
Dispatching Equal-length Jobs to Parallel
Machines to Maximize Throughput

David P. Bunde1 and Michael H. Goldwasser2

1 Dept. of Computer Science, Knox College, dbunde@knox.edu
2 Dept. of Math. and Computer Science, Saint Louis University, goldwamh@slu.edu

Abstract. We consider online, nonpreemptive scheduling of equal-length
jobs on parallel machines. Jobs have arbitrary release times and dead-
lines and a scheduler’s goal is to maximize the number of completed jobs
(Pm | rj , pj = p |

P
1− Uj). This problem has been previously studied

under two distinct models. In the first, a scheduler must provide im-
mediate notification to a released job as to whether it is accepted into
the system. In a stricter model, a scheduler must provide an immediate
decision for an accepted job, selecting both the time interval and ma-
chine on which it will run. We examine an intermediate model in which
a scheduler immediately dispatches an accepted job to a machine, but
without committing it to a specific time interval. We present a natural
algorithm that is optimally competitive for m = 2. For the special case
of unit-length jobs, it achieves competitive ratios for m ≥ 2 that are
strictly better than lower bounds for the immediate decision model.

1 Introduction

We consider a model in which a scheduler manages a pool of parallel machines.
Job requests arrive in an online fashion, and the scheduler receives credit for each
job that is completed by its deadline. We assume that jobs have equal length and
that the system is nonpreemptive. We examine a series of increasingly restrictive
conditions on the timing of a scheduler’s decisions.

unrestricted: In this most flexible model, all requests are pooled by a scheduler.
Decisions are made in real-time, with jobs dropped only when it is clear they
will not be completed on time.

immediate notification: In this model, the scheduler must decide whether a
job will be admitted to the system when it arrives. Once admitted, a job
must be completed on time. However, the scheduler retains flexibility by
centrally pooling admitted jobs until they are executed.

immediate dispatch: In this model, a central scheduler must immediately as-
sign an admitted job to a particular machine, but each machine retains
autonomy in determining the order in which to execute the jobs assigned to
it, provided they are completed on time.

immediate decision: In this model, a central scheduler must fully commit an
admitted job to a particular machine and to a particular time interval for
execution on that machine.

2 David P. Bunde and Michael H. Goldwasser

The problem has been previously studied in the unrestricted, immediate notifica-
tion, and immediate decision models. Immediate dispatching is a natural model,
for example when distributing incoming requests to a server farm or computer
cluster to avoid a centralized queue [1, 14]. Our work is the first to examine the
effect of immediate dispatching on throughput maximization.

We introduce a natural FirstFit algorithm for the immediate dispatch
model. In short, it fixes an ordering of the m machines M1, . . . ,Mm, and as-
signs a newly-arrived job to the lowest-indexed machine that can feasibly accept
it (the job is rejected if it is infeasible on all machines). We present the fol-
lowing two results regarding the analysis of FirstFit. For m = 2, we prove
that FirstFit is 5

3 -competitive and that this is the best possible ratio for a
deterministic algorithm with immediate dispatch. This places the model strictly
between the immediate notification model (deterministic competitiveness 3

2) and
the immediate decision model (deterministic competitiveness 9

5). For the case of
unit-length jobs, we show that FirstFit has competitiveness 1/

(
1−

(
m−1

m

)m)
for m ≥ 1. Again, the model lies strictly between the others; an EDF strategy
gives an optimal solution in the immediate notification model, and our upper
bound is less than a comparable lower bound with immediate decision for any m
(both tend toward e

e−1 ≈ 1.582 as m → ∞). In addition, we present a variety
of deterministic and randomized lower bounds for both the immediate dispatch
and unrestricted models. Most notably, we strengthen the deterministic lower
bound for the unrestricted and immediate notification models from 6

5 to 5
4 for

the asymptotic case as m → ∞. A summary of results regarding the determin-
istic and randomized competitiveness of the models is given in Tables 1 and 2.
Due to space limitations, some proofs are omitted from this version of the paper.

m: 1 2 3 4 5 6 7 8 ∞
unit-length UB 1 (using EDF)

equal-length LB 2 1.5 1.4 1.333 1.333 1.3 1.294 1.308 1.25

equal-length UB 2 1.5

Unrestricted or Immediate Notification

unit-length LB 1.143

unit-length UB 1.333 1.421 1.463 1.487 1.504 1.515 1.523 1.582

equal-length LB 1.667 1.5 1.5 1.429 1.444 1.4 1.417 1.333

equal-length UB 1.667

Immediate Dispatch

unit-length LB 1.678 1.626 1.607 1.599 1.594 1.591 1.589 1.582

equal-length LB 1.8

equal-length UB 2 1.8 1.730 1.694 1.672 1.657 1.647 1.639 1.582

Immediate Decision

Table 1. A summary of deterministic lower and upper bounds on the achievable com-
petitiveness for various models. Entries in bold are new results presented in this paper.

Dispatching Equal-length Jobs to Parallel Machines 3

m: 1 2 3 4 5 6 7 8 ∞
Notification 1.333 1.263 1.256 1.255 1.25 1.252 1.251 1.251 1.25

Dispatch 1.333

Decision 1.333

Table 2. A summary of randomized lower bounds for the problem with equal-length
jobs. Entries in bold are new results presented in this paper. The only non-trivial upper
bound using randomization is a 5

3
-competitive algorithm for the unrestricted model on

a single machine [5].

Previous Work. Baruah et al. consider an unrestricted model for scheduling jobs
of varying length on a single machine to maximize the number of completed jobs,
or the time spent on successful jobs [2]. Among their results, they prove that any
reasonable nonpreemptive algorithm is 2-competitive with equal-length jobs, and
that this is the best deterministic competitiveness. Two-competitive algorithms
are known for the unrestricted model [9], the immediate notification model [10],
and the immediate decision model [6]. We note that for m = 1, the immediate
notification and immediate dispatch models are the same, as any accepted job
is trivially dispatched to the sole machine. Goldman et al. [9] show that any
randomized algorithm can be at best 4

3 -competitive, but no algorithm with this
ratio has (yet) been found. Chrobak et al. present a 5

3 -competitive randomized
algorithm that is barely random, as it uses a single bit to choose between two
deterministic strategies [5]. They also prove a lower bound of 3

2 for such barely
random algorithms.

For the two-machine version of the problem, Goldwasser and Pedigo [12],
and independently Ding and Zhang [7], present a 3

2 -competitive deterministic
algorithm in the immediate notification model, and a matching lower bound
that applies even for the unrestricted model. Ding and Zhang also present a
deterministic lower bound for m ≥ 3 that approaches 6

5 as m →∞.
The immediate decision model was first suggested by Ding and Zhang, and

formally studied by Ding et al. [6]. They provide an algorithm named BestFit,
defined briefly as follows. Jobs assigned to a given machine are committed to
being executed in FIFO order. A newly-released job is placed on the most heavily-
loaded machine that can feasibly complete it (or rejected, if none suffice). They
prove that BestFit is 1/

(
1− (m

m+1)m
)
-competitive for any m. This expression

equals 1.8 for m = 2 and approaches e
e−1 ≈ 1.582 as m → ∞. They show that

their analysis is tight for this algorithm, and they present a general lower bound
for m = 2 and p ≥ 4, showing that 1.8 is the best deterministic competitiveness
for the immediate decision model. For m ≥ 3, it is currently the best-known
algorithm, even for the unrestricted model. Finally, they adapt the 4

3 randomized
lower bound for the unrestricted, single-processor case to the immediate decision
model for m ≥ 1. In subsequent work, Ebenlendr and Sgall prove that as m →∞,
the 1.582 ratio of BestFit is the strongest possible for deterministic algorithms
in the immediate decision model, even with unit-length jobs [8]. Specifically, they
provide a lower bound of

(
e

m−1
m

)
/

(
e

m−1
m − m

m−1

)
.

4 David P. Bunde and Michael H. Goldwasser

Motivated by buffer management, Chin et al. consider scheduling weighted
unit-length jobs to maximize the weighted throughput [4]. They give a random-
ized algorithm for a single processor that is 1.582-competitive. For multiproces-
sors, they give a 1/

(
1−

(
m−1

m

)m)
-competitive deterministic algorithm for the

unrestricted model. This is precisely our bound for FirstFit in the unweighted
case with immediate dispatch, though the algorithms are not similar.

Although there is no previous work on maximizing throughput with imme-
diate dispatch, Avrahami and Azar compare immediate dispatch to the unre-
stricted model for multiprocessor scheduling to minimize flow time or completion
time [1]. For those objectives, once jobs are assigned to processors, each machine
can schedule its jobs in FIFO order (and thus immediately assign time intervals).

Model and Notations. A scheduler manages m ≥ 1 machines M1, . . . ,Mm. Job
requests arrive, with job j specified by three nonnegative integer parameters:
its release time rj , its processing time pj , and its deadline dj . We assume all
processing times are equal, thus pj = p for a fixed constant p. We consider a
nonpreemptive model. To complete a job j, the scheduler must commit a machine
to it for p consecutive time units during the interval [rj , dj). The scheduler’s goal
is to maximize the number of jobs completed on time. We use competitive analy-
sis, considering the worst-case over all instances of the ratio between the optimal
throughput and that produced by an online policy [3, 13, 15]. We presume that
an online scheduler has no knowledge of a job request until the job is released.
Once released, all of a job’s parameters become known to the scheduler3. We
note the important distinction between having equal-length jobs and unit-length
jobs. With p > 1, the algorithm may start (nonpreemptively) executing one
job, and learn of another job that is released while the first is executing. In the
unit-length model (i.e., p = 1), such a scenario is impossible.

2 The FirstFit Algorithm

We define the FirstFit algorithm as follows. Each machine maintains a queue
of jobs that have been assigned to it but not yet completed. Let Qk(t) denote
FirstFit’s queue for Mk at the onset of time-step t (including any job that
is currently executing). We define FirstFit so that it considers each arrival
independently (i.e., the online-list model). To differentiate the changing state of
the queues, we let Qj

k(t) denote the queue as it exists when job j with rj = t

is considered. Note that Qj
k(t) ⊇ Qk(t) may contain newly-accepted jobs that

were considered prior to j. For a job j arriving at time t, we dispatch it to the
minimal Mk for which Qj

k(t)∪{j} remains feasible, rejecting it if infeasible on all
machines. Unlike the BestFit algorithm for the immediate decision model [6],
3 When jobs share a release time, there are two distinct models. FirstFit operates in

an online-list model in which those jobs arrive in arbitrary order and the scheduler
dispatches or rejects each job before learning of the next. All except the last of our
lower bounds apply in the more general online-time model, where a scheduler learns
about all jobs released at a given time before making decisions about any of them.

Dispatching Equal-length Jobs to Parallel Machines 5

FirstFit allows each machine to reorder its queue using the Earliest-Deadline-
First (EDF) rule each time it starts running a job from its queue (as an aside,
EDF is also used to perform the feasibility test of Qj

k(t)∪{j} when j is released).
In the remainder of this section, we prove two theorems about FirstFit. In

Section 2.1, we show that FirstFit is 5
3 -competitive for equal-length jobs on

two machines; this is the best-possible deterministic competitiveness, as later
shown in Theorem 5. In Section 2.2 we show, for the special case of unit-length
jobs, that FirstFit is 1/

(
1−

(
m−1

m

)m)
-competitive for any m.

2.1 Optimal Competitiveness for Two Machines

We use an analysis style akin to that of [11, 12]. We fix a finite instance I
and an optimal schedule Opt for that instance. Our analysis of the relative
performance of FirstFit versus Opt is based upon two potential functions ΦFF

and ΦOpt that measure the respective progress of the developing schedules over
time. We analyze the instance by partitioning time into consecutive regions of
the form [u, v) such that the increase in ΦFF during a region is guaranteed to
be at least that of ΦOpt. Starting with u = 0, we end each region with the first
time v > u at which the set Q1(v) can be feasibly scheduled on M1 starting at
time v + p (as opposed to simply v). Such a time is well defined, as the queue
eventually becomes empty and thus trivially feasible.

We introduce the following notations. We let SFF(t) and SOpt(t) denote the
sets of jobs started strictly before time t by FirstFit and Opt respectively. We
define DFF(t) = SOpt(t) ∩ SFF(∞) \ SFF(t) as the set of “delayed” jobs. These
are started prior to time t by Opt, yet on or after time t by FirstFit. We define
DOpt(t) = SFF(t) ∩ SOpt(∞) \ SOpt(t) analogously. Lastly, we define a special
set of “blocked” jobs for technical reasons that we will explain shortly. Formally,
we let BOpt(t) denote those jobs that were not started by either algorithm prior
to t, but are started by Opt while FirstFit is still executing a job of SFF(t).
Based on these sets, we define our potential functions as follows:

ΦFF(t) = 5 · |SFF(t)| + 2 · |DFF(t)|
ΦOpt(t) = 3 · |SOpt(t)| + 3 · |DOpt(t)|+ 2 · |BOpt(t)|

Intuitively, these functions represent payments for work done in the respective
schedules. In the end, we award 5 points to FirstFit for each job completed
and 3 points to Opt, thus giving a 5

3 competitive ratio. However, at intermediate
times we award some advance payment for accepted jobs that are not yet started.
For example, we award FirstFit an advanced credit of 2 points for a job in its
queue that Opt has already started. The algorithm gets the 3 other points when
it starts the delayed job. In contrast, we immediately award Opt its full 3 credits
for delayed jobs. We will show that Opt has limited opportunities to carry jobs
from one region to the next as delayed; we pay for those discrepancies in advance.

The payment of 2 for jobs in BOpt(t) is a technical requirement related to our
division of time into regions. By definition, each job that FirstFit starts on M1

completes by the region’s end. However, a job started on M2 may execute past

6 David P. Bunde and Michael H. Goldwasser

the region’s end, possibly hurting it in the next region. We account for this by
prepaying Opt during the earlier region for progress made during the overhang.

Lemma 1. If FirstFit rejects job j, all machines are busy during [rj , dj − p).

Proof. If Mk for k ∈ {1, 2} were idle at a time t, its queue is empty. For t ∈
[rj , dj−p), this contradicts j’s rejection, as Qj

k(rj)∪{j} is feasible by scheduling
Qj

k(rj) during [rj , t) as done by the algorithm, and j from [t, t + p). ut

Lemma 2. Any job j started by FirstFit during a region [u, v) has dj < v+p,
with the possible exception of the job started by M1 at time u.

Proof. Consider j with dj ≥ v+p started during [u, v). The set Qj
1(rj)∪{j} must

be feasible on M1 at time rj ; this is demonstrated by using the algorithm’s actual
schedule for [rj , v), followed by j during [v, v + p), and, based on our definition
of v, set Q1(v) starting at v + p Therefore, such j must have been assigned to
M1 and started at some time u ≤ t ≤ v−p. We note that Q1(t) could be feasibly
scheduled starting at time t+p by using the algorithm’s schedule from [t+p, v),
running j from [v, v+p), and the remaining Q1(v) starting at time v+p. If t > u,
this feasibility of Q1(t) relative to time t + p contradicts our choice of v (rather
than t) as the region’s end. Therefore, j must be started on M1 at time u. ut

Lemma 3. For a region [u, v) in which M1 idles at time u for FirstFit,
ΦFF(u) ≥ ΦOpt(u) implies ΦFF(v) ≥ ΦOpt(v).

Proof. M1’s idleness implies that Q1(u) = Q1(u + 1) = ∅. Therefore, v = u + 1
by definition. Any job started by Opt at time u must have been earlier accepted
and completed on M1 by FirstFit, given its feasibility at a time when M1 idles.
We conclude that ΦFF(v) = ΦFF(u) and ΦOpt(v) = ΦOpt(u) ut

Lemma 4. For a region [u, v) in which M1 starts a job at time u for FirstFit,
ΦFF(u) ≥ ΦOpt(u) implies ΦFF(v) ≥ ΦOpt(v).

Proof (sketch). Let n1 ≥ 1 denote the number of jobs started by FirstFit on
M1 during the region, and n2 ≥ 0 denote the number of jobs started on M2.
Note that M1 never idles during the region, for such a time would contradict
our definition of v. Therefore, v − u = p · n1. We begin by considering possible
contributions to ΦOpt(v)− ΦOpt(u), partitioned as follows.

3 · d due to d ≥ 0 jobs that are newly added to DOpt(v). Such delayed jobs
must be started by FirstFit during the region, yet held by Opt for a later
region. By Lemma 2, there is at most one job started by FirstFit with
deadline of v+p or later, thus d ≤ 1.

3 · a due to a ≥ 0 jobs that are newly added to SOpt(v), not previously credited
as part of DOpt(u) or BOpt(u), and that were accepted by FirstFit upon
their release. Given that these jobs were accepted by FirstFit and had not
previously been started by Opt, they must either lie in SFF(v) or DFF(v).

3 · r due to r ≥ 0 jobs that are newly added to SOpt(v), not previously credited
as part of BOpt(u), and that were rejected by FirstFit upon their release.

Dispatching Equal-length Jobs to Parallel Machines 7

1 · bold due to bold ≥ 0 jobs that are newly added to SOpt(v) yet were previously
credited as part of BOpt(u).

2 · bnew due to bnew ≥ 0 jobs that newly qualify as blocked in BOpt(v). For such
jobs to exist, there must be a newly-started job by FirstFit on M2 whose
execution extends beyond v. Since jobs have equal length, Opt can run at
most one such blocked job per machine, thus bnew ≤ 2.

Based on these notations, we have that ΦOpt(v) − ΦOpt(u) = 3(d + a + r) +
bold + 2 · bnew. The remainder of our analysis depends upon the following two
inequalities that relate Opt’s progress to that of FirstFit.

2 · n1 ≥ (a + r + bold)
By definition, Opt must start the jobs denoted by a, r, and bold strictly
within the range [u, v). There can be at most 2 ·n1 such jobs, given that the
size of the region is known to be v − u = p · n1 and there are two machines.

2 · n2 ≥ (r + bnew)
We claim that jobs denoted by r and bnew must be started by Opt at times
when FirstFit is running one of the jobs denoted by n2 on M2, and thus
that r + bnew ≤ 2 · n2 since Opt may use two machines. Intuitively, this is
due to Lemma 1 for jobs of r, and by the definition of BOpt(t) for jobs of
bnew. The only technical issue is that if Opt starts a job when M2 is running
a job that started strictly before time u (but overhangs), the job of Opt
belongs to BOpt(u), and thus does not contribute to r or bnew.

To complete the proof, we consider ΦFF(v)−ΦFF(u). By our definitions, this is at
least 3(n1 +n2)+ 2(a+ d), as jobs for a and d were not credited within DFF(u).
If n1−n2 ≥ d, these bounds suffice for proving the claim. If n1−n2 < d, it must
be that n1 = n2 and d = 1. Extra contributions toward ΦFF can be claimed by
a further case analysis depending on whether n1 = 1. Details are omitted. ut

Theorem 1. FirstFit is 5
3 -competitive for m = 2 and equal-length jobs.

Proof. Initially, ΦOpt(0) = ΦFF(0) = 0. Repeated applications of Lemma 3 or 4
for regions [u, v) imply ΦOpt(∞) ≤ ΦFF(∞), thus 3 · |SOpt(∞)| ≤ 5 · |SFF(∞)|.
We conclude that Opt

FF ≤ 5
3 . ut

2.2 Unit-length Jobs

We consider a job j to be regular with respect to FirstFit if the machine to
which it is dispatched (if any) never idles during the interval [rj , dj). We consider
an instance I to be regular with respect to FirstFit if all jobs are regular.

Lemma 5. For p = 1, the worst case competitive ratio for FirstFit occurs on
a regular instance.

Proof. Consider an irregular instance I, and let j on Mk be the last irregular job
started by FirstFit. Let sj denote the time at which j starts executing. The
idleness of Mk leading to j’s irregularity cannot occur while j is in the queue,

8 David P. Bunde and Michael H. Goldwasser

so it must occur within the interval [sj + 1, dj). We claim that j ∈ Qk(t) has
the largest deadline of jobs in the queue for any rj ≤ t ≤ sj . For the sake of
contradiction, assume jobs j and j′ are in the queue at such time, for a j′ coming
after j in EDF ordering. Job j′ must also be irregular, since we know there is
idleness within interval [sj + 1, dj) ⊆ [rj′ , dj′). Since j′ starts after j by EDF,
this contradicts our choice of j as the last irregular job to be started.

Next, we claim that FirstFit produces the exact schedule for I ′ = I − {j}
as it does for I, except replacing j by an idle slot. In essence, we argue that j’s
existence never affects the treatment of other jobs. Since j always has a deadline
that is at least one greater than the cardinality of Qk while in the queue, it cannot
adversely affect a feasibility test when considering the dispatch of another job
to Mk. Also, since j has the largest deadline while in Qk, its omission does not
affect the choice of jobs that are started, other than by the time sj when it is
the EDF job, and therefore Qk(sj) = {j}. There are no other jobs to place in
the time slot previously used for j.

To conclude, since FirstFit completes one less job on I ′ than I, and Opt
loses at most one job, the competitive ratio on I ′ is at least as great as on I. ut

Theorem 2. For p = 1, algorithm FirstFit is
1

1−
(

m−1
m

)m -competitive.

Proof. By Lemma 5, we can prove the competitiveness of FirstFit by analyzing
an arbitrary regular instance. We rely on a charging scheme inspired by the
analysis of BestFit in the immediate decision model [6], but with a different
sequence of charges. We define Yk = (m−1)m−k ·mk−1 for 1 ≤ k ≤ m. Note that∑m

k=1 Yk = mm − (m− 1)m is a geometric sum with ratio m
m−1 . A job i started

at time t by Opt will distribute mm − (m − 1)m units of charge by assigning
Y1, Y2, . . . Yk respectively to the jobs j1, j2, . . . , jk run by FirstFit at time t
on machines M1,M2, . . . ,Mk for some k. When k < m, the remaining charge
of

∑m
z=k+1 Yz is assigned to i itself; this is well-defined, as i must have been

accepted by FirstFit since there is an idle machine at time t when i is feasible.
We complete our proof by showing that each job j run by FirstFit collects at

most mm units of charge, thereby proving the competitiveness of mm

mm−(m−1)m =
1

1−(m−1
m)m . Consider a job j that is run by FirstFit on Mk. By our definition

of regularity, machine Mk (and hence machines M1 through Mk−1 by definition
of FirstFit) must be busy at a time when Opt starts j. Therefore, j receives
at most

∑m
z=k+1 Yz units of supplemental charge from itself. In addition, j may

collect up to m · Yk from the jobs that Opt runs at the time FirstFit runs j.
So j collects at most m ·Yk +

∑m
z=k+1 Yz = (m− 1) ·Yk +

∑m
z=k Yz. We prove by

induction on k that (m−1)·Yk+
∑m

z=k Yz = (m−1)·Y1+
∑m

z=1 Yz. This is trivially
so for k = 1. For k > 1, (m−1)·Yk = (m−1)m−(k−1) ·mk−1 = m·Yk−1. Therefore
(m−1) ·Yk +

∑m
z=k Yz = m ·Yk−1+

∑m
z=k Yz = (m−1) ·Yk−1+

∑m
z=k−1 Yk, which

by induction equals (m− 1) · Y1 +
∑m

z=1 Yz. Finally, we note that (m− 1) · Y1 =
(m − 1)m and

∑m
z=1 Yz = mm − (m − 1)m, thus each job j run by FirstFit

collects at most mm units of charge. ut

Dispatching Equal-length Jobs to Parallel Machines 9

Our analysis of FirstFit is tight. Consider m + 1 “waves” of jobs. For 1 ≤
w ≤ m, wave w has m·Ym+1−w jobs released at

∑w−1
z=1 Ym+1−z with deadline mm.

The last wave has m · (m − 1)m jobs released at time mm − (m − 1)m with
deadline mm. FirstFit dispatches wave i to machine Mi, using it until time mm.
FirstFit must reject the last m(m − 1)m jobs and runs only m ·

∑m
k=1 Yk =

m(mm − (m − 1)m) jobs. Opt runs all m · mm jobs by distributing each wave
across all m machines, giving a competitive ratio of mm

mm−(m−1)m .

3 Lower Bounds

In this section, we provide lower bounds on the competitiveness of randomized
and deterministic algorithms for the immediate dispatch model, the unrestricted
model, and the special case of m = 2 and p = 1. In our constructions, we use
〈rj , dj〉 to denote a job with release time rj and deadline dj . Goldman et al.
provide a 4

3 -competitive lower bound for randomized algorithms on one machine
in the unrestricted model [9]. Their construction does not apply to multiple
machines in the unrestricted model, but Ding et al. use such a construction in
the immediate decision model to provide a randomized lower bound of 4

3 for any
m [6]. We first show that this bound applies to the immediate dispatch model.

Theorem 3. For the immediate dispatch model with p ≥ 2, every randomized
algorithm has a competitive ratio at least 4

3 against an oblivious adversary.

Proof. We apply Yao’s principle [3], bounding the expected performance of a
deterministic algorithm against a random distribution. In particular, we consider
two possible instances, both beginning with m jobs denoted by 〈0, 2p + 1〉. For
a given deterministic algorithm, let α be the number of machines, at time 0,
that start a job or have two jobs already assigned. Our first instance continues
with m jobs having parameters 〈p, 2p〉. The m− α machines that were assigned
less than two jobs and that idle at time 0 can run at most one job each. The
other α machines run at most 2 jobs each. Overall, the algorithm runs at most
2 ·α+(m−α) = m+α jobs, for a competitive ratio of at least 2m

m+α . Our second
instance continues with m jobs having parameters 〈1, p + 1〉. At least α of these
are rejected, since none can run on the α machines that are otherwise committed,
making the competitive ratio at least 2m

2m−α . On a uniform distribution over these
two instances, the deterministic algorithm has an expected competitive ratio of
at least 1

2

(
2m

m+α + 2m
2m−α

)
, which is minimized at 4

3 when α = m
2 . ut

We can prove slightly stronger bounds for deterministic algorithms, since an
adversary can apply the worse of two instances (rather than their average).

Theorem 4. For the immediate dispatch model with p ≥ 2 and m odd, no
deterministic algorithm has a competitive ratio strictly better than 4m

3m−1 .

Proof (sketch). For the same two instances as in Theorem 3, max(2m
m+α , 2m

m−α) is
minimized at 4m

3m−1 with α = bm
2 c = m−1

2 or α = dm
2 e = m+1

2 . ut

10 David P. Bunde and Michael H. Goldwasser

Theorem 5. For the immediate dispatch model with p ≥ 3 and m even, no
deterministic algorithm has a competitive ratio strictly better than 4m+2

3m .

Proof (sketch). We adapt our construction, starting with one job 〈0, 4p + 1〉,
which we assume is started at time t by the algorithm. We next release m jobs
〈t + 1, t + 2p + 2〉, and let α denote the number of machines at time t+1 that are
either running a job or have two jobs already assigned. We release a final set of
m jobs, either all 〈t + p + 1, t + 2p + 1〉 or all 〈t + 2, t + p + 2〉. In the first case,
an algorithm gets at most m+α, and in the second at most 1+2m−α. The lower
bound of max(1+2m

m+α , 1+2m
1+2m−α) is minimized at 4m+2

3m when α = b 1+m
2 c = m

2 . ut

Although the 4
3 -competitive lower bound construction for the single-machine

case has been adapted to the multiple machine case in the immediate decision
and immediate dispatch models, it does not directly apply to the less restrictive
model of immediate notification or the original unrestricted model. If facing the
construction used in Theorem 3, an optimal deterministic algorithm could accept
the initial m jobs with parameters 〈0, 2p + 1〉, starting m

3 of them at time 0 and
centrally queuing the other 2m

3 . If at time 1 it faces the arrival of m additional
jobs with parameters 〈1, p + 1〉, it can accept 2m

3 of them on idle machines, while
still completing the remaining initial jobs at time p + 1 on those machines. The
competitive ratio in this setting is 2m/(m+ 2m

3) = 6
5 . If no jobs arrive by time 1

for the given adversarial construction, it can commit another m
3 machines to

run initial jobs from [1, p + 1), with the final third of the initial jobs slated on
those same machines from [p + 1, 2p + 1). In that way, it retains room for 2m

3
jobs in a second wave during the interval [p, 2p], by using the idle machines and
the first third of the machines that will have completed their initial job, again
leading to a competitive ratio of 6

5 . Ding and Zhang [7] provide a slightly stronger
deterministic bound for fixed values of m, by releasing a single initial job with
larger deadline, followed by the classic construction (akin to our construction
from Theorem 5).

In our next series of results, we give a new construction that strengthens
the randomized and deterministic lower bounds for these models, showing that
competitiveness better than 5

4 is impossible in general. We do this by doubling
the size of the second wave in one of the two instances, thereby changing the
balancing point of the optimal behavior for the construction.

Theorem 6. For the unrestricted model with p ≥ 2, no randomized algorithm
has a competitive ratio strictly better than the following, with m given mod 5:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

20m2

16m2−1
30m2

24m2−1
30m2

24m2−1
20m2

16m2−1

Proof (sketch). We use Yao’s principle with a distribution of two instances. Both
instances begin with m jobs 〈0, 2p + 1〉. For a fixed deterministic algorithm, let α
be the number of machines that start a job at time 0. Our first instance continues
with 2m jobs 〈p, 3p〉. A machine that is not starting a job at time 0 can run at
most 2 jobs. Therefore, an online algorithm completes at most 3α+2 · (m−α) =

Dispatching Equal-length Jobs to Parallel Machines 11

2m + α jobs, for a competitive ratio of at least 3m
2m+α on this instance. Our

second instance continues with m jobs 〈1, p + 1〉. An online algorithm runs at
most 2m − α jobs, as it must reject α of the jobs arriving at time 1. Thus,
its competitive ratio is at least 2m

2m−α on this instance. For m ≡ 0 (mod 5),
we select the first instance with probability 1

2 . The expected competitive ratio

of a deterministic algorithm for this distribution is at least 1
2

(
3m

2m+α + 2m
2m−α

)
,

minimized at 5
4 when α = 2m

5 . This completes the theorem for m ≡ 0 (mod 5).
For other modularities of m, an even stronger bound holds because the algorithm
cannot choose α = 2m

5 . ut
Our next theorem strengthens the bound for deterministic algorithms by first

releasing a single job with large deadline (similar to Theorem 5).

Theorem 7. For the unrestricted model with p ≥ 3, no deterministic algorithm
has a competitive ratio strictly better than the following, with m given mod 5:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

(
1 + 1

3m

)
5
4

(
1 + 1

(4m+1)

)
5
4

(
1 + 3

(12m+1)

)
5
4

(
1 + 3

(8m+1)

)
5
4

(
1 + 1

(4m−1)

)
Proof (sketch). We release a job 〈0, 5p− 1〉, which we assume is started at time t
by the algorithm. Next, we release m′ jobs 〈t + 1, t + 2p + 2〉, where m′ = m−1 if
m = 4 (mod 5) and m′ = m otherwise. Let α be the number of jobs (including
the first) started on or before time t + 1. Our adversary continues in one of
two ways, releasing either 2m jobs with parameters 〈t + p + 1, t + 3p + 1〉 or m
jobs with parameters 〈t + 2, t + p + 2〉. These choices give competitive ratios of
at least 1+m′+2m

2m+α and 1+m′+m
1+m′+m−α respectively. The precise lower bounds come

from optimizing α for varying values of m. ut
The construction of Theorem 7 requires p ≥ 3, to leverage the introduction

of the job 〈0, 5p− 1〉. For p = 2, the following bound can be shown using the
construction from Theorem 6, and deterministic choice α = b 2m

5 c or α = d 2m
5 e.

Theorem 8. For the unrestricted model with p = 2, no deterministic algorithm
has a competitive ratio strictly better than the following:

m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5
4

15m
12m−2

10m
8m−1

15m
12m−1

5m
4m−1

Finally, we focus on the special case of p = 1 and m = 2. Our analysis
in Section 2.2 shows that FirstFit is precisely 4

3 -competitive in this setting.
However, the 4

3 lower bounds from the previous theorems do not apply to p = 1;
an adversary cannot force the rejection of new jobs due to machines that are
committed to other tasks. With the following theorems, we provide (weaker)
lower bounds for unit-length jobs, drawing a distinction between the online-time
and online-list models, as defined in the introduction.

Theorem 9. For the immediate dispatch model with p = 1 and m = 2, a
deterministic online-time algorithm cannot be better than 9/8-competitive. A
deterministic online-list algorithm cannot be better than 8/7-competitive.

12 David P. Bunde and Michael H. Goldwasser

4 Conclusions

In this paper, we have introduced a study of the immediate dispatch model when
maximizing throughput with equal-length jobs. We demonstrate that this model
is strictly more difficult than the immediate notification model, and strictly easier
than the immediate decision model. The primary open problem is to develop
stronger algorithms for m ≥ 3 in any of these models.

Acknowledgments We thank the referees for helpful comments. D.P. Bunde
was supported in part by Howard Hughes Medical Institute grant 52005130.

References

1. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time
with immediate dispatching. Algorithmica 47(3), 253–268 (2007)

2. Baruah, S.K., Haritsa, J.R., Sharma, N.: On-line scheduling to maximize task
completions. J. Combin. Math. and Combin. Computing 39, 65–78 (2001)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

4. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichý, T.: Online
competitive algorithms for maximizing weighted throughput of unit jobs. J. Dis-
crete Algorithms 4(2), 255–276 (2006)

5. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Online scheduling of equal-length
jobs: Randomization and restarts help. SIAM Journal on Computing 36(6), 1709–
1728 (2007)

6. Ding, J., Ebenlendr, T., Sgall, J., Zhang, G.: Online scheduling of equal-length
jobs on parallel machines. In Arge, L., Hoffmann, M. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 427–438. Springer, Heidelberg (2007)

7. Ding, J., Zhang, G.: Online scheduling with hard deadlines on parallel machines. In
Cheng, S.W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 32–42. Springer,
Heidelberg (2006)

8. Ebenlendr, T., Sgall, J.: A lower bound for scheduling of unit jobs with immediate
decision on parallel machines. In Bampis, E., Skutella, M. (eds.) WAOA 2008.
LNCS, vol. 5426, pp. 43–52 (2008)

9. Goldman, S., Parwatikar, J., Suri, S.: On-line scheduling with hard deadlines.
J. Algorithms 34(2), 370–389 (2000)

10. Goldwasser, M.H., Kerbikov, B.: Admission control with immediate notification.
J. Scheduling 6(3), 269–285 (2003)

11. Goldwasser, M.H., Misra, A.B.: A simpler competitive analysis for scheduling
equal-length jobs on one machine with restarts. Information Processing Letters
107(6), 240–245 (2008)

12. Goldwasser, M.H., Pedigo, M.: Online nonpreemptive scheduling of equal-length
jobs on two identical machines. ACM Trans. on Algorithms 5(1), Article 2, 18 pages
(November 2008)

13. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy paging.
Algorithmica 3(1), 70–119 (1988)

14. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Per-
form. Eval. Rev. 34(4), 52–58 (2007)

15. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-
munications of the ACM 28, 202–208 (1985)

