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Abstract—We examine fast algorithms to allocate processors
to compute jobs in mesh-connected clusters. We find that a 1D
curve-based strategy can give allocations of comparable quality
to a fully 3D algorithm MC1x1 using a snake curve that goes
along the mesh’s short dimensions first. We also propose several
buddy-system strategies, the best of which actually finds better
allocations than MC1x1 if the job sizes and mesh dimensions are
powers of 2. Furthermore, these algorithms are much faster than
MC1x1, which takes more than 200 times as long in some cases.

I. INTRODUCTION

When users submit a job to a Linux cluster, they specify the
number of processors it requires and also give an estimated
running time. This estimate serves as a maximum allowed
time; jobs still running after their estimated running time
are killed. The run time system takes submitted jobs and
is responsible for deciding when to run them and which
processors to assign to each job. In both research and actual
systems, these decisions are typically made in 2 steps. First,
the scheduler decides when to run each job. When the sched-
uler has decided to start a job, the allocator is responsible
for assigning it to specific processors. Typically, the scheduler
makes its decision based only on the number of processors
available, ignoring which specific processors are available, so
there is no interaction between these stages.

This paper is concerned with the allocator. The quality
of an allocation on a mesh computer can have a significant
effect on job running time; previous work has shown that
hand-placing a pair of high-communication jobs into a high-
contention configuration can roughly double their running
times [1]. The placement of job tasks has been shown to speed
up an actual application by up to 1.64 times [2]. As vendors
return to building Linux clusters with mesh interconnects (e.g.
[3]), high-quality processor allocation is again necessary for
good performance on mesh-connected clusters. Furthermore,
with the exponential growth in the number of cores on chips,
high-quality allocation of cores will be necessary for good
performance on mesh-connected chips (e.g. [4]) as well.

To minimize both latency and contention, the allocator’s
goal is to give each job a set of nearby processors. An ideal
allocation is contiguous, but using only contiguous allocations
lowers system utilization [5]. Reduced contention is not suffi-
cient to compensate for this utilization drop [6]. Thus, research
has focused on noncontiguous allocators (e.g. [7], [8], [1],
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Fig. 1. MC1x1’s shells around processor X

[6], [9], [10]), which do not explicitly restrict the type of
allocations found.

A natural algorithm for high-quality mesh allocation is
MC1x1 by Bender et al. [7]. This algorithm assumes a
mesh architecture. For simplicity we focus on a 2D mesh
without wraparound, but the algorithm easily generalizes to
other cases. MC1x1 assigns a score to each free processor
indicating the quality of the candidate allocation centered on
that processor. The free processor with the lowest score is
selected and its allocation is used.

To generate the allocation for a particular center c, MC1x1
searches for free processors in shells around the center. Shell
0 is the single processor c. Shell 1 is the processors whose
coordinates are each within 1 of c’s coordinates. Larger-
numbered shells are defined similarly. Thus, the shell number
of a processor in MC1x1 is simply its L∞ distance from the
center, defined in 2D as L∞(c, p) = max(|cx−px|, |cy −py|)
where c is the center, p is the other processor, and the subscript
denotes the corresponding coordinate (x or y) of that point.
Figure 1 illustrates MC1x1’s shells around processor X.

MC1x1 selects as many free processors from a shell as
possible before considering higher-numbered shells. An allo-
cation’s score is the sum of its processors’ shell numbers.
The drawback of MC1x1 is that it requires scoring every
possible center to make an allocation decision. In principle,
this process can be sped up by having each idle processor score
itself in parallel, but the scoring process can still be relatively
time consuming since each candidate center must identify its
k nearest idle neighbors. The results of these computations
must then be compared to select the winning allocation. As
machines get larger, a slow allocation algorithm will eventually
limit system performance.



With this motivation, we look at 2 alternative approaches to
allocation, seeking a faster algorithm that gives allocations of
comparable or better quality. The first approach we consider
is curve-based allocation, previously proposed by Lo et al. [6]
and Leung et al. [1]. In this approach, processors are ordered
according to some curve and allocation decisions are based
on the ordered ranks of free processors rather than their mesh
coordinates. Thus, allocation is reduced to a 1D problem. Of
course information is lost in this reduction, but the idea is that
processors close on the curve will also be close in the mesh
so enough information will be preserved.

The other approach we consider is based on buddy systems
from memory allocation, which Lo et al. [6] generalized to
2D. By using a data structure to organize the free processors,
this approach avoids having to consider them individually.

The contribution of this paper is threefold.
1) We extend the use of curve-based strategies to non-

square meshes by comparing allocation qualities for a
variety of different curves. These curves are evaluated
using experiments on the Red Storm [11] test machine,
a Cray XT3/4 cabinet, as well as simulations.

2) We propose generalizations of MBS and use simulations
to compare them to MC1x1 and curve-based strate-
gies. One of our generalizations, called Granular MBS,
outperforms all the other algorithms when the mesh
dimensions and job sizes are powers of 2.

3) We measure the running time of all these algorithms,
showing that the curve-based and buddy-based strategies
do indeed run much faster than MC1x1.

Our simulations use traces from the Parallel Workloads
Archive [12], which gives traces of job submission times,
sizes, running times, and estimated running times for a va-
riety of HPC systems. Because detailed information on the
applications is not included, we do not model the affect of
allocation quality on running time; in our simulations, all
jobs run for the actual time recorded in their trace. Instead,
we evaluate the allocation quality with the average pairwise
distance between processors in each allocation. This metric
has been used by a number of other authors (e.g. [13], [14],
[15]) and experimentally shown to correlate with running
times [1]. Reporting an improvement in pairwise distance
instead of modeling the affect of allocation on job running
time is conservative since improved allocation can start a
virtuous cycle by causing jobs to finish more quickly, reducing
contention and allowing later jobs to receive better allocations.

The rest of the paper is organized as follows. We study
curve-based algorithms in Section II and buddy-based algo-
rithms in Section III. We compare the relative running times
of these algorithms to MC1x1 in Section IV. We review some
additional related work in Section V. We conclude with some
discussion in Section VI.

II. CURVE-BASED ALGORITHMS

We begin our study of fast allocation algorithms with curve-
based algorithms. There are 2 key decisions to make when
designing these algorithms: what curve to use and how to
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Fig. 2. Some curves used for allocation. (a) Row-major. (b) Snake.

Fig. 3. Hilbert curve

select free processors from the ordered list. A curve-based
algorithm was first proposed by Lo et al. [6], who considered
several linear orders, including the row-major and snake curves
shown in Figure 2 and “shuffled” versions of these. To select
processors, they used a free list.

A curve-based strategy was independently proposed by
Leung et al. [1]. They ordered processors using a space-filling
curve such as the recursively-generated Hilbert curve [16]
shown in Figure 3. Although the Hilbert curve is in 2D, it
has generalizations to higher dimensions [17]. To select free
processors, they adapted the First Fit [18], Best Fit [18], and
Sum of Squares [19] strategies from bin packing by treating
each interval of free processors as a bin. For example, when
using the First Fit strategy to allocate a job requiring k
processors, they return the first group of k free processors
that are contiguous according to the curve. (When no such
group exists, they return the k processors whose difference
in ranks are minimal.) In experiments on a Linux cluster,
Leung et al. [1] compared this algorithm to the previously
used algorithm, which was a free list with processors in row-
major order. They found that both the change of ordering and
the use of bin-packing heuristics gave improvements, with the
curve giving the main improvement.

The main obstacle to widespread use of curve-based al-
gorithms is selecting an appropriate curve. The experiments
presented in previous work on these algorithms were primarily
on square 2D meshes and generalizing some of the curves is
non-trivial. Particularly challenging is the Hilbert curve, whose
generation algorithm creates a curve for a square mesh whose
side length is a power of 2. Bunde et al. [20] showed that
a natural way of using it on a 16×22 mesh leads to poor
performance. Even the snake curve presents a choice on a
non-square machine since there are 2 possible orientations for
the curve.

In this section, we use experiments and simulations to
compare the different alternatives for curves. We begin by
considering curves for the test machine for Red Storm [11],
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Fig. 4. Snake curves. (a) Row-major snake. (b) Column-major snake

Fig. 5. Spliced curve for 20×4 mesh; five 4×4 Hilbert curves

which consists of a single Cray XT3/4 cabinet. Its processors,
running a lightweight Linux, form a 20×4 2D mesh.

As mentioned above, there are 2 choices for a snake curve
on a non-square mesh. These are shown in Figure 4. So that
the names have consistent meaning across different machines,
in this paper we will always list mesh dimensions in non-
increasing order. Thus, the row-major snake always traverses
the long mesh’s long dimension first and column-major snake
always traverses its short dimension first.

With a 5:1 aspect ratio, it is not clear what constitutes a
Hilbert curve on this mesh. We examined 2 alternatives. We
call the first “spliced Hilbert” since it simply splices five 4×
4 curves together, as shown in Figure 5. The second, called
“Zoltan Hilbert”, is the generalized Hilbert curve from the
Zoltan library [21]. This curve follows the aspect ratio of the
underlying geometry more closely than the spliced alternative.
An example curve for a 20×4 mesh is shown in Figure 6.

All runs used identical job streams containing replicas of
various-sized instances of a communication test suite. The
communication test suite contains all-to-all broadcasts. This
test is repeated 25 times in each suite. The suite also computes
a variety of statistics, which consumes a small fraction of the
total running time. Because locality is most important for jobs
with high communication demand, this test suite represents a
best-case scenario for the benefits of allocation.

Our test stream had 1,820 jobs of size 2, 660 jobs of size
5, 620 jobs of size 15, and 660 jobs of size 20. This gives
a range of “large” (approximately 1/4 or 1/5 of the machine)
and small jobs. Small jobs are interspersed among the large
ones to cause fragmentation. Since the machine did not have a
scheduler, the jobs are scheduled with First-Come First-Served
(FCFS). The machine is busy through the last job’s release.

We ran the job stream 3 times for each combination of
bin packing heuristic and curve. Figure 7 shows the effect
of each combination on the makespan of the job stream. For
this particular system and job stream, the linear orderings from
best to worst are Column-major snake, Spliced Hilbert, Zoltan

Fig. 6. Hilbert-like curve generated by Zoltan for 20×4 mesh

Linear Ordering
Col-major Spliced Zoltan Row-major

Algorithm snake Hilbert Hilbert snake
Best Fit 1.003 1.037 1.160 1.209
Sum of 1.004 1.037 1.154 1.206Squares
First Fit 1.011 1.042 1.164 1.212

Fig. 7. Ratio of average makespan to baseline (MC1x1) in experiments on
Cray XT3/4 cabinet. Lower is better.

Trace Jobs Processors
NASA-iPSC-1993-2.1-cln.swf 18,239 128
LANL-CM5-1994-3.1-cln.swf 122,057 1,024
LLNL-T3D-1996-1.swf 21,323 256
SDSC-SP2-1998-3.1-cln.swf 54,041 128
LLNL-uBGL-2006-1.swf 19,405 2,048

Fig. 8. Traces considered for linear ordering.

Hilbert, and Row-major snake.
Since it is difficult to vary the dimensions of a real machine,

we ran simulations using traces from the Parallel Workloads
Archive [12] on meshes with aspect ratios ranging from 1:1
to 16:1. We simulated each trace on a machine of the same
size, but ran all simulations on a 2D mesh, ignoring the
original machine’s topology. The specific traces used are listed
in Figure 8. These traces were selected because they came
from machines whose number of processors was a power of
2, making it easy to vary the simulated system’s aspect ratio.
For scheduling, we use EASY [22]. For the Hilbert curve on
non-square meshes, we used the spliced Hilbert curve.

The pairwise distances achieved by each algorithm are
shown in Figure 9. The results depend on the mesh’s aspect
ratio, with Hilbert giving the best results for square meshes and
the column-major snake giving the best results otherwise. The
overlapping results are consistent between these simulations
and our experiments.

III. BUDDY-BASED ALGORITHMS

Now we turn to buddy-based algorithms, which Lo et al. [6]
created as a generalization of the buddy system for memory
allocation. Their algorithm divides the processors of a 2D
mesh into a hierarchy of square blocks, each having a power
of 2 side length. The children of a block are the 4 subblocks
formed by splitting it in half along each dimension. The
algorithm keeps track of the free blocks of each size. If all
4 children of a block (called “buddies”) are ever free, they
are removed from the free block list and replaced with their
parent. Similarly, blocks in the free list are split to satisfy a
request for fewer processors. If a request is not for a power of
4 processors, it is satisfied with several blocks of the desired
combined size. Because it may use multiple blocks to satisfy
a request, this algorithm is called Multiple Buddy Strategy
(MBS). Figure 10 shows the MBS block hierarchy for a 5×4
mesh, with a 4×4 block and four 1×1 blocks at the top level.
The 4×4 block has four 2×2 children, each with 4 children of
their own.



NASA-iPSC LANL-CM5 LLNL-T3D SDSC-SP2 LLNL-uBGL
16×8 32×32 64×16 128×8 16×16 32×8 16×8 64×32

Col-major snake BF 2,687 — 239,926 374,717 — 5,854 1,374 5,723,590
Col-major snake FF 2,701 — 241,719 378,303 — 5,908 1,385 5,753,018
Col-major snake freelist 2,733 — 249,856 394,575 — 6,093 1,420 5,754,982
Hilbert BF 2,696 210,704 240,787 374,717 5,190 5,864 1,375 5,736,044
Hilbert FF 2,714 211,652 242,928 378,303 5,217 5,922 1,391 5,782,192
Hilbert freelist 2,742 218,807 250,573 394,575 5,370 6,105 1,424 5,778,155
Row-major snake BF 3,072 225,099 317,199 546,671 5,665 8,093 1,552 7,067,454
Row-major snake FF 3,081 225,995 317,328 545,859 5,693 8,095 1,559 7,082,168
Row-major snake freelist 3,096 230,064 318,105 547,037 5,779 8,157 1,576 7,083,150

Fig. 9. Average sum of pairwise L1 distances with EASY scheduling.

Fig. 10. MBS block hierarchy illustrated for a 5×4 mesh

A. Generalizing MBS

There are 2 obvious generalizations of MBS to 3D meshes.
The first, which we call Octet MBS, performs as MBS except
that each block is a cube instead of a square. In this scheme,
each subblock has 7 buddies and all the block sizes are a
power of 8. The other obvious generalization, again identical
to MBS except for how the blocks are divided, computes the
block structure for a 2D slice of the system and uses it on each
layer of the 3D mesh. As with the original MBS algorithm,
each subblock has 3 buddies and all the block sizes are powers
of 4. We call this second generalization Layered MBS.

Although these schemes are natural, each has drawbacks.
Because block sizes are powers of 8 in Octet MBS, a system
will have relatively few block sizes and most jobs require
multiple blocks. The result is unnecessary dispersal when these
blocks are not near each other. Layered MBS avoids this
problem, but does not exploit connections between processors
in the third dimension since each block is flat. Every job
allocated to a single block will get processors lying in a plane.

To avoid both of these pitfalls, we propose a different and
better way to divide the machine into blocks. The hierarchy
of blocks is built in an iterative way, beginning with each
processor being its own block. To build larger blocks, we
proceed in a series of phases. In the first phase, each block
attempts to find a buddy of the same size and dimensions in
the x dimension. This makes blocks with dimensions 2×1×1
composed of 2 matched buddies, as shown in Figure 11(a). For
the second phase, blocks seek buddies in the y direction. In
the third, they seek buddies in the z dimension. It is important
to note that all blocks seek buddies in each phase, even if they
failed to find a buddy in the previous phase. Thus, the second
phase joins blocks as shown in Figure 11(b), forming both
2×2 blocks and 1×2 blocks. These sequences of 3 phases are

(a) (b)
Fig. 11. Blocks formed in the first 2 phases of initializing the buddy structure
for Granular MBS on a 5×4 mesh

repeated until no block succeeds in finding a buddy.
This way of building a block hierarchy has the advantage of

creating blocks of each power of 2 size. Thus, the block sizes
have finer granularity than even the original MBS algorithm
in which all block sizes are powers of 4. In honor of this
trait, we call the algorithm that applies the MBS algorithm to
this block hierarchy Granular MBS. In addition, the scheme
handles machines whose dimensions are not powers of 2.

B. Simulations

To evaluate these alternatives, we again use Parallel Work-
load Archive [12] traces to drive simulations evaluated based
on the achieved average pairwise distance. As before, our
simulated systems have the same numbers of processors as
the machines on which traces were collected, but not the
same topologies. Scheduling is performed by EASY [22]. We
compare against the curve-based strategy using best fit and the
snake curve that goes along dimensions in length order.

Figure 12 shows the relative performance of the curve-
and MBS-based algorithms against MC1x1. For each trace,
we chose two shapes, one a 2D mesh as square as possible
and the other a 3D mesh as close to a cube as possible. The
plotted value is the ratio of the algorithm’s sum of pairwise
distances over the sum of pairwise distances achieved by
MC1x1; lower is better and values below 1 occur when the
algorithm performs better than MC1x1. The figure also shows
the percentage of serial jobs in each trace and the percentage
of parallel jobs whose size is a power of 2, 4, or 8.

The results show that Granular MBS is the best performing
generalization of MBS. It beats Layered MBS and Octet MBS
in all cases, sometimes substantially. Clearly, its fine-grained
block sizes pay off. The importance of fine-grained blocking
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Fig. 12. Performance against MC1x1 for different traces and machine shapes

is further emphasized by the case where Layered MBS comes
closest to beating Granular MBS, the 64×32×1 configuration of
the LLNL-uBGL trace. Layered MBS does so well in this case
because the system allocates processors in groups of 64 [23].
As shown in the figure, this causes more than 99% of the
jobs in this trace to have a size that is a power of 4, negating
the granularity advantage of Granular MBS. Also relevant is
that the configuration is a 2D mesh since that forces both
algorithms to allocate flat blocks; Granular MBS wins more
handily on the 16×16×8 configuration since a 3D block has
smaller average sum of pairwise L1 distances than a 2D block
with the same number of processors.

The use of 3D blocks also benefits Octet MBS, which beats
Layered MBS on all the 3D meshes. Octet MBS performs
poorly on 2D meshes, however. Because of the way it builds
its block hierarchy, Octet MBS uses entirely 1×1×1 blocks
on 2D meshes, essentially making it a curve-based strategy
without a carefully-selected curve or a bin packing heuristic.

The relative performance of Granular MBS against MC1x1
and the curve-based strategy depends on the trace. Granular
MBS beats both in both configurations of the LLNL traces,
loses by a small margin in the SDSC-SP2 and KTH-SP2
traces, and then is substantially worse than MC1x1 on the
HPC2N trace. We believe this results from a combination of
two factors. First of all, Granular MBS performs best when
the trace is dominated by jobs whose size is a power of two.
These jobs can potentially be allocated using a single block,
whereas jobs of other sizes requires a multi-block allocation
and potentially causes a large block to split. The percentage
of jobs whose size is a power of two roughly corresponds
to the observed relative quality of Granular MBS, since the
LLNL traces on which it does best are composed entirely of
this type of job. The correspondence is not exact, however,
since the HPC2N trace has more power-of-two sized jobs than
KTH-SP2, but Granular MBS performs better on the latter.

A more complete understanding of Granular MBS’s perfor-
mance comes by considering a second factor. Granular MBS
benefits when machine dimensions are powers of two, allowing
it to form large blocks. When all machine dimensions are
powers of two, the block hierarchy has a single top block
encompassing the entire machine, with 2 children each con-
taining half the machine, and so on down the hierarchy. This
symmetry increases the chances that a job can be allocated
from within a single block and provides maximal flexibility
since any subblock can merge if its buddy becomes free. This
factor further benefits runs with LLNL-T3D and LLNL-uBGL
traces. At the other extreme is the 16×15×1 configuration of the
HPC2N trace, whose dimension of length 15 is just shy of a
power of two. This means that its top-level block (8×8×1)
is relatively small, containing only 27% of the machine’s
processors. Thus, most allocations will require processors from
the other blocks. Since the other blocks are distributed around
the edges of the largest top-level block, this increases the
average sum of pairwise L1 distances.

Now that we have presented two factors as important in
determining the performance of Granular MBS, a natural
question is which of these factors is more important. The
unimpressive performance of the configurations of SDSC-SP2,
which has powers of two machine dimensions running jobs
with other sizes, suggests that job sizes may be more important
than machine dimensions. For other evidence, we compared
the results of removing jobs whose size was not a power of two
from the traces and running the unmodified trace on a machine
whose dimensions are powers of two. When jobs whose size
is not a power of two are removed, Granular MBS’s average
pairwise distance relative to MC1x1 is 1.024 on a 10×10
mesh and 1.016 on a 5×5×4 mesh. The ratio of pairwise
distances is 1.093 when the unmodified trace is run on a 16×8
mesh and 1.138 when run on 8×4×4 mesh. Thus, we see
that restricting the jobs to have sizes that are powers of two
gives better performance relative to MC1x1 than running on
a slightly larger machine (128 processors instead of 100) so
that its dimensions can be powers of two.

Removing jobs also lets us compare the importance of
power of two sized jobs with another possible factor: serial
jobs. Jobs of size 1 are also potentially disruptive to the
block structure since they can force large blocks to split. To
compare the importance of serial jobs and jobs with sizes not
powers of two, we looked at the KTH-SP2, SDSC-SP2, and
HPC2N traces without each of these types of jobs. As above,
we compared the ratios of the sum of pairwise distances of
Granular MBS and MC1x1. Both configurations of the KTH-
SP2 and SDSC-SP2 traces gave better relative performance
when removing non-power-of-two-sized jobs than removing
serial jobs. The reverse was true for the configurations of
the HPC2N trace, though the ratios were close. These results
suggest that whether job sizes are powers of two is more
important than whether there are a large number of serial jobs.
Removing serial jobs did help in nearly all cases, however.
Their large share of the HPC2N trace may help explain why
Granular MBS does so poorly on that trace.
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Fig. 13. Ave. pairwise distance for LLNL-T3D trace on 16×16×1 mesh

We were encouraged that Granular MBS performs so well,
at least within its specific domain. To see how the algorithms
respond to varying system load, we ran simulations with job
arrival times multiplied by different constants. This process
creates traces with different utilizations while preserving the
trace’s essential characteristics (idle periods, workload varying
throughout the day and week, etc). We note that it is not
entirely uncontroversial since it alters relationships between
job parameters, the daily cycle, and system load [24], but we
use fairly moderate multiplier values (between 0.55 and 1.2).

The results are shown in Figures 13–16, which plot the
achieved utilization against average pairwise distance. The
points are closer together at high utilization because changing
the inter-arrival times has less effect on utilization as the
machine saturates. While we expect the overall trend to be
that average pairwise distance increases with utilization, the
results show some large violations of this expectation. To
explain this, we note that these large violations do not occur
when FCFS scheduling is used. Thus, we attribute them to
small jobs (which tend to backfill easily) running earlier on
“spare” processors. Since allocating a small job can require
that an MBS-based strategy break up large blocks, these jobs
can be very disruptive to other jobs, which may then be
allocated using multiple blocks. By moving these jobs earlier
in the schedule, the disruption is removed and the average
pairwise distance improves even though the average utilization
is higher. Further support for this theory is that the largest and
most frequent violations of the expected trend occur with Octet
MBS, whose block sizes increase most rapidly.

Another surprise in the data is that Granular MBS and
Layered MBS exhibit essentially the same performance on the
64×32×1 machine running the LLNL-uBGL trace (Figure 16).
This occurs because all jobs on the BlueGene system have
sizes that are multiples of 64 [23]. This factor of the system
combined with how this particular system was used makes
nearly all job sizes a power of 4 (see the statistics in Fig-
ure 12). For these jobs, there is no difference between Layered
MBS and Granular MBS on a two-dimensional machine.

Though the picture is clouded by these anomalies, the gen-
eral trend is that pairwise distance increases with utilization.
This is less so for Granular MBS on the LLNL-uBGL trace
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Fig. 14. Ave. pairwise distance for LLNL-T3D trace on 8×8×4 mesh
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Fig. 15. Ave. pairwise distance for LLNL-uBGL trace on 16×16×8 mesh

since that trace is so well suited to the algorithm. Granular
MBS’s best observed improvement over MC1x1 is 8.3%,
achieved by that trace at 67.5% utilization on a 64×32 mesh.
(We observed a 9.6% improvement with FCFS scheduling.)

IV. RELATIVE RUNNING TIMES

Now that we have established that the faster algorithms
find allocations that are comparable or better, we quantify
their speed advantage. To do this, we timed simulation runs
performed on an otherwise-idle MacBook Pro with a 2.16GHz
Intel Core Duo. The times in seconds for a variety of runs are
shown in Figure 17. These times are for the entire simulation

MC1x1
 5400

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 80  82  84  86  88  90  92

A
ve

. p
ai

rw
is

e 
di

st
an

ce
 (

10
00

s)

Utilization

Snake BF
Layered MBS

Octet MBS
Granular MBS

 5300

Fig. 16. Ave. pairwise distance for LLNL-uBGL trace on 64×32×1 mesh



HPC2N LANL-CM5
16×16 8×8×4 32×32 16×8×8

MC1x1 1,130 984 18,059 16,871
Snake BF 67 69 203 195
Layered MBS 43 42 88 89
Octet MBS 44 44 225 92
Granular MBS 42 42 90 91

Fig. 17. Times in seconds to run simulations

so they include time to read the trace, make scheduling
decisions, etc. Since these components of the running time are
the same for each allocator, the table actually understates the
relative speed of the faster algorithms. In addition, the timed
version of MC1x1 simply returns the first processors it finds
at the appropriate distance, making it faster than the version
whose pairwise distance results are reported elsewhere in the
paper, which is slightly more sophisticated. Again, this tends
to understate the relative speed of the faster algorithms.

Figure 17 clearly shows that the “faster” algorithms consid-
ered in this paper are indeed much faster than MC1x1, by a
factor of up to 27 on the HPC2N trace and 205 on the LANL-
CM5 trace. The curve-based strategies are consistently slower
than the buddy systems, but still much faster than MC1x1.
Though the absolute magnitude of the time per job is not
high (18,059/122,057=0.15 seconds), these results show that
MC1x1’s running time grows fairly quickly with machine size;
from 0.0056 seconds/job for the 16×16 mesh to 0.15 seconds
for the 32×32 mesh. This shows how allocation speed can
become an issue as machines grow. Using these algorithms to
allocate cores on a multicore chip would make the difference
immediately important by shrinking the timescale involved.

Figure 17 also shows that the running time of MC1x1 is
sensitive to the machine shape as well as its size. It runs
significantly faster on the cube-like shapes than the flat ones.
We attribute this to the fact that using a cube-like shape makes
the dimension lengths smaller, allowing MC1x1 to find the
needed processors in fewer shells. The curve- and MBS-based
algorithms are relatively insensitive to the system’s shape. The
exception is the anomalously high running time for OctetMBS
with the LANL-CM5 trace on the 32×32 mesh. We cannot
explain this beyond the previous observation that OctetMBS
is not really appropriate for a flat machine.

V. OTHER RELATED WORK

Now we discuss other algorithms for allocation and related
problems. Of particular interest is the MC algorithm by Mache
et al. [10] and its relatives. MC is the algorithm upon which
MC1x1 is based. MC assumes that users submit jobs with
a desired shape. For example, instead of a job requesting 6
processors, it can request a 2×3 shape. The runtime system
is not obligated to find a submesh of this shape, but the
hope is that the extra information allows the system to find
a group of processors whose topology is similar to the job’s
actual communication pattern. The MC algorithm uses this
information by making shell 0 have the desired dimensions.

Subsequent shells expand by one in each direction as in
MC1x1. Other than the initial shell, the two algorithms are
the same, with MC1x1 being MC with a 1×1 initial shell.

Also related to MC1x1 is a family of algorithms parameter-
ized by the candidate centers used, how candidates allocations
are formed around these centers, and how candidate allocations
are evaluated. Another member of this family is Gen-Alg, by
Krumke et al. [15]. Gen-Alg’s set of candidate centers are the
idle processors, just as in MC1x1. It chooses processors based
on the number of hops from the center. In a mesh, the number
of hops is the same as L1 (Manhattan) distance, which makes
Gen-Alg search in a diamond shape. Each candidate allocation
is evaluated using its sum of pairwise distances. Krumke et
al. [15] showed that Gen-Alg always finds an allocation whose
sum of pairwise distances is within (2 − 2/k) of the best
possible value, where k is the job size.

Also in the same family of algorithms as MC1x1 is MM,
proposed by Bender et al. [7]. MM evaluates candidate centers
in the same way as Gen-Alg, but considers more of them.
Specifically, a candidate center is any processor sharing x,
y, and z coordinates with (possibly different) free processors.
Bender et al. [7] showed that MM always finds an alloca-
tion whose sum of pairwise distances is within a factor of
2−1/(2d) of the best possible value in a d-dimensional mesh.
(This approximation factor is 7/4 in a two-dimensional mesh
and 11/6 in a three-dimensional mesh.) They also gave a
PTAS, an algorithm to that solves within a factor of 1 + ε
in time polynomial in the mesh size and 1/ε for any ε > 0.

The first curve-based allocation algorithm was Paging by Lo
et al. [6]. Paging divides the machine’s processors into blocks
and uses the curve to order the blocks. When an allocation
is needed, the first free blocks in this list are used. In this
work, we restrict our attention to “blocks” consisting of a
single processor to avoid internal fragmentation, when a job
is allocated more processors than it needs. (We also use the
bin packing heuristics as proposed by Leung et al. [1] rather
than always taking the first free processors in the list.) Using a
larger blocks has the potential advantage of reducing average
pairwise distance, however, since the processors in a block
are guaranteed to be close together. Mache et al. [25] give
another curve-based strategy that strives to minimize network
contention caused by I/O as well as intrajob communication.

Some allocation algorithms are neither center-based nor
curve-based. In particular ANCA [8] and GABL [26] both
work from the job rather than a representation of the free
processors. They first find a contiguous allocation for as much
of the job as possible, then repeat for any remaining processors
needed. We did not consider these algorithms because, like
MC, they assume that jobs come with desired dimensions.

Slightly less related are algorithms that only give contiguous
allocations, delaying jobs until one is available if necessary.
For example, the single buddy algorithm [6] maintains a
hierarchy of blocks as in MBS except that a job is only
allocated if a single block is big enough. When an eligible
block is found, the job gets the entire block. Contiguous
allocation algorithms eliminate contention between jobs, but



they have been repeatedly shown to limit overall system
utilization (e.g. [5], [27]). Despite this, they are needed for
some systems such as BlueGene/L which guarantee each job
an appropriate submesh or sub-tori, a task facilitated by the
presence of extra network links [23].

A problem that is related to processor allocation is task
mapping. In task mapping the goal is to assign the tasks
of a job to a group of preselected processors in a way that
minimizes contention. This is an old problem [28], but one
that continues to attract attention (e.g. [29], [2], [30], [31]).

VI. DISCUSSION

We have shown that our faster allocation algorithms can
find allocations whose quality is comparable, and in some
cases better than, the best truly three-dimensional algorithm.
In particular, the curve-based algorithm with a curve that goes
along the smallest dimension first is worthy of consideration
on any mesh. Our Granular MBS algorithm is even better when
the mesh dimensions and expected job sizes are powers of two.
The faster algorithms also run as much as 200 times faster.

Possible future work is to try making Granular MBS more
broadly applicable so systems outside of its special case could
benefit. Alternately, the algorithm could be improved by using
a bin packing heuristic or an MC1x1-like search to assign
blocks from the free list. Also interesting would be other ideas
for fast but effective allocation algorithms.
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