A Visual Unplugged Activity to Introduce PDC

Mary Smith*, Srishti Srivastava’, David P. Bunde?, April Crockett®, Michael Gerten?,
Peter Maher¥, Jaime Spacco?, Xiaoyuan Suo¥ Jiayin Wangll, Michelle Zhul
*Dept. Computer Science and Engineering, Hawaii Pacific Univ., USA
TDept. Computer Science, Univ. Southern Indiana, USA
J:Dept. Computer Science, Knox College, Galesburg, IL, USA
8Dept. Computer Science, Tennessee Tech Univ, USA
11Dept. Math and Computer Science, Webster University, USA
ISchool of Computing, Montclair State Univ., USA
Email: *mlsmith@hpu.edu, Tfsris.hti@usi.edu, i{dbunde,mgerten,jspacco}@knox.edu,
§acrockett@tntech.edu, ¥ {maherp,xiaoyuansuo51} @webster.edu, I {wangji,zhumi} @montclair.edu

Abstract—We introduce an unplugged activity designed for
CS1 students to explore fundamental parallel computing con-
cepts. The activity requires only gridded paper and basic coloring
tools, such as pens, markers, crayons, or colored pencils. It
was piloted in CS1 courses across six universities, where faculty
successfully incorporated the activity into various CS1 curricula
taught in different programming languages. Learning outcomes
were assessed through surveys and examination of student work
product. Student engagement was measured using a survey that
evaluated participants’ perceptions of engagement (enjoyment,
participation, and focus), understanding (comprehension of the
material and computing concepts), and instructor effectiveness
(preparedness, enthusiasm, and availability). Qualitative student
feedback was favorable, and survey results suggest the activity ef-
fectively introduced parallel and distributed computing concepts.

Index Terms—Parallel computing education, Unplugged activ-
ity

I. INTRODUCTION

The importance of teaching parallel computing to under-
graduate students has also been established in existing litera-
ture [7]. The ACM/IEEE-CS 2013 curriculum report [17] and
the NSF/IEEE-TCPP curriculum initiative [26] both under-
score the significance of integrating parallel and distributed
computing (PDC) into undergraduate Computer Science edu-
cation. The 2023 report advocates for PDC as a core curricular
component, while the TCPP initiative actively contributes by
offering guidance on essential PDC topics and organizing
training workshops for educators to effectively teach PDC
concepts in introductory CS courses.

One approach used for introducing advanced concepts in
early courses is the use of CS Unplugged activities, which
teach CS concepts without using a computer, often by having
the students play the role of computational agent. In this paper,
we present an unplugged version of an existing CS1 program-
ming assignment, flag coloring. In the existing assignment [9],
introductory students practice loops by drawing flags using a
library that allows them to set pixel values.

This work was partially supported by the National Science Foundation
through awards OAC-2321020, OAC-2321017, OAC-2321015, and OAC-
2321015.

In our unplugged version, students play the role of the
processor by coloring cells of a paper grid to produce the flag.
They first do this individually at first to simulate sequential
processing. Then they repeat the activity collaboratively, with
multiple students working together to color a single flag to
simulate parallel processing. This exercise effectively demon-
strates several core principles of parallel computing, but does
so in a very accessible manner since students are coloring
rather than dealing with the complexities of actual parallel
code.

The contributions of this paper are the following:

« adescription of the novel unplugged flag coloring activity,
complete with advice on running it, and

« an evaluation of the activity based on its implementation
in CS1 courses at six different institutions in the United
States: Hawaii Pacific University (HPU), University of
Southern Indiana (USI), Knox College (Knox), Tennessee
Tech University (TNTech), Webster College (Webster),
and Montclair State University (Montclair).

II. RELATED WORK

Prior attempts have been made to educate inexperienced
students about PDC. Mullen et al. [24] offered a Mas-
sive Open Online Course (MOOC) focused on teaching
high-performance computing (HPC) to professionals. While
MOOCs provide accessibility, learning a complex field like
PDC through online resources can be challenging. Univer-
sities have also explored incorporating PDC education into
their curriculum. Lin [18] presented a study evaluating the
effectiveness of teaching PDC as an elective computer sci-
ence (CS) course. Their research used surveys and tests
to assess student learning. Building on this work, several
studies [19][8][37][30] documented the introduction of PDC
into CS courses at junior, senior, and graduate levels. Further,
the ACM has recommended including parallel computing as
a knowledge area for the undergraduate curriculum. Signifi-
cant research has explored integrating PDC concepts across
the entire CS undergraduate curriculum through a modular
approach [5][15][27][6][13][10]. Other research explores in-
novative approaches to PDC education, such as incorporating

“parallel thinking” concepts into undergraduate curricula and
developing and sharing effective teaching materials for PDC
courses [20][29](28][35].

Several studies [14][12][2][3][30][4][23] have observed that
students encounter significant challenges in grasping both
the theoretical concepts and the practical aspects of paral-
lel programming. These challenges stem from the inherent
complexity of PDC topics. These findings suggest that more
effective pedagogical approaches beyond traditional lectures
and programming-based instruction are necessary to enhance
student learning in PDC.

Unplugged activities have proven effective in teaching core
computer science concepts to younger learners [1]. Recog-
nizing this potential, researchers have explored the use of
unplugged activities to introduce PDC concepts to a larger
student populations, including non-CS majors [25]. Game-
based learning has also emerged as a valuable pedagogical
tool. Kitchen et al. [16] and Bogaerts [2] successfully em-
ployed game-based scenarios where students assume the roles
of processors and computational cores, simulating parallel
computing processes. Furthermore, Maxim [22] demonstrated
the effectiveness of an unplugged activity in a data struc-
tures course (CS2), where students actively participated as
processes. These innovative approaches, utilizing unplugged
activities and game-based learning, offer promising avenues
for enhancing student engagement and understanding of com-
plex PDC concepts. The topic of parallel activities has been
studied before; Matthews compiled a repository of computing
activities on this topic [21]. Ghafoor et al. [11] used the
unplugged activity to introduce parallel computing concepts in
the CS1/2 courses. This work resulted in a significant improve-
ment in student learning. Recently, Srivastava et al. [33] and
Smith and Srivastava [32], successfully implemented active
learning unplugged modules in their respective CS1 and CS2
courses. Their work demonstrated the effectiveness of these
modules in improving student engagement and fostering a
deeper understanding of PDC concepts.

III. ACTIVITY DESCRIPTION

Now we describe the activity itself, starting with the core
activity and then discussing variations that some of us did.

A. Core Activity

The core activity is based around four scenarios where the
students color the flag of Mauritius, which has four equally-
sized stripes colored red, blue, yellow, and green. Other flags
can also be used, but we selected this one since it provides a
natural subdivision of the task into equal-sized parts for two
and four people.

The students are split into teams of size 5 (with extra
students joining to create teams of size 6) or teams of size
2-3 that will merge for the later scenarios. The course staff
distributes gridded paper and drawing implements (markers,
crayons, and/or bingo daubers) to the students. Each team
gets one drawing implement of each color (red, blue, yellow,
and green). The instructor also introduces the activity: that the

students will be pretending to be a computer coloring the flag
of Mauritius by filling in “pixels” of color to complete the
image. Specifically, they are told that they will be taking the
role of processors and introduced to the idea of the computer
having multiple processing units (cores) that can each do work
simultaneously.

Each scenario is explained to the entire class and the stu-
dents are given time to organize their teams (mainly assigning
the roles specific to the scenario). The instructor answers
questions before starting all the teams coloring simultaneously.
After each scenario, the instructor collects the completion time
from each group, posting it publicly.

The scenarios are depicted in Figure 1, each subfigure of
which is shown to the students as part of the description of
that scenario. In the first scenario, one student colors the entire
flag while a second student times them using their cellphone. If
desired, this scenario can be repeated a second time since the
first run is likely slowed down by the students being unfamiliar
with the task. (We discuss the merits of repeating the first
scenario in Section III-C.) In the second scenario, two students
color the flag, with one student coloring the red and blue
stripes while the other colors the yellow and green ones. A
third student times them. In the third scenario, four students
color the flag, each of them doing one stripe, while a fifth times
them. Finally, in the fourth scenario, four students again color
the flag, but now each of them is responsible for a vertical
slice of the flag which includes part of each stripe. Since each
team only has one marker of each color, this requires handing
off the markers.

After all the scenarios are complete, the instructor leads a
discussion about what the class observed during the activity,
encouraging them toward the lessons discussed in the next
section.

B. Prerequisites

This activity has very limited prerequisites. At Knox Col-
lege, it was used shortly after introducing the students to
the flag coloring programming activity. At this point in the
term (week 3 of 9), the students were just learning about
loops and had called methods, but had not even learned
about conditionals. Even without specific discussion of parallel
computing, the students have heard the terms “dual-core” and
“quad-core” so telling them that this allows the computer to
perform multiple operations simultaneously is not a big stretch.
We avoided discussion of how this is managed (processes,
threads, etc) and let students observe the potential (and relevant
issues) through the activity, but more vocabulary could be
introduced if desired.

C. Lessons to Highlight

There are a number of lessons that students articulated in
the discussion after the core activity. The instructor should
solicit their observations, but then lead them to any of these
ideas that the students miss.

Since the instructor collects the completion time of each
group for each scenario and puts them on the board, students

6 14 6 14 6 14 6 14
7 15 7 15 7 15 7 15
8 16 8 16 8 16 8 16

Fig. 1. Scenarios students complete during the activity using the flag of
Mauritius. P1 through P4 correspond to the four students completing the
activity, with the numbers indicating the execution order. The scenarios are
completed in the order shown (top to bottom).

were quick to point out that the times decreased as more
processors were added (at least for the first 3 scenarios). Trying
to quantify this naturally leads into the concept of speedup and
its calculation. The question of what the speedup “should” be
leads into the introduction of linear speedup.

If the first scenario was repeated a second time, the students
are also quick to observe that its completion times are signif-
icantly better than in the first trial. This is attributable mainly
to their getting used to the task and tools during that first run.
The instructor can then make an analogy to system warmup,
which causes subsequent runs of a program to be faster than
the first because of factors such as caching, the system exiting

power-saving modes, and just-in-time compilation. Even if the
first scenario was not repeated, the students can still be led
toward this discussion by observing that the first scenario was
particularly slow.

If different student groups are given different drawing
instruments, they are bound to notice that some are better
suited to the task. In our experience, daubers were the fastest,
followed by thick markers, and then thin markers. Once the
students get past the sense of unfairness, these differences
also reflect an important issue in performance evaluation:
technology differences matter. For example, it is not possible
to compare running times on different hardware to evaluate
algorithmic or system software differences. Comparisons need
to be either between systems that are identical in all respects
except the one being compared or they need to be “whole
system”.

Comparing the third and fourth scenarios shows that the
number of processors is not the only factor affecting per-
formance. When asked to explain the difference between the
results for these scenarios, the students were readily able to
identify the conflict over drawing implements as the main
issue; everyone needed the same color at the beginning and
only one person at a time could use it. This is an example of
contention, another important PDC concept. It is also possible
to introduce the idea of dependencies here; certain cells are
dependent on previous ones finishing because the drawing
implement will be in use by someone else. It would also
be possible to discuss how having extra resources would
reduce the contention; the students may have even found this
themselves if one group had extra drawing implements.

The fourth scenario sometimes also exposed the principle
of pipelining; an effective coordination strategy is to pass the
drawing implements around so that each processor gets the
right one at any given moment, mimicking the movement of
data through an arithmetic pipeline where the data is being
passed between stages as it is needed. From pipelining, it is
a small step to seeing that the pipeline takes time to fill (the
processors are idle until they get the first implement).

D. Variations

Several variations of this activity are possible, and we im-
plemented two specific ones. At Webster University, students
studied the impact of more complex flag designs by coloring
the French flag (equal vertical stripes of blue, white, and red)
and the Canadian flag (a white background with red side
stripes and a red maple leaf in the center). To assist with the
latter, students were given a gridded paper with the maple leaf
outlined (see Figure 2). Each flag was colored in two scenarios:
one with a single student and one with three students dividing
the task.

The speedup varied between the two flags. The simpler
French flag saw greater efficiency gains, while the intricate
maple leaf in the Canadian flag slowed progress. This allowed
for a discussion of load balancing and its effect on speedup.

The instructor at Webster also used two multimedia re-
sources as part of the discussion. The first of these were

i
|

Canada

Fig. 2. Elements of the Canadian flag with superimposed grid

custom-created animations [34] to visualize schedules with
different numbers of processors. These visualizations rein-
forced key concepts by showing the efficiency gains and
potential bottlenecks when multiple processors work together.

The second multimedia resource was a video from NVIDIA
meant to compare CPU and GPU execution [31]. It uses
a coloring application as well, but the coloring is done by
computer-controlled paintball guns. For CPU drawing, a single
barrel is repeatedly aimed and fired to produce one dot at a
time. The GPU example uses one barrel per pixel so that the
entire image (the Mona Lisa) is drawn in a single shot. This is
an extreme example of data parallelism and aligns well with
our activity. Since they use the term “GPU”, it also provides
an opening to talk about GPUs and how they are used for
non-graphical data parallel applications.

At Knox College, the unplugged activity was preceded
by students working on the flag coloring programming as-
signment. They had begun it several days before during a
lab period and were approximately halfway through the time
between the assignment’s release day and its deadline; they
could all be assumed to be familiar with the premise of
assigning pixel values. This, plus having slightly longer class
periods (70 minutes), allowed a followup to the core activity
during the same class meeting.

This follow-up activity introduced the idea of dependencies.
The idea of coloring the pixels in parallel is in tension with
an important technique for more complicated flags: coloring
different elements of the flag in layers. For example, the flag
of Great Britain (Figure 3) is most easily created by coloring
the entire flag blue, then adding the crossing diagonal white
lines, and then finally coloring the red vertical and horizon-
tal lines. This approach avoids having to make complicated
intersection tests between the flag’s different features. (The
idea is the same as the Painter’s algorithm in 3D graphics,
which renders complex scenes by drawing polygons in the
order of their distance from the camera.) Unfortunately, this
approach also limits parallelism by introducing dependencies:
the background must be colored before the diagonals, which
must be colored before the rectilinear lines. Since the students
had been working on more complicated flags as part of the flag
coloring programming assignment, they readily identified this
issue and the difference between parallelizing the flag coloring
for Mauritius and Great Britain.

To formalize this idea, the students were given the definition

Fig. 3. Flag coloring assignment version of the flag of Great Britain

Fig. 4. Flag coloring assignment version of the flag of Jordan

of a dependency graph (vertices are tasks and directed edges
denote dependencies) and asked to draw one for coloring the
flag of Jordan, shown in Figure 4.

IV. PRACTICAL ADVICE FOR THE ACTIVITY

While running the activity a number of times in diverse
settings, we have developed some suggestions for how to
make it run most smoothly. First of all, it is important for the
instructor to complete a “dry run” of the activity with other
faculty or with students who are not in the class. Some of the
instructions to give students are not easy to convey. This also
checks that the drawing implements are appropriate (Are the
markers dead? Will they bleed though the paper?). If teaching
assistants or other course staff will be running the activity or
assisting during the activity, they should be included so they
understand student questions.

We strongly suggest projecting slides with each scenario
during the activity to shows the task decomposition. Number
the cells to efficiently convey the order in which they should
be filled, which is otherwise a tricky concept. Our images are
shown in Figure 1.

We also suggest showing the students examples of properly
filled cells before the activity. There was a wide variety of how
well students colored the grid cells; some completely covered
the paper and others added a minimal amount of color to each
cell. The class as a whole moved in the later direction during
the course of the activity to minimize the tedium of coloring
and to reduce the time as they got competitive. We suggest
taking a middle road on this, using a back and forth scribble
that touches all edges of the cell, but not trying to cover it
entirely. This is faster then completely filling a cell while still
making it possible to achieve uniformity of time per cell. A

nice way to generate sample colored cells is to preserve the
results from the instructor’s dry run.

We also feel that it is advantageous to provide students
with a variety of drawing implements rather than giving them
all equivalent supplies. (Originally, we made this decision by
default due to a lack of sufficient supplies of a single type.)
Having diverse implements does lead to some complaints in
the room since it offends students’ sense of fairness, but it does
show the effect of different hardware. We also found that the
students preferred markers to crayons— the institution that
used crayons got many complaints about them in the open-
ended parts of the activity’s survey.

V. ASSESSMENT

We used various approaches to evaluate this activity, with
some differences among the six participating institutions. At
some of the institutions, a pre-test survey was administered
before conducting the activity, followed by a post-test survey.
The pre- and post-survey questions were designed to assess
student comprehension of key parallel distributed computing
concepts. All six institutions utilized an engagement survey
based on the ASPECT (Assessing Student Perspective of En-
gagement in Class Tool) survey [36], which measures student
engagement in active-learning exercises, including perceived
effort, instructor contribution, and the activity’s value. Our
survey examined three key aspects: the student experience
(their engagement, enjoyment, participation, and focus), their
understanding (encompassing comprehension of the material
and computing concepts), and instructor effectiveness (pre-
paredness, enthusiasm, and availability). Additionally, at one
institution, students’ understanding of dependencies was as-
sessed by collecting the dependency graphs they created while
coloring the flag of Jordan.

The following sections discuss each of these measures and
their results.

A. Student engagement survey

Student engagement was measured with a survey admin-
istered following the activity. This survey utilized a Likert
scale ranging from 1 (Strongly Disagree) to 5 (Strongly
Agree). The survey questions are presented in Figure 5. The
student engagement survey was administered at all six of our
institutions.

The bar chart in Figure 6 presents the median scores for each
question across the various institutions. A further breakdown
of the questions follow.

As shown in Table I, the questions include responses to
students’ engagement in the activity, such as enjoyment,
participation, and focus. Students from USI and Webster
reported the highest engagement levels (mostly 5.0). Knox
consistently had lower engagement scores (~4.0). Montclair
and TNTech had mixed responses, with Montclair scoring
lower in stimulating interest in parallel computing.

As shown in Table II the questions include the students’
perceived learning of concepts through discussion, group
work, and activities. Webster and USI again show the highest

Student Engagement Survey
(all questions used a 5-point Likert scale 1=Strongly disagree, 5=Strongly agree)
-Explaining the material to my group improved my understanding of it
-Having the material explained to me by my group members improved my
understanding of it
-Group discussion during the activity contributed to my understanding of parallel
computing
-1 had fun during the activity
-Overall, the other members of my group made valuable contributions during the
activity
-l would prefer to take a class that includes this group activity over one that does not
-lam confident in my understanding of the material presented during the activity
-The activity increased my understanding of parallel computing
-The activity stimulated my interest in parallel computing
-The activity increased my understanding of loops
-l made a valuable contribution to my group during the activity
| was focused during the activity
-lworked hard during the activity
-The instructor seemed prepared for the activity
-The instructor put a good deal of effort into my learning from the activity
-The instructor’s enthusiasm made me more interested in the activity
-The instructor and/or TAs were available to answer questions during the activity
-*I like that the activity tied into the class’s current programming assignment *

Fig. 5. Student Engagement Survey Questions

Student Engagement Survey Results for Flag Maker Activity
from 6 Universities
1-Strongly Disagree-—-5-Strongly Agree

*Ilike that the activity tied into the class's current assignment

The instructor and/or TAs were available to answer questions during th
The instructor's enthusiasm made me more interested in the activity
The instructor put a good deal of effort into my learning from the activity
The instructor seemed prepared for the activity

1 worked hard during the activity
Iwas focused during the activity

1 made a valuable contribution to my group during the activity

The activity increased my understanding of loops

The activity stimulated my interest in parallel computing

The activity increased my understanding of parallel computing

I'am confident in my understanding of the material presented during the.

Questions

1 would prefer to take a class that includes this group activity over one that.

Overall, the other members of my group made valuable contributions. .

I had fun during the activity
Group discussion during the activity contributed to my understanding of.
Having the material explained to me by my group members improved my.

Explaining the material to my group improved my understanding of it IE———

0.00 1.00 2.00 3.00 4.00 5.00 6.00
Median Scores

mWebster ®USI mTNTech ®Montclair ®Knox ®HPU

Fig. 6. Student Engagement Survey Questions

Question HPU | Knox | Montclair | TNTech | USI | Webster

I had fun during the activity 4.0 4.0 4.5 4.0 5.0 5.0

I made a valuable contribution to my group 50 | 40 50 50 4.0 5.0

I was focused during the activity 4.5 4.0 5.0 5.0 5.0 5.0

I worked hard during the activity 4.5 4.0 5.0 5.0 5.0 5.0

The activity sti my interest in parallel i 4.5 4.0 35 NA 4.0 5.0
TABLE I

MEDIAN SCORES FOR ENGAGEMENT (PARTICIPATION, ENJOYMENT, AND
Focus)

scores (mostly 5.0). Knox and Montclair have slightly lower
perceived learning (~4.0). HPU and TNTech show a lower
perceived learning of loops (3.0), indicating a challenge in
this area.

Question HPU | Knox | Montclair | TNTech | USI | Webster
Explaining materfal (o my group improved my understanding 50 | 40 70 70 EX) 70
Having material explained to me by my group improved my understanding | 4.5 | 4.0 45 40 4.0 45
Group discussion contributed to my understanding of parallel computing 45 | 40 40 40 50 5.0
T am confident in my understanding of the material presented 45 | 40 40 40 40 50
The activity increased my understanding of parallel computing 50 | 40 45 40 50 5.0
The activity increased my of loops 30 | 40 5.0 3.0 40 4.0

TABLE 11
MEDIAN SCORES FOR UNDERSTANDING (COMPREHENSION OF MATERIAL
AND COMPUTING CONCEPTS)

As shown in Table III, the questions assess students’
perceptions of the instructor’s preparedness, enthusiasm, and
availability. Instructor ratings were consistently high (mostly
5.0) in all universities except Knox (4.0). The NA in Table III
includes the "NA” (Not applicable) for certain questions, indi-
cating that Webster University did not include these questions
in the survey.

Question HPU | Knox | Montclair | TNTech | USI | Webster

The instructor seemed preparcd for the activity 50 | 40 50 50 50 50

The instructor put cffort into my learning 50 | 40 5.0 50 50 NA

The instructor’s enthusiasm made me more interested in the activity | 5.0 | 4.0 5.0 50 50 NA

The instructor and/or TAs were available to answer questions 50 | 40 5.0 5.0 50 NA
TABLE III

MEDIAN SCORES FOR INSTRUCTOR-RELATED QUESTIONS

The student engagement survey also included two open-
ended questions, asking students to share the most interesting
thing they learned from the activity and suggest improvements
to the activity for future classes.

1) Summary of student comments on what was the most
interesting thing they learned from the activity: Student feed-
back highlighted several key takeaways from the Flag Maker
activity related to parallel computing concepts. Many students
commented that they better understood how parallel comput-
ing operates, particularly that adding more processors does
not always result in increased efficiency. Several responses
emphasized the concept of diminishing returns, noting that
excessive parallelization can lead to resource contention and
even slowdowns. The students also appreciated the hands-on
nature of the activity, stating that it helped them visualize
and better grasp parallel computing principles in a fun and
engaging manner. Others mentioned learning about workload
distribution, task synchronization, and coordination challenges
among multiple processors. Some students reflected on the
complexity of parallel processing, recognizing that effective
parallelism requires careful planning and appropriate task allo-
cation. A few students reported that they were already familiar
with parallel computing concepts, while others expressed
interest in applying their new knowledge to programming.
In addition, some responses focused on the collaborative
aspect of the activity, drawing parallels between teamwork and
multiprocessor computing.

2) Student feedback on improving the Flag Maker ac-
tivity highlighted several recurring themes: Many students
requested better quality crayons or alternative coloring tools,
such as markers, to avoid breakage and improve usability.
Some students suggested modifying the activity structure,
including making the tasks more engaging, incorporating more
problem-solving elements, or integrating coding exercises to
better connect with computing concepts. Others recommended
making the activity shorter to avoid redundancy. Several
responses emphasized the need for clearer instructions and
explanations, particularly on how the activity relates to com-
puting topics like pipelining and parallel processing. Some
students requested that key vocabulary be introduced during
the activity. There were also calls for larger paper sizes,
improved classroom setup to enhance collaboration, and better

Pre-Post Test
1. Task Decomposition: Which of the following best describes task decomposition?
a) The process of breaking down a large task into smaller, independent tasks that can be executed
concurrently.
b) The method of organizing tasks in a sequential manner.
c) The technique of reducing the number of tasks to improve performance.
d) The strategy of assigning tasks to a single processor.
2. Speedup: Speedup is defined as the ratio of the time taken to solve a problem on a single processor
to the time taken on a parallel system.
a) True b) False
3. Contention: What is contention in parallel computing?
a) The process of dividing a task into smaller subtasks.
b) The competition between multiple processors for shared resources.
c) The increase in computational speed by adding more processors.
d) The ability of a system to handle a growing amount of work.
4. Scalability: Scalability refers to the ability of a parallel system to increase its performance
proportionally with the addition of more processors.
a)True b) False
5. Pipelining: What is pipelining in the context of parallel computing?
a) The process of executing multiple tasks simultaneously.
b) The technique of overlapping the execution of multiple instructions to improve performance.
c) The method of dividing a task into smaller subtasks.
d) The strategy of reducing contention among processors.

Fig. 7. Pre- Post Test Questions

organization of group work to ensure smoother participation.
Some students suggested making the activity more interac-
tive, possibly incorporating a competitive element such as
leaderboards or timed challenges. Finally, some students stated
that the activity worked well and did not require significant
changes.

B. Pre/Post Test Analysis of Student Learning

Before starting the Flag Maker activity, students from many
of the universities were given a pre-test quiz consisting of five
multiple-choice and true/false questions to assess their basic
understanding of task decomposition, speedup, contention,
scalability, and pipelining. After completing the activity, the
same questions were administered in a post-test quiz. These
quizzes were designed to evaluate the learning outcomes of
the activity. Figure 7 presents the list of multiple choice and
true/false questions on the test given to the students before
and after the activity.

1) Summary of Pre- and Post-Quiz Results Across USI,
TN Tech, and HPU: Figure 8 summarizes the pre- and post-
quiz results from three universities, USI, TNTech, and HPU,
assessing students’ understanding of key parallel and dis-
tributed computing concepts. The analysis highlights knowl-
edge retention, learning gains, and areas where students strug-
gled the most. Scalability and Speedup demonstrated strong
retention across institutions, reflecting a solid foundational
understanding among students. Conversely, Contention and
Pipelining revealed lower initial comprehension, significant
incorrect retention, and knowledge loss after the quiz. These
findings highlight the need for targeted instructional interven-
tions to improve students’ conceptual grasp of these parallel
and distributed computing concepts.

C. Analysis of Dependency Graphs

As noted above, students at Knox were not given the
pre/post test for student learning. Instead, their learning about
dependencies during their followup activity was assessed by
collecting dependency graphs they drew for parallel coloring
of the flag of Jordan (see Figure 4). They were given the last

1. Task Decomposition

-Most students retained correct answers from pre- to post-quiz (76.9%
USI, 87.2% TN Tech, 83.3% HPU).
-Minimalimprovement in learning (0% growth in USI, 4.1% in TN Tech,
16.7% in HPU).
-Some knowledge loss observed in US| (23.1%) and TN Tech (6.4%).

2. Speedup Concept
-There was high initial understanding, with most students retaining correct
answers (69.2% USI, 66.3% TN Tech, 100% HPU).
-Some knowledge gains (15.4% USI, 18% TN Tech).
-There was minimal reduction in TN Tech (7%).

3. Contention in Parallel Computing
-There was a lower baseline knowledge, with fewer correct pre-quiz
answers (46.2% USI, 37.2% TN Tech, 33.3% HPU).
-There were significant growth post-quiz (38.5% USI, 25% TN Tech, 16.7%
HPU).
-There was a high incorrect retention, especially in TN Tech (28.5%) and
HPU (50%).

4. Scalability
-This question was the strongest retention across all institutions (92.3%
USI, 82.6% TN Tech, 100% HPU).
-There was minimal reduction and growth, indicating prior understanding.

5. Pipelining
-There was the lowest initial understanding, with few correct pre-quiz
responses (23.1% USI, 4.1% TN Tech, 50% HPU).
-The highest knowledge loss was in US| (23.1%) and HPU (50%). The
majority of TN Tech students (74.4%) remained incorrect even post-quiz.

Fig. 8. Pre- and Post Quiz Results across USI, TNTech and HPU

Draw black
stripe

AN
P

Fig. 9. Dependency graph for coloring the flag of Jordan

Draw white
dot

Draw red
triangle

Draw white
stripe

\4

Draw green
stripe

few minutes of the class period to complete their drawing. At
the end of the period, following the procedure approved by
IRB, they were asked to submit their work but told that it was
voluntary and there was no effect on their grade either way.

With this procedure, we collected 29 drawings from a class
of 65 (45% response rate) split into three sections. Sixty-five
is the total class size because we do not know how many
students attended that day. We also believe the response rate
was artificially suppressed by the first of the three sections,
which had less time for the drawing activity due to other parts
of the activity running longer; this section only submitted 4
drawings.

All student submissions were examined to evaluate the level
of student understanding demonstrated. Our intended solution
for the problem is shown in Figure 9; the stripes form the first
layer and must be drawn first, followed by the red triangle,
and then the white dot (a star in the actual flag). We do
not consider this a difficult problem, and it is similar to the
dependency graph for coloring the flag of Great Britain, which
was shown as an example, but completing it does demonstrate
an understanding of when tasks are dependent.

When evaluating student submissions, we counted the graph
as correct if it omitted the box for drawing the white stripe;
in the programming version of flag coloring that students had
been doing, the background is initially white so a white stripe
can be achieved by not drawing anything. Some students were
definitely thinking along these lines because they started with
a task to draw the white stripe and crossed it out.

Another variation we saw from some students (5=14%)
was splitting the red triangle into two parts. This is again
consistent with how they were creating this kind of triangle
in the programming assignment (split horizontally into two
right triangles). The latter actually complicates the dependency
graph because the top triangle should be independent of the
green stripe and the bottom triangle should be independent of
the black stripe. None of the students reflected this in their
graph, but we still count them as “mostly correct” since the
true correct answer with a split triangle is significantly more
complicated than without it.

Of the submissions, 10 (34%) were perfectly correct. Seven
(24%) more were mostly correct; these include the 5 men-
tioned above who split the triangle, one who used one task for
all the stripes, and another who suggested the dependencies
spatially but omitted the arrows.

The most common error for the remaining students was
to give a linear chain of tasks. This suggests that they
either thought about the graph in terms of sequential code
or misunderstood the meaning of a dependency. There were a
couple of incomplete submissions, though they all seemed to
be working toward a linear solution as well. There were also a
few students (4=14%) who did not demonstrate any learning;
they drew the flag or started giving code to draw it.

The students who were at least mostly correct made up
59% of the respondents. Because this level was achieved with
a single example, we suggest that a small amount of additional
time (and examples) would suffice to teach the concept.

VI. DISCUSSION AND FUTURE WORK

Overall, the flag coloring unplugged activity provides an
engaging introduction to parallel and distributed computing.
The students appreciate its active nature and we believe that
students seeing examples of parallel concepts in practice
makes it easier for instructors to teach those concepts. Specif-
ically, the students are exposed to speedup, system warmup,
how hardware differences can make results incomparable, and
the challenges presented by interprocessor communication and
resource management.

While we are satisfied with the core activity, we plan to en-
hance the supporting components to improve student learning
further. More instructors intend to incorporate the video shown
at Webster, which demonstrates data parallelism through col-
oring. This video may become a pre-activity assignment to
introduce key concepts or a post-activity reinforcement that
connects data parallelism to GPU processing. Additionally, we
aim to expand the discussion of dependencies, as implemented
at Knox, to provide a deeper understanding while maintaining
the overall brevity of the activity. Furthermore, with continued

implementation and additional data collection, we plan to
conduct a more in-depth statistical analysis to identify trends,
assess the activity’s effectiveness, and refine strategies for
improving student engagement and comprehension.

[1

—

[2

—

[3

=

[6

=

[7

—

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

Tim Bell, Ian Witten, and Michael Fellows. CS Unplugged: An
enrichment and extension programme for primary-aged students, 2015.
Steven A Bogaerts. Limited time and experience: Parallelism in csl.
In Parallel & Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International, pages 1071-1078. IEEE, 2014.

Steven A Bogaerts. One step at a time: Parallelism in an introductory
programming course. Journal of Parallel and Distributed Computing,
105:4-17, 2017.

Adriano Branco, Ana Licia De Moura, Noemi Rodriguez, and Silvana
Rossetto. Teaching concurrent and distributed computing—initiatives
in rio de janeiro. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,
pages 1318-1323. IEEE, 2013.

R. Brown and E. Shoop. Csinparallel and synergy for rapid incremental
addition of pdc into cs curricula. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops PhD Forum,
2012.

Richard Brown and Elizabeth Shoop. Modules in community: injecting
more parallelism into computer science curricula. In Proceedings of the
42nd ACM technical symposium on Computer science education, pages
447-452. ACM, 2011.

Davi Jose Conte, Paulo Sergio Lopes de Souza, Guilherme Martins, and
Sarita Mazzini Bruschi. Teaching parallel programming for beginners
in computer science. In 2020 IEEE Frontiers in Education Conference
(FIE), pages 1-9, 2020.

Joshua Eckroth”. A course on big data analytics. Journal of Parallel
and Distributed Computing, 118:166 — 176, 2018.

Fawzi Emad. Flag coloring programming assignment. Personal com-
munication to J. Spacco.

William B. Gardner. Should we be teaching parallel programming? In
Proceedings of the 22Nd Western Canadian Conference on Computing
Education, WCCCE 17, 2017.

Sheikh K. Ghafoor, David W. Brown, Mike Rogers, and Thomas Hines.
Unplugged activities to introduce parallel computing in introductory
programming classes: an experience report. In Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’19, page 309, New York, NY, USA, 2019.
Association for Computing Machinery.

Dan Grossman and Ruth E Anderson. Introducing parallelism and
concurrency in the data structures course. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education, pages 505—
510. ACM, 2012.

David J John and Stan J Thomas. Parallel and distributed computing
across the computer science curriculum. In Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International,
pages 1085-1090. IEEE, 2014.

Matthew Johnson, Robert H Liao, Alexander Rasmussen, Ramesh
Sridharan, Daniel D Garcia, and Brian Harvey. Infusing parallelism
into introductory computer science curriculum using mapreduce. EECS
Department, University of California, Berkeley, Tech. Rep, 2008.
David W Juedes and Frank Drews. Engineering a new curriculum: Expe-
riences at Ohio University in incorporating the IEEE-TCPP curriculum
initiative during a transition to semesters. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 1279-1282. IEEE, 2012.

Andrew T Kitchen, Nan C Schaller, and Paul T Tymann. Game playing
as a technique for teaching parallel computing concepts. ACM SIGCSE
Bulletin, 24(3):35-38, 1992.

Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson,
Brett A. Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein,
Michael Goldweber, Pankaj Jalote, Douglas Lea, Michael Oudshoorn,
Marcelo Pias, Susan Reiser, Christian Servin, Rahul Simha, Titus Win-
ters, and Qiao Xiang. Computer Science Curricula 2023. Association
for Computing Machinery, New York, NY, USA, 2024.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[33]

(34]
[35]
[36]

[37]

Hong Lin. Teaching parallel and distributed computing using a cluster
computing portal. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,
pages 1312-1317. IEEE, 2013.

Jie Liu. 20 years of teaching parallel processing to computer science
seniors. In Proceedings of the Workshop on Education for High
Performance Computing, pages 7-13. IEEE Press, 2016.

Suzanne J Matthews. Teaching with parallella: a first look in an under-
graduate parallel computing course. Journal of Computing Sciences in
Colleges, 31(3):18-27, 2016.

Suzanne J. Matthews. Pdcunplugged: A free repository of unplugged
parallel distributed computing activities. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 284-291, 2020.

Bruce R Maxim, Gregory Bachelis, David James, and Quentin Stout. In-
troducing parallel algorithms in undergraduate computer science courses
(tutorial session). ACM SIGCSE Bulletin, 22(1):255, 1990.

Shirley V Moore and Steven R Dunlop. A flipped classroom approach
to teaching concurrency and parallelism. In Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International, pages 987—
995. IEEE, 2016.

Julia Mullen, Chansup Byun, Vijay Gadepally, Siddharth Samsi, Albert
Reuther, and Jeremy Kepner. Learning by doing, high performance com-
puting education in the mooc era. Journal of Parallel and Distributed
Computing, 105:105-115, 2017.

Henry Neeman, Lloyd Lee, Julia Mullen, and Gerard Newman. Analo-
gies for teaching parallel computing to inexperienced programmers.
ACM SIGCSE Bulletin, 38(4):64-67, 2006.

Sushil K Prasad, Almadena Yu Chtchelkanova, Sajal K Das, Frank
Dehne, Mohamed G Gouda, Anshul Gupta, Joseph Jaja, Krishna Kant,
Anita La Salle, Richard LeBlanc, et al. Nsf/ieee-tcpp curriculum
initiative on parallel and distributed computing: core topics for under-
graduates. In SIGCSE, volume 11, pages 617-618, 2011.

Sushil K Prasad, Anshul Gupta, Krishna Kant, Andrew Lumsdaine,
David Padua, Yves Robert, Arnold Rosenberg, Alan Sussman, Charles
Weems, et al. Literacy for all in parallel and distributed computing:
guidelines for an undergraduate core curriculum. CSI Journal of
Computing, 1(2):82-95, 2012.

Sushil K. Prasad, Anshul Gupta, Arnold Rosenberg, Alan Sussman, and
Chip Weems. Topics in Parallel and Distributed Computing: Enhancing
the Undergraduate Curriculum: Performance, Concurrency, and Pro-
gramming on Modern Platforms. Springer International Publishing, 2nd
edition edition, 2018.

Sushil K. Prasad, Anshul Gupta, Arnold Rosenberg, Alan Sussman, and
Chip Weems. Topics in Parallel and Distributed Computing: Introducing
Concurrency in Undergraduate Courses. Morgan Kaufmann, st edition
edition, August, 2015.

Erik Saule. Experiences on teaching parallel and distributed computing
for undergraduates. In 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2018.

A. Savage and J. Hyneman. Art, science and GPUs.
youtube.com/watch?v=-P28LKWTzrI, 2009.

Mary L. Smith and Srishti Srivastava. Introducing parallel and dis-
tributed computing concepts through the use of flashcards and a card
game. In 2023 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 278-283, 2023.

Srishti Srivastava, Mary Smith, Amrita Ghimire, and Shaun Gao. As-
sessing the integration of parallel and distributed computing in early
undergraduate computer science curriculum using unplugged activities.
In 2019 IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC), pages 17-24, 2019.

Xiaoyuan Suo. Flag coloring activity, 2025. Accessed: Jan 31, 2025.
David Valentine. Monte carlo simulations: Parallelism in cs1/cs2.
Benjamin L Wiggins, Sarah L Eddy, Leah Wener-Fligner, Karen
Freisem, Daniel Z Grunspan, Elli J Theobald, Jerry Timbrook, and
Alison J Crowe. Aspect: A survey to assess student perspective
of engagement in an active-learning classroom. CBE—Life Sciences
Education, 16(2):ar32, 2017.

Ali Yazici, Alok Mishra, and Ziya Karakaya. Teaching parallel com-
puting concepts using real-life applications. [International Journal of
Engineering Education, 32(2):772-781, 2016.

https://www.

