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Abstract—Dragonfly networks have been proposed to exploit
high-radix routers and optical links for high performance
computing (HPC) systems. Such networks divide the switches
into groups, with a local link between each pair of switches
in a group and a global link between each group. Which
specific switch serves as the endpoint of each global link is
determined by the network’s global link arrangement. We
propose two new global link arrangements, each designed using
intuition of how to optimize bisection bandwidth when global
links have high bandwidth relative to local links. Despite this,
the new arrangements generally outperform previously-known
arrangements for all bandwidth relationships.

1. Introduction

As the high performance computing (HPC) community
first contemplated exascale systems, it was clear that existing
network interconnects could not simply be scaled up to
add nodes [1]. Such an approach would consume too much
power and separate nodes by prohibitively large numbers
of hops. A variety of new interconnect topologies were
proposed to meet this demand (e.g. [2], [3], [4], [5], [6]),
many of them taking advantage of new technologies such
as high-radix routers [7], which spread increasing bandwidth
over an increasing number of ports, and optical links, which
allow messages to travel using fewer hops and less energy.

Of these proposed topologies, Dragonfly [5] has gained
the most traction. In a Dragonfly network, computational
nodes are attached to network switches, which are organized
into groups. Each pair of switches in a group is connected
with an electrical local link. Each switch also has optical
global links, which are cheaper and more power efficient for
long connections. These are arranged so that every group
has a global link to each other group. Figure 1 shows a
Dragonfly network.

The size of a Dragonfly network is determined by the
number of nodes per switch (p), the number of switches per
group (a), and the number of global links per switch (h). The
number of groups is g = ah + 1. A Dragonfly network for
a specific set of parameters is called a (p, a, h)-Dragonfly.

§Work performed while a student at Knox College.
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Figure 1. (p, 4, 2)-Dragonfly with the relative global link arrangement. The
solid boxes are switches and dashed boxes contain the switches of a group;
the nodes themselves are not depicted.

The Dragonfly topology is the focus of significant re-
search (e.g. [8], [9], [10]). It has also been adapted for the
Cray XC [11], [12] and PERCS [13].

The original description of Dragonfly includes some
ambiguity; although it specifies that each pair of groups is
connected by a global link, the switches involved are not
specified. Camarero et al. [14] noticed this ambiguity, coined
the term global link arrangement for a way to resolve it, and
identified three distinct arrangments.

Hastings et al. [15] evaluated these global link arrange-
ments with bisection bandwidth, a widely-used metric for
network topologies that attempts to quantify the perfor-
mance of a large communication pattern on a system-wide
job. It is based on the idea of a cut, a partition of the
network. The bandwidth of a cut is the number of links
(more generally, the sum of their weights) crossing the cut
(i.e. with an endpoint in each part). The bisection bandwidth
of a network is the minimum bandwidth of a cut having parts
of equal size (within one for odd-sized networks). To allow
local and global links to have different bandwidths, these
were assigned weights 1 and α respectively.

Hastings et al. [15] computed the bisection band-



width for a (p, 4, 2)-Dragonfly. Surprisingly, they found
that changing the global link arrangement can improve this
metric by as much as 50% without any hardware cost
(all arrangements have one optical link between each pair
of groups). For arbitrarily-sized networks, they focused on
large α and distinguished performance by whether the bi-
section bandwidth included an α term. This is a potentially-
important distinction because Dragonfly implementations
have used values of α up to 3.58 [11]. To determine
the dependence on α, they identified the network’s global
connected components (GCCs), the connected components
formed by only global links if local links are ignored. Then
they characterized situations when the network’s GCCs are
structured so that global links cross any bisecting cut, such
as when there are an odd number of equally-sized GCCs.

In this paper, we propose and evaluate two additional
global link arrangements. Our aim is to optimize for large α
by creating arrangements that form a single GCC, i.e. every
pair of switches is connected by a path of global links. This
property guarantees that the bandwidth of every cut grows
with α. By including every cut rather than just bisections,
this goal addresses a criticism of the bisection bandwidth
metric, that it privileges a specific type of cut. Intutitively,
the notation of forming a single GCC is appealing as a
way of fully utilizing both types of links. This intuition
is somewhat borne out by our results, which show that the
new arrangements also provide high bisection bandwidth for
small α, where the global links are relatively less important.

Our two new arrangements are significantly different,
reflecting the different approaches taken in their discovery.
Our nautilus arrangement is the generalization of a small
single-GCC network created by trial and error. The helix
arrangement was created from scratch to be more symmetric
and thus easier to reason about.

We evaluate the new arrangements in two ways. First of
all, we computationally determine their bisection bandwidth
as a function of α on four specific Dragonfly networks. We
find that the new arrangements outperform the previously-
known ones at large α. Despite our focus on global edges,
however, the new arrangements also match the performance
of older ones at small α. The only lagging occurs at interme-
diate values of α and only on two of the sample networks.

For our second evaluation of the new arrangements,
we identify when they are guaranteed to form a single
GCC. (Despite being a design goal of the arrangements, this
does not occur for all values of the Dragonfly parameters.)
Specifically, we show that the nautilus arrangement forms a
single GCC when h > 2 and either a ≤ h or a = 2h. We
also develop techniques that seem promising to show this
property for other a > h. For helix, we show that it forms
a single GCC when h ≥ 4.

The rest of this paper is organized as follows. In Sec-
tion 2, we define the nautilus and helix arrangements. In
Section 3, we present the exact bisection bandwidth of our
arrangements on the sample Dragonfly networks. In Section
4, we sketch the proofs that our arrangements form a single
GCC with appropriate parameter choices. In Section 5, we
discuss related work. Finally, in Section 6, we conclude and

discuss possible future work.

2. Global link arrangements

To formally specify global link arrangements, we first
need some definitions. We name each switch (i, j) according
to its group i and its position j within that group. For
simplicity, we consider group numbers modulo the number
of groups g so that (i, j) and (i + g, j) are the same.

It is also useful to view the switches of a group as
forming a single virtual switch, connecting that group’s
nodes to the global links attached to the virtual switches of
other groups. In this view, the top-level network is also fully
connected, with each virtual switch directly connected to the
others. The ports of this virtual switch are then associated
with the global links, with the first switch’s global links on
the first h ports, the second switch’s global links on the
next h ports, and so on. The local edges become internal
structures associated with the virtual switch.

The three previously-known global link arrangements
are absolute (aka consecutive), relative (aka palmtree), and
circulant [14], [15]. The absolute arrangement connects the
ports of a virtual switch to each group in order. Thus, port
0 goes to group 0, port 1 goes to group 1, etc. The only
exception is to skip the link that would have its source
and destination in the same group. Formally, the kth link
of switch (i, j) connects to group jh + k if jh + k < i and
group jh + k + 1 otherwise.

The relative arrangement is similar to absolute, but
more symmetric because each group behaves like group 0.
Specifically, port 0 of group i goes to group i+1, port 1 goes
to group i+2, port 2 goes to group i+3, etc. Formally, the kth

link of switch (i, j) connects to group i+jh+k+1( mod g).
This is the arrangement used in Figure 1.

The circulant arrangement is similar to the relative
arrangement except that its links alternate between going
to higher-numbered groups and lower-numbered groups.
Specifically, port 0 of group i goes to group i + 1, port 1
goes to group i− 1, port 2 goes to group i + 2, port 3 goes
to group i − 2, etc. Formally, the kth link of switch (i, j)
connects to group i + (b(jh + k)/2c + 1)(−1)jh+k. This
arrangement assumes h is even so that the same number of
links go in each direction.

2.1. Nautilus arrangement

The first of our new arrangements is the nautilus ar-
rangement. For this arrangement, we divide each group’s
switches into two categories. The even-numbered switches
(i.e. switches (i, j) where j is even) are + switches while the
odd-numbered ones are − switches. Links are established
from the switches one at a time in the order given by their
group and switch number; links are made from switch (0, 0),
switch (0, 1), and so on through group 0, followed by the
switches in group 1, etc. The number of links made when a
switch is visited during this process depends on how many
links have already been established to that switch. For a
switch (i, j) these links are made to the next groups in either
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(a) (d)(b)

Figure 2. First four steps of nautilus global link arrangement construction for a (p, 3, 3)-Dragonfly. Shading distinguishes between + (shaded) and −
(unshaded) switches. Parts show the arrangement after the links are made from (a) switch (0, 0), (b) switch (0, 1), (c) switch (0, 2), and (d) switch (1, 0).
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Figure 3. (p, 3, 3)-Dragonfly with the nautilus global link arrangement.

the + or − direction which do not already have an edge
to group i. Regardless of switch type, all links made from
group i go to switch i mod a.

The first several steps of this construction for a (p, 3, 3)-
Dragonfly are shown in Figure 2. Parts (a) through (c) of
the figure show the links made from group 0 to switch 0s
in other groups. First, switch (0, 0) makes links to the next
three groups (part (a)) since it is a + switch. Then switch
(0, 1), a − switch, makes links to three groups in the −
direction (part (b)). Next, switch (0, 2) makes links in the
+ direction, skipping groups 1, 2, and 3 since these groups
are already connected to group 0 (part (c)). Part (d) shows
the first links made from group 1 to switch 1 mod a = 1
in the next two groups; only two links are made because
switch (1, 0) already has a link from group 0. The completed
nautilus arrangement is shown in Figure 3.

When discussing the nautilus arrangement, it is useful to
note which switch made each link. A link is called outgoing
with respect to an incident switch if that switch made the
link. Otherwise, it is called incoming. The name “nautilus”
comes from the number of incoming links in each group,
which starts at 0 and grows, suggesting a spiral similar to

the shell cross section of the marine cephalopod nautilus.
The main challenge reasoning about the nautilus ar-

rangement is its definition through a sequential construction,
with the actions at a given stage depending on previous
stages. It is not immediately obvious that the construction
even creates a valid global link arrangement, though it does:

Lemma 1. The nautilus construction creates exactly one link
between each pair of groups and exactly h links incident
on each switch.

Proof: That there is exactly one link between each pair of
groups will be implied by there being the correct number of
links for each switch since the construction always checks
if two groups are connected before joining them with a link.

Each switch will have at least h links because it makes
this many when it is visited during the construction. No
switch acquires extra links while being visited (by construc-
tion) or afterwards (since its group is linked to all others
as a result of being visited). Thus, it suffices to show that
a switch will not get extra links as incoming links made
before it is visited. This cannot happen since the groups
visited before the switch are numbered consecutively from
0, there are at most g− 1 = ah of them, and only every ath

of them falls into the switch’s congruence class. 2

The presence of both incoming and outgoing links also
complicates determining the groups to which each switch is
adjacent without stepping through the construction. We omit
the details, but each switch’s outgoing links are incident on
a contiguous interval of groups, the endpoints of which are
given by piecewise functions.

One way to describe the nautilus arrangement is as a
reordered version of relative. The first − switch in nautilus
is analogous to the group’s last switch in relative since going
in the − direction is the same as going nearly all the way
around in the + direction. The added complexity compared
to the relative arrangement comes from the way nautilus uses
group numbers to determine the switch number reached by
outgoing links. The simpler approach of relative means that
it only connects 0th switches with (a − 1)st switches, 1st

switches with (a− 2)nd switches, and so on.
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Figure 4. (p, 2, 4)-Dragonfly with the helix global link arrangement.

2.2. Helix arrangement

Our second new global link arrangement is the helix
arrangement. Initially assume that the number of global
links per switch h is even; we return to the odd case below.
Each switch makes h/2 outgoing links similar to the relative
arrangement, with the kth such link going to the group
numbered k + 1 higher. Similarly, it receives h/2 incoming
links from h/2 lower-numbered groups. The other endpoint
of each outgoing link is a switch numbered one higher
and of each incoming link is a switch numbered one lower
(both mod a). (This sense that each switch is receiving
from smaller numbers and sending to larger numbers is the
reason for the name helix.) Formally, the kth outgoing link
from switch (i, j) goes to switch

(i + j bh/2c+ k + 1, (j + 1) mod a) (1)

and its kth incoming link comes from switch

(i− 1− k − j bh/2c , (j − 1) mod a). (2)

Figure 4 shows the helix arrangement of a (p, 2, 4)-
Dragonfly.

Although the description above references relative, the
helix arrangement also has a strong resemblence to circulant
since each switch has h/2 links to higher-numbered groups
and h/2 to lower-numbered groups. The rotation of switch
numbers greatly changes which groups the incoming links
are from, however; for example, the outgoing links of switch
0 go to the next h/2 groups, but its incoming links are
from switches numbered a− 1 and thus come from groups
approximately (a− 1) bh/2c positions back.

For Dragonfly networks with odd h, switches in the helix
arrangement make bh/2c outgoing links and receive bh/2c
incoming links. We call the remaining link of each switch a
mutual link. These links go to the a groups between those
incident on the group’s longest outgoing links (i.e. those of
switch a − 1) and its longest incoming links (i.e. those of
switch 0). Formally, the other endpoint of the mutual link
of switch (i, j) is switch

(i + a bh/2c+ j + 1, a− j − 1). (3)
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Figure 5. (p, 3, 3)-Dragonfly with the helix global link arrangement. The
dashed links are the mutual links.

Figure 5 shows the helix arrangement for a (p, 3, 3)-
Dragonfly, with the mutual links drawn using dashed lines.

Because it has a more symmetric structure than the
nautilus arrangement, it is easier to see that the helix
construction gives a global link arrangement. Each group
has one link to each of the a bh/2c groups immediately
following it and the a bh/2c groups immediately preceeding
it, provided by the 2 bh/2c links at each switch. This suffices
when h is even.

When h is odd, we also need to look at the mutual links.
The mutual links for group i come from the group reached
by neither the outgoing nor the incoming links; note that
Equation 3 specifies the same groups as Equations 1 or 2 if
the group number j is replaced by a and that each switch
gets a single mutual link.

3. Exact bisection bandwidth

We begin evaluating the global link arrangements by
looking at their effect on the exact bisection bandwidth for
small Dragonfly networks. We are restricted to small net-
works because determining a graph’s bisection bandwidth is
NP-complete, with the best known poly-time approximation
algorithm solving it to within a factor of O(log2 n) [17].

Any cut of the network has bandwidth which is a linear
function of α. The bisection bandwidth is then the lower
envelope of all the functions corresponding to bisecting
cuts. To solve for it, we use a brute force solver to find
a min-bandwidth cut for a specific value of α. We first
solve for α = 0 and a large value of α. This gives two
functions that meet at some value of α. We solve for the
min-bisection cut at that value of α. If the solution is
one of the functions, then those functions fully determine
the bisection bandwidth. Otherwise, we have found a new
function and can recursively solve for the curve on each side
of the intersection point.

Figures 6–9 show the bisection bandwidth as a function
of α for four specific Dragonfly networks. The specific
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Figure 6. Bisection bandwidth as a function of α for each link arrangement
on (p, 4, 2)-Dragonfly.

Dragonfly configurations were chosen to provide a variety
of networks at the limit of the size for which we could
compute the bisection bandwidth in a reasonable time (up
to ≈ 2 days for a single value of α). Each figure gives
the bisection bandwidths for the helix and nautilus arrange-
ments, plus another line showing the pointwise maximum
of the absolute, relative, and circulant arrangements. (Figure
7 does not include circulant, which cannot be used since h
is odd.)

Figure 6 plots the bisection bandwidth of the (p, 4, 2)-
Dragonfly. This is a balanced network, obeying the sug-
gested relationship a = 2h that spreads the load between
the different types of links [5]. In this figure, the “best of”
line is always the circulant arrangement, which dominates
relative and absolute. Which line gives the highest bisection
bandwidth varies as a function of α. The helix, nautilus, and
circulant arrangements are in a three-way tie until α = 1.25,
at which point circulant actually beats the other two until
α = 3. From that point on, helix dominates. The nautilus ar-
rangement is never the strictly best, though it does dominate
circulant for large (> 6) values of α; this happens because
the circulant arrangement never gives bisection bandwidth
greater than 36 while nautilus continues to improve.

Figure 7 plots the bisection bandwidth of the (p, 3, 3)-
Dragonfly. For this size, the “best of” line corresponds
to the relative arrangement, whose bisection bandwidth is
always at least as high as the absolute arrangement; recall
that circulant cannot be used because h is odd. Looking at
the figure, we see a three-way tie until α = 2/3, with the
tie between the helix and relative arrangements continuing
until α = 1. After this, the helix arrangement is always
strictly better than the others. The tie between the relative
and nautilus arrangements resumes at α = 2.

Figure 8 plots the bisection bandwidth of the (p, 3, 4)-
Dragonfly. The “best of” line depicts the circulant arrange-
ment until α = 1.2, after which the relative arrangement
is better. (The two tie until α = 3/7.) The relationshiop
between the three lines is complicated. They are tied until
α = 0.5, after which the helix arrangement always gives a
higher bisection bandwidth than the “best of”. The nautilus
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Figure 7. Bisection bandwidth as a function of α for each link arrangement
on (p, 3, 3)-Dragonfly.

α

Best of prior work

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5

N
o
rm

al
iz

ed
 b

is
ec

ti
o
n
 b

an
d
w

id
th

, the global connection bandwidth  (local = 1)

 0

Nautilus arrangement
Helix arrangement 10

Figure 8. Bisection bandwidth as a function of α for each link arrangement
on (p, 3, 4)-Dragonfly.

arrangement temporarily falls into third place at α = 0.5,
but gradually comes from behind, passing the mixed “best
of” arrangement at α = 1.5 and giving the highest overall
bisection bandwidth for α ≥ 4.

Figure 9 plots the bisection bandwidth of the (p, 2, 8)-
Dragonfly. For this size network, the helix, nautilus, and
relative arrangements all give the same bisection bandwidth
despite their different graphs. This makes helix and nautilus
tied with the best of prior work for α ≤ 1/7 and α ≥ 0.3
since the relative arrangement is the best prior algorithm for
these ranges. Between α = 1/7 and α = 0.3, however, the
circulant arrangement is slightly better.

Looking across all four of the specific sizes for which
we solved the entire bisection bandwidth function, our new
arrangements perform generally well. Either the helix or
nautilus arrangement provides the highest bisection band-
width except for intermediate values of α on the (p, 4, 2)-
Dragonfly and the (p, 2, 8)-Dragonfly. The helix/nautilus
value is strictly higher for large values of α one all except
the (p, 2, 8)-Dragonfly, where it achieves a tie.

When comparing our two new arrangements, the helix
arrangement is generally better except for large α values on
the (p, 3, 4)-Dragonfly. Even the nautilus arrangement does
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Figure 9. Bisection bandwidth as a function of α for each link arrangement
on (p, 2, 8)-Dragonfly. Helix and nautilus differ, but tie for all α.

well against the previously-known arrangements however;
its relative performance to them can also be summarized as
a tie at low values of α, giving higher bisection bandwidth at
high values of α, and sometimes giving a slightly lower bi-
section bandwidth at intermediate values of α. We take these
results as a validation of our approach; despite focusing on
high α by creating arrangements that form a single GCC,
the resulting arrangements are competive at lower values of
α as well.

As a final comment on the results in this section, we
observe that the nautilus arrangement does not create a
single GCC on the (p, 4, 2)-Dragonfly. The arrangement
on this network has multiple GCCs, including one with
only 3 switches; note that the theorems in the next sec-
tion concerning the nautilus arrangement require h > 2.
The arrangement on this network does provide increasing
bisection bandwidth as α increases, but that is because the
GCCs cannot be split evenly rather than there being only
one of them.

The theorem in the next section concerning the helix
arrangement requires h ≥ 4 so it also does not show
that the arrangement forms a single GCC for the (p, 4, 2)-
Dragonfly or the (p, 3, 3)-Dragonfly. In these cases, however,
the arrangement does form a single GCC anyway.

4. Proofs of 1 GCC

Now we evaluate the new arrangments based on our
original design goal of creating a single GCC.

4.1. Nautilus arrangement

We begin with a couple of tools to help manage the
complexity of the nautilus arrangement. We call a switch
with only outgoing links self-determined and one with only
incoming links pre-determined.

Because of how the construction procedure adds links,
there is a simple characterization for the location of self-
determined switches.
Lemma 2. In the nautilus arrangement, a switch (i, j) is

self-determined iff j ≥ i.

Proof: When a group i is visited, an edge is added to
switch i mod a in every higher-numbered group, meaning
those switches are not self-determined. Thus, all switches
in group 0 are self-determined because this group is visited
first, but no other switch 0s are self-determined. Similarly,
switches 1 through a − 1 of group 1 are self-determined,
but switch 1 is not self-determined in any high-numbered
group. Continuing this process shows that only the first a
groups have self-determined and the only such switches are
those whose number is ≥ their group number. 2

One reason the concept of self-determined switches is
useful is that the other switches are connected to them.
Lemma 3. If the nautilus arrangement connects all self-

determined switches, then all switches form a single
GCC.

Proof: The self-determined switches being connected is
enough because all are reachable from them. Any other
switch has an incoming link, which goes to a switch first
touched earlier in network construction. Such a sequence of
links can not continue indefinitely since the visiting order
is a total order on a finite set. 2

Analogous arguments give equivalent results for pre-
determined switches.
Lemma 4. In the nautilus arrangement, a switch (i, j) is

pre-determined iff j < a− (ah− i).

Lemma 5. If the nautilus arrangement connects all pre-
determined switches, then all switches form a single
GCC.

With these tools, we are ready to identify cases when the
nautilus arrangement creates a single GCC. We give three
different proofs depending on the relationship between a
(the number of switches in a group) and h (the number
of global links per switch). All of these proofs use the
assumption h > 2. The nautilus arrangement does not form
a single GCC for many sizes with h = 2; doing so would
require that all the switches form a single ring.

We sketch our arguments in order of a, beginning with
the case a < h.
Theorem 6. The nautilus global link arrangement connects

all switches into a single GCC when a < h and h > 2.

Sketch: The main case concerns groups G = {a, . . . , 2a−
1}. Switch (0, 0) can reach the 0 switches of G in two hops
via switch (a, 0). It can also reach each j 6= 0 switch of
G in either two hops via (j, 0) or three hops via (a, 0) and
(a + j, 0).

From G, we can reach all switches in higher-numbered
groups; switch (i, j) with i ≥ 2a is reached by an outgoing
link from group a + j ∈ G since every pair of groups is
connected and group a + j’s only incoming links are from
lower-numbered groups.

For lower-numbered groups, any switch which is not
self-determined (i.e. (i, j) with j < i < a) can be reached
from (0, 0) in two hops via switch (j, 0). Self-determined
switches are then also reachable because their links go to
non-self-determined switches, all of which are reachable. 2



Now we present the case a = h.
Theorem 7. The nautilus global link arrangement connects

all switches into a single GCC when a = h and h > 2.

Sketch: The main idea is to show that all the self-determined
switches are connected and then apply Lemma 3.

Observe that all of group 0 is connected since switches
(0, j) and (0, j+1) are connected via ((j+1)a, 0) and ((j+
1)a + 1, 0). Since every zero switch (i.e. (i, 0)) is adjacent
to a switch in group 0, all zero switches are connected.

Each self-determined switch has outgoing links to a =
h contiguous groups, one of which has a group number
congruent to 0. If this group is not ah, reaching that a switch
in that group suffices since it has an outgoing link to a zero
switch. To show that all of group ah is connected to a zero
switch, observe that (ah, j) with j 6= 0 is connected to (i, 1)
for some a + 1 ≤ i ≤ 2a− 1, all of which are connected to
(0, 0) via (1, 2) and (2a, 1). 2

The remaining case is a > h. We were not able to show
that the nautilus arrangement always creates a single GCC
in this case, but did show that it does so when a = 2h.
This is a particularly important subcase since it represents
a balanced network.
Theorem 8. The nautilus global link arrangement connects

all switches into a single GCC when a = 2h and h > 2.

Sketch: The argument is more complicated, but in many
ways it is the mirror image of the proof of Theorem 7.
We show that all pre-determined switches are connected
and apply Lemma 5. The 1 switches (i.e. (i, 1)) are con-
nected because switches of group 1 connect intervals of
them, which are joined by the switches (ah, 0), (ah, h), and
(a + 1, 2). Since every switch of group ah is adjacent to a
1 switch, this means group ah is connected.

Our final step is to show that all pre-determined switches
of each switch number are connected. The pre-determined
j switches are connected via (j, 1), (j, 3), and (a + j, 3). 2

We conjecture that the nautilus arrangement forms a
single GCC whenever a > h; this was computationally
verified for 3 ≤ h ≤ 9 and h + 1 ≤ a ≤ 500. The hard
part of generalizing the proof of Theorem 8 seems to be
showing that all 1 switches are connected.

A recurring theme in all the proofs in this section
is finding the right switches to avoid the complexity of
the nautilus construction. Certain switches seem generally
convenient for this purpose. Groups 0 and ah get around
the mixture of incoming and outgoing edges by having only
one type. Switch 0s and 1s are convenient for working with
groups 0 and ah respectively since they are connected. The
groups a through 2a−1 were useful in the proof of Theorem
6 since each of their switches has exactly one incoming link
from outside this range; other intervals of a groups could
potentially be used in a similar way.

4.2. Helix arrangement

The symmetry of the helix arrangement makes it much
easier to reason about. We are able to show that (when h ≥
4) it forms a single GCC using a short proof with one case.

Theorem 9. The helix global link arrangement connects all
switches into a single GCC when h ≥ 4.

Proof: Any switch (i, 0) can reach switch (i + 1, 0) via
a sequence of two hops, taking the second outgoing link
(hence the need for h ≥ 4) to switch (i+2, 1) and then that
switches incoming link to switch (i+1, 0). Thus, all switches
with switch index 0 are connected. Since any switch (i, j)
can reach a switch with index 0 via a sequence of j arbitrary
incoming links, all switches are connected. 2

We also conjecture that the helix arrangement also forms
a single GCC when h = 2 and h = 3. We programmatically
verified that it does for a up to 200 in both cases.

5. Related work

To our knowledge, the only prior work directly looking
at different global link arrangements for Dragonfly networks
is by Camarero et al. [14] and Hastings et al. [15]. Camarero
et al. defined the three previously-known link arrangements
as part of exploration of Dragonfly variations that use
trunking (multiple links between groups). Despite definin-
ing the global link arrangements, they did not assign any
significance to this difference. The focus of the paper is on
the relationship between Dragonfly and Hamming graphs,
which allows the importation of routing algorithms designed
for Hamming graphs to Dragonfly networks. Hastings et
al. [15] showed that the three arrangements gave up to a
50% different bisection bandwidth on a (p, 4, 2)-Dragonfly
using the same technique we used in Section 3. They also
characterized the GCC structure of each arrangement.

Alverson et al. [11] previously computed the bisection
bandwidth of Dragonfly networks using the graph where
each vertex is a virtual router that cannot be split. This
implicitly assumes that local links have unbounded band-
width, which leads to the conclusion that all global link
arrangements are equivalent.

Beyond Camarero et al. [14] mentioned above, there is
quite a body of work on routing for Dragonfly networks (e.g.
[8], [18], [19]). These papers implicitly choose a global link
arrangement (often relative), but the algorithms seem to be
independent of the arrangement selected.

Others have attempted to improve the performance of
Dragonfly systems with block-based mapping schemes to
distribute tasks to nodes (e.g. [20], [21], [22]) or scheduling
intra-job communication [23].

6. Conclusion and Discussion

Our results reinforce the surprising point that such a tiny
detail as the global link arrangement actually matters for
network performance. It is also interesting that nautilus and
helix generally outperform the previously-known arrange-
ments for all values of α despite being designed specifically
for large α. Forming a single GCC seems to be a reasonable
proxy for the intuitive notion of “well-connected”.

The helix arrangement is particularly interesting since
it has the dual benefits of being easier to describe and



use in proofs as well as generally offering higher bisection
bandwidth. Its ease of use comes from the symmetry that we
made an explicit design goal after running into the complex-
ity of the nautilus arrangement. We wonder if this symmetry
also leads to its superior bisection bandwidth. This metric
can be thought of as a game against an adversary trying
to find a weakness in the network. Network asymmetries
present the adversary with alternative lines of attack whereas
symmetric networks limit their choices. In support of this
idea is that the best performing global link arrangements
are all the symmetric ones (helix, relative, and circulant).
Of course the outperformance of nautilus on the (p, 3, 4)-
Dragonfly shows that reality is more complicated than this
simple idea, but symmetry does seem to generally help.

There remain plentiful opportunities for future research.
Theorems 8 and 9 leave open the questions of whether a
single GCC is always formed by the nautilus arrangement
when a > h and the helix arrangement when h is 2 or 3.

A larger project would be to determine the bisection
bandwidth of nautilus or helix on a general Dragonfly
network. Forming a single GCC means that bisection band-
width is grows linearly with α, but gives no indication of
the coefficients. Hastings et al. [15] solved the bisection
bandwidth for large α more precisely when the network had
multiple GCCs by counting the number of local edges that
must be cut to separate them. Greater understanding of the
structure of the single GCC may make similar results pos-
sible, particularly for the helix arrangement. It would also
be interesting to compute bisection bandwidth for specific
values of α (i.e. not just “large α”).
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