✯

✰
✱

✲

✳

✴

✾

✿

❀

❁

❂

❃
❄❅

❆ ❇❈
❉

❊

❋

●

❍

■

❏

❑

▲

▼

◆
❖

P
◗

❘

❙

❚

❯

❱ ❲

❳

❨

Figure 3. Relative global link arrangement for (p, 4, 2)

❩
❬ ❭ ❪ ❫

❴
❵

❛
❜

❝

❞

❡

❢

❣

❤

✐

❥

❦
❧♠

♥ ♦♣
q

r

s

t

✉

✈

✇

①

②

③

④
⑤

⑥
⑦

⑧

⑨

⑩

❶

❷ ❸

❹

❺

Figure 4. Circulant-based global link arrangement for (p, 4, 2)

ones are called global links. In a Dragonfly system, the

shortest path between any pair of switches is at most three

hops: one local link within the source group, one global link

between groups, and one local link within the destination

group. These shortest path routes are called direct routes.

When direct routes are overly congested, an indirect route

is used instead. These are found using Valiant’s randomized

routing algorithm [10], which first sends the message to

a randomly-chosen intermediate group. Even with indirect

routing, all messages traverse at most five hops.

Despite the interest in Dragonfly, the existing literature

virtually ignores the issue of which switch in a group is

connected to each of the other groups. In nearly all prior

work, the analogs of Figures 2–4 uses ellipses that hide

how the actual connections are made. The main exception

is Camarero et al. [11], who define three specific ways to

make these connections, called a global link arrangement.

Even in this case, however, the global link arrangements are

not compared and their simulations all use one arrangement.

Contribution: In this paper, we demonstrate that the

choice of global link arrangement changes the achievable

network performance. Specifically, we take the arrangements

defined by Camarero et al. [11] (absolute, relative, and

circulant-based)2 and evaluate them in two ways.

First of all, we evaluate the global link arrangements in

terms of their effect on bisection bandwidth, the minimum

bandwidth between 2 equal-sized parts of the system. This

is a common network quality measure (e.g. [12, pg. 661]);

it tries to capture the worst-case communication bottleneck

in a large computation. It is also particularly suitable for

Dragonfly networks since the use of randomized indirect

routing will tend to equalize the link utilizations. We show

that the choice of global link arrangement can have great

impact on the bisection bandwidth by solving for it on a

small Dragonfly network (36 switches) and demonstrating

that the circulant-based and relative arrangements can deliver

up to a 50% higher bisection bandwidth than the absolute

arrangement. The specific improvement depends on the

relative bandwidth of global and local links, but a 33%

improvement is realized with the links used in PERCS.

In addition to showing the importance of global link

arrangements on this small network, we analyze global link

structure in general Dragonfly networks and identify some

cases where the bisection bandwidth depends on global links

and others where it is determined entirely by local links.

Our second approach to evaluating the global link ar-

rangements is in terms of their effect on task mapping.

Task mapping is the assignment of a job’s tasks to the

processing elements assigned to that job. Quality task map-

ping has been shown to improve application performance

in a variety of settings by improving bandwidth utilization

2Camarero et al. [11] used the names consecutive arrangement and
palmtree arrangement for what we call the absolute arrangement and
relative arrangement.



(e.g. [13], [14], [15]). This paper lays out criteria for task

mapping in Dragonfly networks. It also considers mapping

for an important communication pattern under all three of

the global link arrangements and shows that, while good

mappings are possible under each, the relative arrangement

allows mappings with a regularity that will simplify code

and improve generalizability.

Organization: The rest of this paper is organized as

follows. Section II defines terminology related to the Drag-

onfly interconnect and the global link arrangements. Section

III gives the comparison of the global link arrangements

using bisection bandwidth on the small network. Section IV

examines the structure of global links for general networks

and uses this structure to draw conclusions about the bi-

section bandwidth for each arrangement. Section V presents

the comparison of the arrangements based on task mapping.

Section VI summarizes related work. Finally, Section VII

concludes and discusses future work.

II. DEFINITIONS

The size of a Dragonfly system is described with the

following three parameters:

p the number of nodes connected to a switch,
a the number of switches in a group, and
h the number of optical links on a switch.

These three parameters immediately also determine

g = ah + 1, the number of groups in the network

since each of the a switches in a group connects to h other

groups. The number of nodes is pag = pa(ah + 1). The

system shown in Figure 3 is called a (p, 4, 2)-Dragonfly

since its parameters are (p, a, h) = (p, 4, 2); the nodes are

not shown so p is left as a variable. In this paper, we assume

h ≥ 2 because otherwise all global link arrangements are

isomorphic.

We name each switch with an ordered pair (i, j), where

i is the group number and 0 ≤ j < a is the switch number

within that group. We also refer to switch (i, j) as switch

j of group i. For simplicity of notation, we use modular

arithmetic on group numbers so that (i, j) refers to the same

switch as (i + g, j), (i − g, j), and similar pairs.

As mentioned above, one of the methods we use to

evaluate Dragonfly networks is bisection bandwidth. A cut

in such a network is a division of the network switches into

two sets. A bisection is a cut in which the two sets have

equal size (within 1 when the number of switches is odd).

In this paper we use these terms interchangeably because all

cuts considered are bisections. We specify cuts by describing

one of these sets. The bandwidth of a cut is the bandwidth

of all links with one endpoint in each side; these links are

said to be crossing the cut. To deal with the presence of two

types of links in Dragonfly networks, we assign local and

global links bandwidth 1 and α respectively. The network’s

bisection bandwidth is the smallest bandwidth achieved by

any bisection of the network.

To look at the effect of global link arrangements, we

consider the following natural ideas:

1) The absolute arrangement conceptually connects port

k of each group’s virtual switch to group k. Once

we ignore the unnecessary link that this would give

each group to itself, this arrangement connects port

k of group i to group k if k < i and to group k +
1 otherwise. The absolute arrangement is depicted in

Figure 2.

2) In the relative arrangement, each group uses its port

0 to connect to the “next” group, its port 1 to two

groups down, etc. More formally, port k of group i
(k ∈ {0, . . . , g − 2} and i ∈ {0, . . . , g − 1}) connects

to group (i + k + 1). This is the absolute global link

arrangement with each group using its own numbering

for the groups so it takes the role of group 0. The

relative arrangement is depicted in Figure 3.

3) The circulant-based arrangement assumes that h is

even, i.e. that every switch has an even number of

optical links. Each group uses its port 0 to connect

to the next group, its port 1 to the previous group,

its port 2 to the group two ahead, its port 3 to the

group two behind, etc. More formally, port k of group

i (k ∈ {0, . . . , g − 2} and i ∈ {0, . . . , g − 1})

connects to group (i+k/2+1) if k is even and group

(i−⌊k/2⌋−1) if k is odd. The circulant-based arrange-

ment is depicted in Figure 4. Unlike with the other

arrangements, links in the circulant-based arrangement

always connect like-numbered switches; switch (i, j)
has ports k ∈ {hj, hj + 1, . . . , h(j + 1) − 1}, linking

to switches (i± (⌊k/2⌋+ 1), j) for these values of k.

Each of these global link arrangements make it fairly easy

to determine which physical switch connects to each group,

simplifying both routing and network installation.

III. BISECTION BANDWIDTH FOR (p, 4, 2)

To illustrate the separation between the different global

link arrangements, we determine the bisection bandwidth for

each on the (p, 4, 2)-Dragonfly network. For a given global

link arrangement and cut, the bandwidth varies linearly with

α, with the rate depending on the number of global links

crossing the cut. Because the bandwidth of each cut varies

with α, the min-bandwidth cut also changes. For small

values of α, the min-bandwidth cut is one crossed by the

minimum number of local links, even if it is crossed by

many global links. As α grows, the global links become

more important and eventually the min-bandwidth cut is one

crossed by the minimum number of global links. Thus, the

bisection bandwidth is a piecewise linear function of α, with

slope changes whenever the min-bandwidth cut changes to

one crossed by fewer global links. This function is the lower

envelope of the functions determined by the different min-

bandwidth cuts.



We used a divide and conquer algorithm to identify

the bisection bandwidth function for a specific Dragonfly

network and global link arrangement. For a given value of

α, the min-bandwidth cut is found with a branch and bound

strategy. (Finding the min-bandwidth cut is NP-hard, though

poly-time approximable to within an O(log2 n) factor [16].)

The algorithm begins by doing this for α = 0 and a large

value of α. Each of the resulting cuts corresponds to a linear

function of α. Then it determines the cut for the value of

α at which these functions intersect. If the min-bandwidth

cut for this α gives the same value as the known cuts,

this value of α is the transition between them. Otherwise,

we have found a cut with less bandwidth for this α so

the computation proceeds by finding the intersections of

the functions corresponding to this cut and the previously-

known cuts. This proceeds until all the transition points are

confirmed.

The branch and bound portion of this algorithm is com-

putationally expensive, which restricts the size of Dragonfly

networks whose bisection bandwidth can be practically

determined by this method. We were able to run it on a

(p, 4, 2)-Dragonfly, however. At this size, each part has 18

switches. Figure 5 shows the bisection bandwidth for each

global link arrangement. The functions are the same until

α = 1.25, after which the absolute arrangement provides a

constant bisection bandwidth of 24 while the others continue

to improve until reaching bandwidth 36. The circulant-based

arrangement continues to improve at a higher rate than the

relative one; it reaches 36 at α = 8/3 while the relative

arrangement only does so at α = 4. Overall, the circulant-

based arrangement always provides at least as high a value

as the relative arrangement, which in turn is always at

least as high as absolute. The circulant-based arrangement

is strictly better than relative for 1.25 < α < 4. Both

circulant-based and relative are strictly better than absolute

for α > 1.25, and they provide 50% higher bisection

bandwidth for α ≥ 8/3 and α ≥ 4 respectively.

For context, consider the value of α used by the current

implementations of (variations on) Dragonfly. In the Cray

XC, global links consist of four parallel 4.7 GB/s optical

cables and local ones are provided by a triple of 5.25 GB/s

electrical cables [7]. Based on these bandwidths, the Cray

XC has α = 4(4.7)/3(5.25) ≈ 1.19. At this value, all three

arrangements provide the same bisection bandwidth.

The other implementation is PERCS, which uses 2 dif-

ferent bandwidths for local links. Depending on which is

selected, the system’s value of α is either 10/24 ≈ 0.42 or

10/5 = 2. All three arrangements give the same bisection

bandwidth for the former value, but the circulant-based and

relative arrangements give improvements over absolute of

approximately 33% and 17% respectively for the latter.

Thus, we see that the importance of the global link

arrangement depends on α, but that it can be quite significant

for practical values.

Absolute arrangement: Now we describe the cuts that

achieve the bisection bandwidths depicted in Figure 5, be-

ginning with those for the absolute global link arrangement.

One cut that achieves bandwidth 4 + 16α for the absolute

arrangement takes the first 18 switches: all of groups 0–3,

plus switches 0 and 1 of group 4. This is crossed by 4 local

links because group 4 has two switches on each side of the

cut. The 16 global links crossing the cut are those from

groups 0–3 to groups 5–8; note that all global links from

switches 0 and 1 of group 4 go to the first four groups.

One cut that achieves bandwidth 24 takes all of groups

0–1, switches 0–1 of groups 2–4, and switch 0 of groups

5–8. No global links cross this cut because groups 0–1 are

connected to switch 0 in all the other groups and the switch

1s in groups 2–4 connect to each other. As for local links,

none cross the cut in groups 0–1, 4 in each of groups 2–4 (2

switches on each side), and 3 each in groups 5–8 (1 switch

on one side and 3 on the other).

Relative arrangement: Now we describe the cuts that

achieve the bisection bandwidth values depicted in Figure 5

for the relative global link arrangement.

One cut that achieves bandwidth 4 + 16α is to take all

of groups 0–3, plus switches 2 and 3 of group 4. This is

the same as the cut of the same bandwidth for the absolute

arrangement except for taking the other half of group 4 since

that is the half that connects to groups 0–3 in the relative

arrangement. The bandwidth calculation is essentially the

same as well, with 4 local edges crossing the cut because

group 4 is split and 16 global edges crossing it between

groups 0–3 and 5–8.

One cut that achieves bandwidth 14+8α is to take all of

groups 0 and 5, switches 1–3 of group 1, switches 0–2 of

group 4, switches 1 and 3 of group 6, and switches 0 and

2 of group 8. A partial description of this cut is to not take

any of groups 2 or 3 and then try to exclude the switches

connecting to them (hence not including switch 0 of group

1, switch 3 of group 4, or switch 2 of group 6).

One cut that achieves bandwidth 20+4α is to take all of

groups 0 and 1, switches 0, 2, and 3 of group 2, switches

2–3 of group 3, switch 2 of group 4, switch 1 of group 6,

switch 1 of group 7, and switches 0–1 of group 8. A partial

description of this cut is to not take any of group 5 and to

try to exclude the switches connecting to it.

One cut that achieves bandwidth 36 is to take switches

0 and 3 from each group. Global links join switch 0 with

switch 3 in the previous two groups and switch 3 with switch

0 in the next two groups so none of these links cross the

cut. Four local links cross the cut in each group since half

the group’s switches are on each side of the cut.

The series of min-bandwidth cuts defy simple description,

but the general trend is that each cut in the series excludes

fewer groups (4 initially, then 2, then 1, and finally none)

in order to take both endpoints of more global links. In

exchange, each cut in the series increases the number of
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Figure 5. Normalized bisection bandwidth for the global link arrangements. For one cut, the bandwidth is (# local links) + α(# global links). The table
(left) shows the bandwidth of each arrangement’s min-bandwidth cut as a function of α. The graph (right) plots these.

crossing local links since it includes more partial groups.

Circulant-based arrangement: Now we describe the

cuts that achieve the bisection bandwidth values depicted

in Figure 5 for the circulant-based global link arrangement.

One cut that achieves bandwidth 4+16α is to take all of

groups 0, 1, 4, and 5, plus the middle two switches of group

7. The chosen switches in group 7 are those with links to

the others so the only global links crossing the cut are from

the 4 chosen groups to the remaining 4 groups.

One cut that achieves bandwidth 16+8α is to take all of

groups 0 and 5, switches 0–2 of groups 6 and 8, switches

0–1 of group 7, and switch 2 of groups 2 and 3. The higher

score than the 14+8α cut for the relative arrangement occurs

because a group with two switches has been replaced with

two groups of one switch each.

One cut that achieves bandwidth 20+6α is to take all of

group 0, switches 0, 1, and 3 of groups 1 and 2, switches 0,

1, and 2 of group 3, switches 1 and 3 of group 5, switches

2 and 3 of group 6, and switch 1 of group 7.

One cut that achieves bandwidth 36 is to take switches 0

and 1 from each group. (Any 2 switches work as long as the

same ones are taken in each group.) Because every global

link connects like-numbered switches, none cross the cut.

As with the relative arrangement, the series of min-

bandwidth cuts defies simple description. It has a similar

trend of excluding fewer groups, though the 20 + 6α cut

violates the trend; the number of excluded groups is 4, 2, 2,

and then none.

IV. GOOD CUTS FOR LARGE α

Now that we have completely determined the bisection

bandwidth for (p, 4, 2), we turn to larger Dragonfly in-

stances. Without a concrete configuration, we cannot com-

pletely solve for bisection bandwidth. Instead, we examine

a particular case, that of large values of global bandwidth α.

Currently, most concern about hotspots in Dragonfly systems

focuses on the global edges, suggesting large values of α.

Our analysis shows that the benefits of this are limited in

many cases.

For sufficiently large α, the bisection bandwidth is deter-

mined by the bisection crossed by the fewest global links.

Our approach to finding this cut is to identify the connected

components in the graph of global links. Formally, a globally

connected component (GCC) is a connected component of

the network with only global links, ignoring local links.

A. Circulant-based arrangement

The easiest case is the circulant-based arrangement. Be-

cause every global link in this arrangement connects a pair of

like-numbered switches, every network has at least a GCCs,

one per switch number. When a is even, this guarantees the

presence of bisections that are not crossed by global links

by just taking half of each group as one part:

Observation 1: When a is even and α is sufficiently large,

the circulant-based arrangement’s bisection bandwidth is

(a/2)2g.

The structure of the GCCs is potentially more complicated

than just having one per switch number. A single switch

number can be split into more than one GCC if g is a

multiple of the distance traversed by the switch’s links.

Figure 4 shows this; switch 2 connects to groups three

down and there are nine groups in all so the 2nd switches

form three GCCs, each consisting of the 2nd switches in an

equivalence class of groups mod 3.

B. Relative arrangement

It is not obvious that the other arrangements would create

more than a single GCC, but both actually yield GCCs with

a regular structure. We first solve for the structure of the

relative arrangement because it is simpler.

Theorem 2: When a is even, the relative arrangement

gives a/2 GCCs of size 2g. If a is odd, then there are ⌊a/2⌋
GCCs of size 2g and one GCC of size g.

Proof: In the relative arrangement, the global links

from a group’s 0th switch join it to the last (aka (a − 1)st)

switch in the next h groups. Similarly, the global links

from a group’s last switch join it to the 0th switch in the

previous h groups. Thus, the GCC containing (0, 0) will



contain only 0th and (a − 1)st switches. In fact, this GCC

contains all such switches because they all occur in the path

(0, 0), (h, a − 1), (1, 0), (h + 1, a − 1), (2, 0), (h + 2, a −
1), (3, 0), (h + 3, a − 1) etc. (Recall our assumption that

h ≥ 2.) Since it has 2 switches from each group, this GCC

has size 2g.

A similar argument shows that all the ith and (a−1− i)th

switches form a group for each i ≤ ⌊a/2⌋; for any group

j, switch (j, i) is connected to switch a − 1 − i in groups

j+hi, j+hi+1, . . . , j+hi+(h−1) and switch (j, a−1−i) is

connected to switch i in groups j−ih−1, j−ih−2, . . . , j−
ih − h. As above, each of these GCCs has size 2g since it

contains 2 switches from each group.

The above gives ⌊a/2⌋ GCCs of size 2g. Thus, we are

done when a is even. When a is odd, the middle switches

of each group form a GCC of size g since all are on the path

(0, µ), (hµ, µ), (1, µ), (hµ + 1, µ), . . ., where µ = ⌈a/2⌉.

Theorem 2 not only gives the GCCs sizes, but shows

that all the GCCs in the relative arrangement have similar

structure. (With one degenerate GCC when a is odd.) This

structure lets us reason about the bisection bandwidth at

large α. To simplify the discussion, we use large GCC to

denote a GCC of size 2g and small GCC to denote one of

size g. In addition, let x ≡b y mean that x is congruent to

y modulo b, i.e. that x = y + bk for some integer k.

The simplest case is when a ≡4 0, i.e. a is a multiple

of 4. In this case, there are an even number of large GCCs

and no small ones. For sufficiently large α, the bisection

bandwidth will be determined by a cut with half the GCCs

on each side. Since every GCC includes 2 switches in each

group, every bisection places a/2 switches in every group

on each side of the cut. Thus, we have the following:

Corollary 3: When a is a multiple of four and α is suffi-

ciently large, the relative arrangement’s bisection bandwidth

is (a/2)2g.

For other values of a, every bisection is crossed by at least

one global link. When a is odd, the network has a single

small GCC. When a ≡4 2, it has an odd number of large

GCCs. In either case, any bisection is crossed by at least

one global link so the bisection bandwidth includes α with

a non-zero coefficient. This gives the following:

Corollary 4: When a is not a multiple of four, the relative

arrangement’s bisection bandwidth is Θ(α).

C. Absolute arrangement

Now we consider the absolute arrangement, whose GCCs

have a more complicated structure, with two qualitatively-

different types.

Theorem 5: The absolute arrangement gives
(

a
2

)

= a(a−
1)/2 GCCs of size 2h and a GCCs of size h + 1.

To simplify the discussion, we overload the terms large

GCC and small GCC to specify GCCs of these sizes.

Proof: The proof relies on classifying each switch into

one of three types. We call the first type skip switches

because they are mostly the switches with the virtual switch

port that would connect to their group number and thus we

‘skip’ that group number. Formally, we define a skip switch

as one in

Q = {(i, j) : jh ≤ i ≤ (j + 1)h}

This slightly deviates from the intuitive description above

because we also count as a skip switch one whose group’s

port number occurs immediately after it.

Note that each switch number 0 ≤ j < a occurs in h + 1
skip switches ((jh, j), (jh + 1, j), . . . , ((j + 1)h, j)) since

(j + 1)h is always less than ah + 1, the number of groups.

We will show that these switches form a clique of size h+1
for each of the a switch numbers. Thus, they form the small

GCCs.

To prove that the skip switches with a given switch

number form a clique, consider the groups to which a switch

(i, j) ∈ Q connects. The virtual port numbers on this switch

are jh through (j+1)h−1. Since (i, j) is a skip switch, the

transition between port k connecting to group k and port k
connecting to group k + 1 occurs during this switch. Thus,

the first group these ports connect to is jh (unless this group

is skipped because jh = i) and the last is ((j+1)h−1)+1 =
(j + 1)h (unless (j + 1)h = i). Therefore, (i, j) connects to

groups NQ
i,j = {k : jh ≤ k ≤ (j + 1)h, k += i}.

Suppose i′ ∈ NQ
i,j . Then (i′, j) is a member of Q and thus

also a skip switch. By the argument above, it connects to

groups in the set NQ
i′,j = {k : jh ≤ k ≤ (j + 1)h, k += i′},

which includes i. Because (i, j) and (i′, j) each have a link

to the other’s group and there is only one link between each

pair of groups, these two switches are connected. The choice

of i′ was arbitrary except for its membership in NQ
i,j so

all skip switches with a switch number j are connected,

completing the proof of our claim about skip switches.

The other two types of switches are defined in relation to

skip switches. Switches are of type P if they come before

their group’s skip switch(es) and of type R if they come

after. Formally, these types are defined by membership in

the following sets:

P = {(i, j) : i > (j + 1)h}

R = {(i, j) : i < jh}

Note that P , Q, and R partition the set of switches.

We will start this proof by showing that type P switches

cannot be adjacent to other type P switches. Let p = (i, j)
be a type P switch. It has ports jh through (j+1)h−1. Since

the switch’s group number is above this range, each of these

ports has a link to the group with the same number and (i, j)
has links to groups in the set NP

i,j = {g : jh ≤ g < (j +
1)h}. By the definition of P , i > (j+1)h. Thus, i is greater

than every member of NP
i,j and p has links only to lower-

numbered groups. Because our only assumption about p was

its membership in P , we conclude that type P switches are



only adjacent to lower-numbered groups. This implies that

no pair of type P switches can be adjacent since otherwise

whichever has the smaller group number would be adjacent

to a higher-numbered group.

Since skip switches are adjacent only to other skip

switches, type P switches are not adjacent to them either.

Thus, members of P are adjacent only to members of R.

A similar argument shows that members of R are adjacent

only to members of P .

In fact, for each pair of switch numbers j1 and j2 satis-

fying 0 ≤ j1 < j2 < a, there are h switches of type P with

switch j1 and h switches of type R with switch j2 that form

a GCC that is a complete bipartite graph connecting these

switches. These account for the larger GCCs so proving this

claim will complete the theorem.

For a particular j1 < j2, we define the following:

A = {(i, j1) : j2h < i ≤ (j2 + 1)h}

B = {(i, j2) : j1h ≤ i < (j1 + 1)h}

Note that both sets contain h switches. The smallest group

number in A is greater than j2h ≥ (j1 + 1)h and thus A ⊂
P . Similarly, the largest group number in B is less than

(j1 + 1)h ≤ j2h and thus B ⊂ R.

As observed above, all links from switches in A go to

the groups in B. Similar reasoning shows that all links from

switches in B go to the groups in A. Since there is only one

link between each pair of groups, the switches in A and B
must be adjacent. Because we accounted for all links leaving

each set, A ∪ B forms a GCC of size 2h.

As with the relative global link arrangement, we can

use this information about the size and structure of the

GCCs to reason about the bisection bandwidth for large

values of α. Again, a being a multiple of 4 is the simplest

case. In this case, there are an even number of both large

and small GCCs, guaranteeing the existence of bisections

without crossing global links:

Corollary 6: When a is a multiple of four, the absolute

arrangement’s bisection bandwidth is O(1).
Unlike in the relative case, however, this is not the only

situation when the min-bandwidth cut is not crossed by

global links because it is possible for several small GCCs

to match with a collection of large ones. In these situations,

the absolute arrangement’s bisection bandwidth is bounded

while the relative arrangement’s continues to grow with α.

V. MAPPING STENCIL JOBS

As a second way to compare the global link arrangements,

we consider their effect on task mapping. Since the entire

goal of the Dragonfly topology is to place all nodes within

a few hops of each other, at first it may seem that the

topology renders careful task mapping unnecessary. This is

not correct. A short version of the argument is that hotspots

can still occur; they are the entire reason for implementing

indirect routing.

A more nuanced argument considers the tradeoff inherent

in optimizing network performance on a Dragonfly system.

On one hand, nodes within a group are all connected, en-

couraging allocations that concentrate jobs into few groups.

On the other hand, there is only one link between each

pair of groups so global links will tend to be hotspots in

concentrated allocations. Improved task mapping represents

a way to escape this tradeoff by reducing traffic at poten-

tial hotspots through task placement, hence allowing more

concentrated allocations.

This argument is borne out in recent work by Prisacari et

al. [17]. They improved the performance of personalized all-

to-all communication in which each node sends a separate

message to every other node. Because the nodes are sym-

metric in this communication pattern, task mapping is not

an issue, but they found that its time analog was crucial; the

algorithm used phases, each specifying the communication

partner for each node. In particular, they found that achieving

high performance required two things:

• The first (and more important) was to distribute mes-

sages evenly between paths to prevent congestion on

the optical links.
• A second-order consideration was to ensure that all

paths in a phase have the same length (in particular, that

all use an optical link or none do). This lets all parts of

the phase end together and minimizes synchronization

delays or inter-phase contention.

Although [17] solves a scheduling problem rather than a

mapping one, these observations give us desired criteria for

mappings: the mapping must allow communication in phases

that balance traffic and have equal-length paths.

Based on these criteria, we now give a preliminary com-

parison of the global link arrangements in terms of their

impact on the task mapping problem. In particular, we look

at jobs that communicate in a 2D nearest neighbor stencil

pattern. In this pattern, tasks that correspond to integer

points in a two-dimensional grid and each communicates

with it nearest neighbors, the closest points in each car-

dinal direction (+x, −x, +y, and −y). This is a very

common communication pattern in computational science

applications, arising naturally from spatial decompositions

into regular rectangular regions. If large Dragonfly systems

are built, some of their applications will use this important

pattern.

For our evaluation, we looked at good task mappings for a

specific case: a 6×6 2D stencil job on a (p, 4, 2)-Dragonfly

(depicted in Figures 2–4) where each task is assigned p
nodes (i.e. we are mapping switches rather than nodes).

Figures 6(a), 6(b), and 6(c) show mappings for the relative,

absolute, and circulant-based arrangements respectively. For

example, in Figure 6(a), the top left task is mapped to switch

3 of group 0. In each mapping, 2× 2 subgraphs of the task

communication graph are mapped to each group of switches

(encircled by dotted lines). The tasks can communicate with
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Figure 6. Three mappings for a 6 × 6 stencil job. Switches in a group are numbered and surrounded by a dotted line. Red edges between groups are
direct global links. (a) shows a mapping with the relative arrangement. The checkerboard pattern reflects the repeated use of 2 group configurations. (b)

shows a mapping for the absolute arrangement. There are 6 group configurations. (c) shows a mapping for the circulant-based arrangement. There are 6
group configurations.

all their neighbors in the following phases:

• First, communication within each subgraphs is per-

formed using direct local links. (This phase could be

split to separate communication by dimension.)

• Next, neighboring tasks connected by a global link

communicate. In the mapping for the relative arrange-

ment (Figure 6(a)), switches 0 and 3 in neighboring

groups communicate in the x direction and switches 1

and 2 communicate in the y direction.

• Finally, neighboring tasks without a direct link use a

multi-hop path, each taking a local link, a global link

to the adjacent group, and then a local link.

In each phase, all paths are the same length, each link is used

at most once, and each switch handles the same amount of

traffic. Thus, these arrangements both avoid congestion and

have equal-length phases.

Although we found mappings for each global link arrange-

ment meeting our criteria, there is a qualitative difference be-

tween them that favors the relative global link arrangement.

An appealing feature of that arrangement’s mapping (Figure

6(a)) is its regularity. It uses two types of groups organized in

a checkerboard pattern (shown via shading). Within a type,

all the groups give the same relative position and role to

each switch. For example, in the unshaded groups, switch

0 is always the bottom right switch and it always has a

global link to the group in the +x direction. This pattern

generalizes to give mappings for at least some other mesh

and Dragonfly sizes; switch 0 can always connect in the

+x direction since it goes to the numerically-next group

and switch 1 can connect in the y dimension by going to

the (h + 1)st next group (recall that h is the number of

global links per switch). Figure 7 shows the application of

this technique to a 12 × 8 2D stencil job on 16 groups

of a (p, 6, 3)-Dragonfly; note that the larger groups on this

machine allow the mapping to use a single type of group.

None of the mappings we found for the other global link
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Figure 7. Mapping for a 12× 8 stencil job on 16 groups of a (p, 6, 3)-
Dragonfly with the relative arrangement

arrangements exhibit this regularity. The mappings shown

in Figures 6(b) and 6(c) use groups with 6 different relative

positions of the switches. For the absolute mapping, even

some groups with the same relative positions use different

outgoing global links to communicate with neighboring

groups (e.g. groups 1 and 6). The lack of regularity would

significantly complicate code implementing these mappings,

not to mention finding the mappings themselves.

VI. RELATED WORK

As mentioned previously, we are not aware of any previ-

ous work comparing global link arrangements. Camarero et

al. [11] defined the three arrangements we use here in the

context of a paper focused on routing. To our knowledge,

this is the only prior work to recognize that there are

systematically different ways to make the global links.

Chakaravarthy et al. [18] give a sufficiently-detailed de-

scription of the PERCS system (described below) to deter-

mine that it uses the absolute arrangement.



In addition, Prisacari et al. [19] use what seems to be the

absolute arrangement in an example and Garcia et al. [20]

similarly use the relative arrangement. In both cases, the

authors use the arrangement in a figure to illustrate the

Dragonfly topology without describing the arrangement in

general or acknowledging that different choices exist.

Arguably, the most closely related prior work involves

task mapping for Dragonfly systems. Bhatele et al. [21]

examined different ways to map a nearest neighbor stencil

computation based on blocking (assigning pieces of the

mesh to nodes or groups). They found that blocking helped

relative to a default strategy, but also that using indirect rout-

ing gave comparable performance. Chakaravarthy et al. [18]

expand on this with a coloring-based scheme to distribute

submeshes between groups to distribute traffic on the global

links; this may benefit our mapping approach as the groups

get larger. Jokanovic et al. [22] and Prisacari et al. [19]

give theoretical models that predict network bottlenecks for

different communication patterns, particularly looking at the

effect of random task mapping.

The Dragonfly topology has also been the subject of other

research efforts. Garcia et al. [23] consider variations of the

routing algorithm. Prisacari et al. [17] consider scheduling

personalized all-to-all messages to minimize contention. Jain

et al. [24] use large simulations to consider the interaction

of routing strategies, node allocation strategies, and commu-

nication patterns.

Systems built based on the Dragonfly interconnect topol-

ogy have thus far implemented variations of it. One of these

is the Cray XC [7], [8], which forms each group from 6

chassis organized in 2 cabinets. Each chassis contains 16

switches, for a total of 6 × 16 = 96 switches per group.

Switches in the group are connected to all other switches in

their chassis and their peer in the other chassis. Thus, instead

of the group forming a clique, it is actually six cliques with

corresponding switches connected (K16×K6). The switches

are Aries ASICs, each connected to 4 dual-socket nodes.

Each Aries can support up to 10 optical links, but global

links are formed from 4 of these. Thus, each group can

have 96 × 10/4 = 240 outgoing global links (implying 241

groups), but some links are split between a pair of switches.

Cordery et al. [25] evaluate the performance of the Cray

XC on a variety of scientific applications. The system’s

bisection bandwidth was previously computed by Alverson

et al. [7], but their calculation treats each group as a vertex,

effectively assuming infinite bandwidth on the local links.

The other system built using a variation of the Dragonfly

topology is PERCS [9], which is now sold as the IBM Power

Systems 775 [26]. (The bandwidth parameters given here are

from a later reference [21], which gives slightly different

values.) PERCS uses three kinds of links rather than just

2. The groups (called supernodes) are connected with a 10

GB/s optical link. The supernodes themselves are formed

from 4 drawers with 8 switches each. The switches within

a drawer are connected to each other with 24 GB/s electrical

links and also to other switches in their supernode with 5

GB/s optical links. Thus, the local links are non-uniform,

with some being the system’s fastest links and some being

its slowest. The switches themselves are each connected to

four processors.

VII. DISCUSSION

We have demonstrated that the specification of a global

link arrangement is important for Dragonfly interconnects.

The structure of GCCs we uncovered can aid in the selection

of parameters for larger systems. In particular, it identifies

situations where the bisection bandwidth is determined by

local links rather than global ones.

The obvious open question is to determine the bisection

bandwidth for general Dragonflies at lower values of α,

where some global edges still cross min-bandwidth cuts. We

are also interested in whether the absolute arrangement ever

gives higher bisection bandwidth than the others or if the

relative arrangement ever gives higher bisection bandwidth

than the circulant-based one; we never saw such a situation,

but cannot rule it out.

Another avenue for future work is designing other global

link arrangements. In addition to trying the arrangements

described here, we also considered random global link

arrangement for the (p, 4, 2)-Dragonfly. To generate one of

these, we had each group generate a random permutation of

the other groups and used these as the destination group of

each its ports. None of the arrangements we generated was

superior to the circulant-based arrangement except at α > 4,

for which some of them continued to improve.
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S. Olivier, D. Bunde, Ü. Çatalyürek, and K. Devine, “Exploit-
ing geometric partitioning in task mapping for parallel com-
puters,” in Proc. 28th IEEE Intern. Parallel and Distributed
Processing Symp. (IPDPS), 2014.

[14] A. Bhatele and L. Kale, “Benefits of topology-aware mapping
for mesh topologies,” Parallel Processing Letters, vol. 18,
no. 4, pp. 549–566, 2008.

[15] F. Gygi, E. W. Draeger, M. Schulz, B. de Supinski, J. Gunnels,
V. Austel, J. Sexton, F. Franchetti, S. Kral, C. Ueberhuber,
and J. Lorenz, “Large-scale electronic structure calculations
of high-Z metals on the BlueGene/L platform,” in Proc.
ACM/IEEE Conf. High Performance Networking and Com-
puting (SC), 2006.

[16] U. Feige and R. Krauthgamer, “A polylogarithmic approxima-
tion of the minimum bisection,” SIAM J. Comput., vol. 31,
no. 4, pp. 1090–1118, 2002.

[17] B. Prisacari, G. Rodriguez, and C. Minkenberg, “Generalized
hierarchical all-to-all exchange patterns,” in Proc. 27th IEEE
Intern. Parallel and Distributed Processing Symp. (IPDPS),
2013.

[18] V. Chakaravarthy, M. Kedia, Y. Sabharwal, N. Katta, R. Raja-
mony, and A. Ramanan, “Mapping strategies for the PERCS
architecture,” in Proc. 19th Intern. Conf. High Performance
Computing (HiPC), 2012.

[19] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen,
C. Minkenberg, and T. Hoefler, “Efficient task placement and
routing in dragonfly networks,” in Proc. 23rd ACM Intern.
Symp. High-Performance Parallel and Distributed Computing
(HPDC), 2014.

[20] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, G. Rodriguez, J. Labarta, and C. Minkenberg, “On-
the-fly adaptive routing in high-radix hierarchical networks,”
in Proc. 41st Intern. Conf. Parallel Processing (ICPP), 2012,
pp. 279–288.

[21] A. Bhatele, N. Jain, W. Gropp, and L. Kale, “Avoiding hot-
spots on two-level direct networks,” in Proc. Conf. High
Performance Computing, Networking, Storage and Analysis
(SC), 2011.

[22] A. Jokanovic, B. Prisacari, G. Rodriguez, and C. Minkenberg,
“Randomizing task placement does not randomize traffic
(enough),” in Proc. 2013 Interconnection Network Architec-
ture: On-Chip, Multi-Chip (IMA-OCMC), 2013, pp. 9–12.

[23] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, and
M. Valero, “Efficient routing mechanisms for dragonfly net-
works,” in Proc. 42nd Intern. Conf. Parallel Processing
(ICPP), 2013, pp. 582–592.

[24] N. Jain, A. Bhatele, X. Ni, N. Wright, and L. Kale, “Maximiz-
ing throughput on a dragonfly network,” in Proc. Conf. High
Performance Computing, Networking, Storage and Analysis
(SC), 2014.

[25] M. Cordery, N. Wright, B. Austin, C. Daley, H. Wasserman,
S. Hammond, and D.Doerfler, “Analysis of Cray XC30 perfor-
mance using Trinity-NERSC-8 benchmarks and comparison
with Cray XE6 and IBM BG/Q,” in Proc. 4th Intern. Work-
shop Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), 2013.

[26] D. Quintero, K. Bosworth, P. Chaudhary, R. de Silva, B. Ha,
J. Higino, M.-E. Cahle, T. Kamenoue, J. Pearson, M. Perez,
F. Pizzano, R. Simon, and K. Sun, “IBM Power Systems 775
for AIX and Linux HPC solution,” IBM, Redbook, 2012, http:
//www.redbooks.ibm.com/redbooks/pdfs/sg248003.pdf.


