
Improving Valiant Routing for Slim Fly Networks

Deyu Han∗
Carnegie Mellon Univ.
Pittsburgh, PA 15213

deyuh@andrew.cmu.edu

Zhaofeng Wang
Knox College

Galesburg, IL 61401
zwang@knox.edu

David P. Bunde
Knox College

Galesburg, IL 61401
dbunde@knox.edu

Abstract—Valiant routing, the use of a random intermediate
node to distribute network traffic, has been proposed for a
number of recent HPC network topologies. It is also commonly
used as a bulding block for adaptive routing algorithms, which
use shortest path routes when possible, but revert to Valiant
routing when necessary to avoid hot spots. We show that the
version of Valiant routing proposed for the Slim fly topology
can cause messages to follow loops, using an edge in both
directions before returning to edges of the original shortest
path. Removing these loops in the UGAL-L adaptive routing
algorithm is shown to provide slight improvements in average
latency and also allow the network to carry up to 12% more
traffic before saturation.

1. Introduction

The continuing quest to build larger HPC systems and
the availability of new technologies have rebalanced the
priorities for system design. On the demand side, increasing
core counts continue to require higher levels of parallelism,
leading to pressure for fine-grained parallelism and the
low latency communication required to support it. At the
same time, energy consumption is becoming ever more
important as component counts rise but total system power
is capped. In terms of new technologies, new high-radix
routers (e.g. [1], [2]) provide the potential for reducing
the network diameter and optical interconneccts provide a
relatively long-range option for low latency, power efficient
data transmission.

These considerations have lead to the proposal of a
variety of new topologies for high-performance systems.
The most famous of these is Dragonfly [3], but other new
topologies have been proposed as well [4], [5], [6]. In this
paper, we focus on Slim Fly [7], which is based on the MMS
graph [8]. Its structure is algebraically defined in an attempt
to approach the Moore bound [9], the maximum number of
vertices a graph with a given degree and diameter can have.

The higher-radix routers used in many of these new
topologies mean that, in the worst case, they can greatly
concentrate network traffic due to the many shortest paths
that use each edge. The potential for serious hot spots has
led to renewed interest in the randomized routing algorithm

∗ Work performed while a student at Knox College.

of Valiant [10]. This was originally developed for hypercube
systems, but the idea easily generalizes; instead of a message
proceeding from its source to its destination using a short-
est path, it first travels to a randomly-chosen intermediate
switch and then proceeds to the destination. The paths to and
from the intermediate switch both use a shortest path, but
the detour to the intermediate switch spreads out the traffic.
The original algorithm is based on shortest path routes with
the hypercube dimensions randomly ordered; Valiant [10]
showed that this essentially eliminated congestion for all-
to-all traffic. Subsequently, it was found that using a fixed
dimension order gave the same result with a simplified
analysis (e.g. [11], [12, pp. 74–78]).

The term Valiant routing is commonly used to mean
any application of the idea of using a random intermediate
switch. It is widely used in newly-proposed topologies,
though not always with a fully random choice of free
switch; for example, the version for Dragonfly [3] chooses
a random group, effectively limiting the set from which
the intermediate switch is selected to one switch from each
group. Slim Fly uses the traditional idea of Valiant routing,
selecting its intermediate switch uniformly at random from
all switches in the system other than the message source
and destination.

In this paper, we examine an inefficient aspect of Valiant
routing and show how a slight improvement in the algorithm
can yield improved performance. The inefficiency is that,
depending on the choice of intermediate switch, Valiant
routing can cause a message to route in a loop. There are
three ways that this can happen in a Slim Fly network.
One of these is presented in Figure 1; we return to the
others in Section 3. In the depicted case, the message wants
to go from switch s to switch d, to which it is directly
connected. The intermediate switch i chosen for the Valiant
route, however, is switch i, a switch whose own route to
switch d goes through switch s. Thus, the message is first
sent to switch i, then back to switch s before traversing the
same link to switch d that it would have taken with minimal
routing.

Our solution to the problem of looping routes is to
modify the random selection of the intermediate switch so
that it only selects from switches that do not cause looping.
Thus, we retain the benefits of Valiant routing without this
inefficiency.

i

s d

Figure 1. First case where Valiant can route messages in a loop. Switch s
wants to send a message to switch d and switch i is chosen as the random
intermediate switch.

Our modification to Valiant routing also has immediate
implications for adaptive routing algorithms, which choose
on a per-message basis whether to use minimal or Valiant
routing. Switching between the algorithms rather than stick-
ing with one is a recognition of the tradeoff between them;
Valiant routing spreads the network load more evenly, but
increases network load by using additional hops for each
message. A common framework is to use minimal routing
unless congestion is detected on the minimal route, in which
case Valiant routing is used in an effort to avoid it. The
decision can be made at the source switch (e.g. UGAL [3])
or later along the minimal route (e.g. PAR [13]).

Specifically, our contributions are the following:

• The new version of Valiant’s algorithm that avoids
the looping case described above and two others
described in Section 3.

• An analysis of how often the looping patterns occur
in a regular diameter-2 graph meeting the Moore
bound.

• Evaluation of the effect of our improvement on both
pure Valiant routing and when Valiant routing is
used as a building block for the adaptive algorithm
UGAL-L.

The rest of this paper is organized as follows. Section 2
formally defines the Slim Fly topology. Section 3 goes into
greater depth about issues with Valiant routing as described
for new topologies and defines the improved Valiant routing
algorithm. Section 4 describes our experimental results.
Section 5 reviews related work. Finally, Section 6 discusses
future work.

2. Slim Fly

Before presenting Slim Fly networks, we first explain
the Moore bound [9]. This concerns graphs with a fixed
diameter, the farthest distance between a pair of vertices.
The Moore bound states that a graph with diameter D and
vertices of degree k has at most

1 + k

D−1∑
i=0

(k − 1)i (1)

vertices.
To see where this comes from, start with a single vertex.

It has k neighbors. Each of these has (k−1) other neighbors
(the degree is k, but we exclude the edge back to the

starting vertex). Those are adjacent to (k−1)2 other vertices.
Continuing this process up to the graph diameter gives
Expression 1. Note that a graph can have this number of
vertices only if every vertex encountered during this process
is unique; if any duplicates are encountered, the graph size
will be smaller. It is not known how to construct graphs
meeting the Moore bound in general.

In order to design large networks with a given diameter,
it is natural to base them on the graphs known to approach
the Moore bound. Each vertex is the graph becomes a switch
which, in addition to the network links represented by graph
edges, is connected to a collection of processing nodes. This
is the design of Slim Fly networks, which are based on MMS
graphs [8], which have diameter 2.

To describe the construction of MMS graphs, we mainly
follow the presentation of Besta and Hoefler [7], which drew
on previous descriptions [8], [14], [15].

The graph will be based on operations in the field Fq,
whose elements are the integers 0 through (q−1). It supports
addition and multiplication mod q.

The selection of q determines the system size, which
will be 2q2. Conceptually, each switch is assigned a triple
of coordinates, though these do not represent the physical
layout of the system. The first coordinate is either 0 or 1. The
other two coordinates are numbers mod q, denoted either x
and y if the first coordinate is 0 or m and c if it is 1.

The value q must be selected as a prime power that can
be represented as q = 4ω + δ, where δ ∈ {−1, 0, 1}. Then,
one must find a primitive element ξ of Fq, i.e. a value such
that every element of Fq can be expressed as ξ to some
power. Then, depending on the value of δ, two sets X and
X ′ are constructed as follows:

• If δ = −1, then

X = {1, ξ2, ξ4, . . . , ξ2ω−2}, and
X ′ = {ξ, ξ3, ξ5, . . . , ξ2ω−1}

• If δ = 0, then

X = {1, ξ2, ξ4, . . . , ξ4ω−2}, and
X ′ = {ξ, ξ3, ξ5, . . . , ξ4ω−1}

• If δ = 1, then

X = {1, ξ2, ξ4, . . . , ξq−3}, and
X ′ = {ξ, ξ3, ξ5, . . . , ξq−2}

Finally, these sets are used to connect the switches
using the following three types of edges:

(1) switches (0, x, y) and (0, x, y′) connect iff y−y′ ∈ X
(2) switches (1,m, c) and (1,m, c′) connect iff c−c′ ∈ X ′
(3) switches (0, x, y) and (1,m, c) connect iff y = mx+c

Note that the first type of edges connect pairs of switches
with 0 in the first coordinate, the second type connect pairs
of switches with 1 in the first coordinate, and the third type
connect between switches that differ in the first coordinate.
Figure 2 shows some of these edges for a MMS graph with

q = 5. To keep the figure readable, only some edges of Type
3 are shown.

Observe that the looping situation shown in Figure 1 can
happen in this graph; if the source is switch (0, 0, 0), the
destination is switch (1, 0, 0), and the intermediate switch
is switch (0, 0, 1) then the message will be routed using a
Type 1 edge to switch (0, 0, 1) and back, followed by a type
3 edge to the destination.

3. Routing Algorithms

Now we present the remaining cases where Valiant can
route messages in a loop. Recall that Figure 1 shows the
first case, in which the message is routed to the intermediate
switch and then back through the source switch on the way
to its destination. The second case, depicted in Figure 3,
is the mirror image of this. In this case, the intermediate
switch i is adjacent to the destination switch d. This causes
the message to be routed through the destination switch
d on the way to switch i and then back to d, creating
a loop as the message travels both directions along the
edge between switches d and i. Unlike the others, this case
can be easily avoided by having switches intercept arriving
messages intended for its own nodes rather than forwarding
them on; this was the behavior of our simulator even before
we considered the looping cases.

The second loop case can also happen in the Slim
Fly network depicted in Figure 2. Suppose the source is
switch (0, 0, 0), the destination is switch (1, 0, 0), and the
intermediate switch is switch (1, 0, 2). Then the message is
routed to the destination using a Type 3 edge, then to the
intermediate switch and back using a Type 2 edge.

In the third and final case when Valiant sends a message
around a loop, the source and destination switches are
two hops apart, with another switch x between them. The
intermediate switch i is a different neighbor of switch x.
This causes the message to be routed through switch x on
the way to switch i and then back through switch switch
x on the way to the destination, creating a loop as the
message traverses the edge between switches x and i in
both directions. This situation is depicted in Figure 4. As
with the other cases, this looping is never beneficial since
the message traverses all the edges of the minimal route in
addition to the loop.

To see the third loop case in the Slim Fly network
depicted in Figure 2, let the source be switch (0, 0, 1), the
destination be switch (1, 0, 0), and the intermediate switch
be switch (0, 0, 4). Then the message is routed through
switch (0, 0, 0) and to the intermediate switch using Type 1
edges, back to switch (0, 0, 0) reusing one of those edges,
and then on to the destination using a Type 3 edge.

Once the danger of loops is recognized, it is not hard to
avoid them. Simply identify the intermediate switches that
do not fall into one of the looping cases and select randomly
from among those. In our simulator, we identified the non-
looping intermediate switches for every (source, destination)
pair during startup so the cost was insignificant for long

runs. In a real system, the table of non-looping intermediates
could be distributed among switches in the system.

3.1. Adaptive routing

In practice, pure Valiant routing is unlikely to be used
because it performs poorly on “good” traffic patterns. In
particular, if the traffic pattern is uniform random, then the
randomization provided by Valiant routing does not give any
benefit, but the extra hops it requires (compared to minimal
routing) harms performance. Because of this, a better routing
idea is to use adaptive routing, which tries to capture the
good performance of minimal routing on uniform traffic and
of Valiant routing on traffic with hot spots.

For our study, we use UGAL-L [7], based on a Dragon-
fly routing algorithm of the same name [3], to represent
adaptive algorithms. The idea is to decide at the source
switch whether each packet should be minimally or Valiantly
routed. Several Valiant routes are generated and latency
estimates are generated for each of them, as well as for
the minimal route. Then the path with the lowest estimated
latency is used. To create an estimate, the algorithm simply
multiplies the length of the output buffer for the first hop
along that route by the number of hops along the route,
effectively estimating that each hop along the route will ex-
perience the same buffering delay. Obviously, this estimate
can be crude, but it uses information easily available at the
source switch; UGAL-L is a “local” version of UGAL-G,
which does the same thing except that its estimate is the
sum of the buffer lengths for each hop along the route.

Since UGAL-L uses Valiant routing as a subroutine,
we easily incorporated our improvements of Valiant routing
into it by using the restricted set of possible intermediate
switches when selecting candidate Valiant routes.

4. Evaluation

To evaluate the impact of the non-looping version of
Valiant routing, we use a simulator that models communi-
cation at the level of messages, buffers, and virtual chan-
nels. It was designed for the evaluation of new topologies,
specifically Dragonfly and Slim fly. We validated it by
repeating experiments reported in previous work [3], [7] and
by comparison with the low-level behavior of booksim, the
simulator associated with Dally and Towles [16].

For the simulations reported here, we set all the link
latencies to 1, used buffers of size 32 for each VC, and
consider the network saturated once the average latency
reaches 100. The number of nodes per switch was set
following the advice of Besta et al. [7] so that roughly two
thirds of each switch’s links go to other switches and roughly
one third go to nodes. We ran our simulations on system
sizes of between 150 and 3,042 nodes, which corresponds
to values of q between 5 and 13.

In order to create a network load that would benefit
from Valiant routing, we designed a pattern with a large
number of hot spots distributed through the system, but also
many edges that would be unused by minimal routing. The

Type 3

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

0,0

0,1

0,2

0,3

0,4

Some of the edges between (0,x,y) and (1,m,c) switchesEdges within (1,m,c) switchesEdges within (0,x,y) switches

Type 2Type 1

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

0,0

0,1

0,2

0,3

0,4

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3

2,4

3,0

3,1

Figure 2. Depiction of edges of a Slim Fly network with q = 5 based on figure from [7]. The left two parts show the edges within the (0, x, y) and
(1,m, c) switches respectively. The right two parts depict some of the edges connecting the two types of switches; many edges are omitted for clarity.

i

s d

Figure 3. Second case where Valiant can route messages in a loop. Switch
s wants to send a message to switch d and switch i is chosen as the random
intermediate switch.

xs d

i

Figure 4. Third case where Valiant can route messages in a loop. Switch
s wants to send a message to switch d, the minimal path to which goes
through switch x. Switch i, another neighbor of switch x, is chosen as the
random intermediate switch.

switches are divided into sequences of adjacent switches.
For example, the sequence S0, S1, S2, . . . , Sm if each Si is
adjacent to Si−1 and Si+1. Then, for each value of i, each
node attached to switch Si sends a message to a randomly
chosen node of switch Si+1 with probability equal to the
desired load. Thus, if minimal routing were chosen, only
two edges from each switch would be used, one in each
direction in the sequence. Since each switch is attached to
multiple nodes, however, this pattern can easily saturate the
edges that it does use.

4.1. Pure Valiant routing

Figure 5 shows the latency of both original Valiant
routing and our improved version as a function of the offered
load. The results are not encouraging; the “improved” ver-
sion consistently has a higher average latency and saturates
at a lower offered load than the original version. The same

Improved Valiant

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v

e.
 L

at
en

cy

Offered load

Unimproved Valiant

 0

Figure 5. Latency as a function of offered load for Valiant routing with
and without anti-looping improvements on a Slim fly system with q = 13.

Valiant
q # nodes unimp. imp.
5 150 5.5 6.0
7 490 5.6 5.9

11 1,936 5.7 6.0
13 3,042 5.8 6.0

Figure 6. Average number of hops taken by messages for Valiant routing
with and without anti-looping improvements.

general behavior holds for the other system sizes we tried
as well.

This behavior seems to occur because the improved
Valiant is consistently giving messages longer routes, caus-
ing them to consume bandwidth on more edges. This can be
seen in Figure 6, which gives the average number of hops
for each version of the algorithm on different system sizes.
This has been previously shown to correlate with job running
time in the context of task mapping (e.g. [17], [18]). Note
that the numbers of hops for Valiant routing is independent
of the offered load because the Valiant algorithm does not
consider the system load when choosing routes.

 0.15

Improved UGAL−L

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v

e.
 L

at
en

cy

Offered load

 0

 10

 20

 30

 40

 50

 0 0.05 0.1

Unimproved UGAL−L

Figure 7. Latency as a function of offered load for UGAL-L routing with
and without anti-looping improvements on a Slim fly system with q = 13.

4.2. UGAL-L routing

Even though the anti-looping improvements harm the
performance of Valiant routing, they yield an improvement
when the improved Valiant algorithm is used as a building
block of UGAL-L. Figure 7 shows the latency of both
versions of UGAL-L as a function of offered load; this
is the analog of Figure 5. Now it is the improved version
that achieves a small but growing improvement in latency,
leading it to saturate later (at an offered load of 0.47 vs 0.43
for the unimproved version).

The other difference visible in Figure 7 is the S-curve
occurring at an offered load around 0.1. This marks the
transition from UGAL-L using minimal routes nearly always
(for approximately 99% of messages at offered load 0.1) to
a significant amount of Valiant routing (approximately 30%
of messages at offered load 0.15).

Looking at the percentage of messages that use Valiant
routing, the unmodified version of UGAL-L consistently
does this at a higher rate. That may be part of the explanation
for the difference between the algorithms since Valiant paths
are generally longer. Looping case 2 is an exception, but
looping case 1 is particularly tempting for UGAL-L since
the algorithm assesses a possible path by looking at the
buffer length of the first edge and our communication pat-
tern congests only one of each switch’s edges. Eliminating
looping case 1 from consideration may make the improved
UGAL-L less likely to choose a Valiant path.

The average number of hops has more interesting be-
havior with UGAL-L than Valiant. For both the improved
and original versions, it starts at 3 hops (two between nodes
and switches, plus 1 between the source and destination
switches). The value generally increases with the load, but
remains below the values for Valiant routing shown in Figure
6 even at saturation. For all but one of the sizes considered,
the average number of hops was the same at saturation; the
exception was the q = 5 size when it was 5.1 hops for the
version with the improved Valiant algorihtm vs 5.2 hops for
the original version. The trend was that the average number
of hops increased with the system size.

All missing edges go between nodes on the bottom level

... ...

...

0

2 k1

...

k−1 unique neighbors each.

Figure 8. Sketch of a k-regular graph meeting the Moore bound for
diameter 2.

4.3. Relationship with system size

A natural question to ask about the anti-looping ap-
proach is how well it will perform on larger systems. The
following theorem provides some reason for concern since
it shows that in at least one circumstance, the percentage of
messages affected decreases with system size:
Theorem 1. On a graph meeting the Moore bound for degree

k and diameter 2, a fraction 1/(k + 1) of the messages
sent between switches uniformly at random will fall into
one of the three looping cases.

Proof: A k-regular diameter 2 graph meeting the Moore
bound must have 1 + k + k(k − 1) = k2 + 1 switches.
From a given source switch, k of these are at distance 1
and k(k − 1) are at distance 2. This graph is depicted in
Figure 8; the missing edges must all connect switches on
the bottom level and there must be no other switches.

Our first looping case occurs when the source and desti-
nation switches are adjacent and the intermediate switch is
a different neighbor of the source (e.g. the source, destina-
tion, and intermediate switch are 0, 1, and 2–k in Figure
8, respectively). The source and destination are adjacent
k/k2 = 1/k of the time. When they are, the first looping
case occurs for k− 1 of the choices of intermediate switch,
once for each of the k − 1 neighbors of the source other
than the destination. This is out of the k2 − 1 switches
other than the source and destination that can be selected
as the intermediate. Thus, the first looping case occurs for
(1/k)((k − 1)/(k2 − 1)) = 1/(k(k + 1)) of the messages.

By the same reasoning, the third looping case, where the
intermediate switch is a neighbor of the destination, occurs
for the same fraction of messages.

The second looping case requires the source and des-
tination switches to be at distance two, with the interme-
diate switch being a different neighbor of the switch x
between them (e.g. source, destination, and intermediate
switch are 1, 2, and 3–k in Figure 8, respectively). There are
k− 2 neighbors of x other than the source and destination.
Thus, the fraction of messages that this occurs with is
((k − 1)/k)((k − 2)/(k2 − 1)) = (k − 2)/(k(k + 1)).

Combining the three cases gives the desired result. �
Note that this theorem applies to graphs meeting the

Moore bound. Since it is not known if these exist except

Saturation point
q # nodes unimp. imp. % diff
5 150 0.62 0.66 6.4
7 490 0.48 0.53 10.4

11 1,936 0.42 0.47 11.9
13 3,042 0.43 0.47 9.3

Figure 9. Saturation point (last load for which average latency is below 100)
for UGAL-L with and without the anti-looping improvements on Slim fly
systems of various sizes.

for certain (small) values of k, actual networks will have
fewer switches and thus have a higher fraction of messages
falling into one of the looping cases.

Even so, the theorem suggests one way that our improve-
ments could become less important with increasing system
size; this trend will lead to continuing increases in the
switch degree, which will reduce the number of messages
benefiting from the improvements. That said, larger systems
are also likely to see hotter hot spots as the number of
nodes per switch increases, so this theorem is not enough
to fully predict performance on larger systems. Based on
our simulations, we did not see any loss of benefit; Figure
9 shows the saturation point for the original and improved
UGAL-L algorithm on each of the sizes we considered. As
you can see, the absolute difference between the saturating
offered loads remained essentially the same.

5. Related work

Valiant [10] originally applied the idea of routing via a
randomized intermediate node to all-to-all communication
in a hypercube. That work showed that each message was
blocked by congested links for O(log n) time steps with
high probability. The original algorithm traversed the di-
mensions in a random order, but Valiant and Brebner [11]
later simplified the analysis by assuming a fixed dimension
order.

As mentioned previously, the original proposal for
Valiant routing on the Dragonfly system [3] only misroutes
to an intermediate group, not an individual switch. This
can cause hot spots on edges within intermediate groups
[19], the discovery of which led to work applying a Valiant-
style misrouting locally within a group [19], [20]. Dragonfly
systems have also been the target of other work on adaptive
routing that uses Valiant as a building block (e.g. [13], [21]).

As a final comment on the Dragonfly topology, we note
that the looping cases cannot occur on this topology as it
was originally proposed, with fully connected groups and
Valiant routing only to an intermediate group rather than
a specific switch. It can occur, however, if the misrouting
strategy is changed or in implementations of Dragonfly that
do not fully connect the groups. For example, due to the way
its switches are arranged into chasis, the Cray XC [22], [23]
organizes the switches of each group into a 16×6 grid, with
each switch connected to those sharing its row or column.

Valiant routing or variations thereof has also been pro-
posed for other network topologies. Stacked Single-Path

Trees (SSPT) [4] use a variation that restricts the choice
of intermediate switch. Valiant routing was one of the al-
ternatives proposed for HyperX [5], [24], as were adaptive
strategies that decide to misroute after the source switch.

6. Discussion

We have shown that removing the loops from Valiant
routes can allow UGAL-L to support a load around 12%
higher on Slim fly networks. This is a significant advantage
even if the latency of loads below saturation sees only
modest improvements. We are interested in continuing to
expore these ideas with other communication patterns and
other adaptive routing algorithms. A broader question con-
cerns the frequency of loops in other topologies and whether
these kinds of ideas could be applied in other settings where
Valiant routing has been used.

Acknowledgments

This work was partially supported by the National Sci-
ence Foundation under grant CNS-1423413 and the Paul K.
and Evalyn Elizabeth Richter Memorial Funds.

References

[1] S. Scott, D. Abts, J. Kim, and W. Dally, “The BlackWidow high-
radix Clos network,” in Proc. 33rd Ann. Intern. Symp. Comput. Arch.
(ISCA), 2006, pp. 16–28.

[2] R. Barriuso and A. Knies, “108-port InfiniBand FDR SwitchX switch
platform hardware user manual,” 2014.

[3] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proc. 35th Ann. Intern. Symp. Com-
put. Arch. (ISCA), 2008, pp. 77–78.

[4] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and
T. Hoefler, “Cost-effective diameter-two topologies: Analysis and
evaluation,” in Proc. Conf. High Performance Computing, Network-
ing, Storage and Analysis (SC), 2015.

[5] J. Ahn, N. Binkert, A. Davis, M. McLaren, and R. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Proc. ACM/IEEE Conf. High Performance Computing
(SC), 2009.

[6] M. Koibuchi, H. Matsutani, H. Amano, D. Hsu, and H. Casanova, “A
case for random shortcut topologies for HPC interconnects,” in Proc.
39th Ann. Intern. Symp. Comput. Arch. (ISCA), 2012, pp. 177–188.

[7] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proc. Conf. High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[8] B. McKay, M. Miller, and J. Širán, “A note on large graphs of
diameter two and given maximum degree,” J. Combinatorial Theory,
Series B, vol. 74, no. 1, pp. 110–118, 1998.

[9] M. Miller and J. Širán, “Moore graphs and beyond: A survey of the
degree/diameter problem,” Electronic J. Combinatorics, vol. 61, pp.
1–63, 2005.

[10] L. Valiant, “A scheme for fast parallel communication,” SIAM J.
Computing, vol. 11, no. 2, pp. 350–361, 1982.

[11] L. Valiant and G. Brebner, “Universal schemes for parallel communi-
cation,” in Proc. 13th ACM Symp. on Theory of Computing (STOC),
1981, pp. 263–277.

[12] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge
University Press, 1995.

[13] N. Jiang, J. Kim, and W. Dally, “Indirect adaptive routing on large
scale interconnection networks,” in Proc. 36th Ann. Intern. Symp.
Comput. Arch. (ISCA), 2009, pp. 220–231.

[14] J. Šiagiová, “A note on the McKay-miller-širán graphs,” J. Combina-
torial Theory, Series B, vol. 81, pp. 205–208, 2001.

[15] P. Hafner, “Geometric realisation of the graphs of mckay-miller-
Širáň,” J. Combinatorial Theory, Series B, vol. 90, pp. 223–232, 2004.

[16] W. Dally and B. Towles, Principles and practices of interconnection
networks. Morgan Kaufmann, 2004.

[17] M. Deveci, S. Rajamanickam, V. Leung, K. Pedretti, S. Olivier,
D. Bunde, Ü. Çatalyürek, and K. Devine, “Exploiting geometric
partitioning in task mapping for parallel computers,” in Proc. 28th
IEEE Intern. Parallel and Distributed Processing Symp. (IPDPS),
2014.

[18] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proc. 25rd ACM Intern. Conf.
Supercomputing (ICS), 2011.

[19] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, G. Rodriguez, J. Labarta, and C. Minkenberg, “On-the-fly
adaptive routing in high-radix hierarchical networks,” in Proc. 41st
Intern. Conf. Parallel Processing (ICPP), 2012, pp. 279–288.

[20] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero,
“Efficient routing mechanisms for dragonfly networks,” in Proc. 42nd
Intern. Conf. Parallel Processing (ICPP), 2013, pp. 582–592.

[21] P. Fuentes, E. Vallejo, M. Garcı́a, R. Beivide, G. Rodrı́guez,
C. Minkenberg, and M. Valero, “Contention-based nonminimal adap-
tive routing in high-radix networks,” in Proc. 29th IEEE Intern.
Parallel and Distributed Processing Symp. (IPDPS), 2015.

[22] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Cray, Inc., White paper, 2012.

[23] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade:
A scalable HPC system based on a Dragonfly network,” in Proc. Conf.
High Performance Computing, Networking, Storage and Analysis
(SC), 2012, p. 103.

[24] L. Bhuyan and D. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. Comput., vol. C-33,
no. 4, pp. 323–333, 1984.

