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Abstract We argue for the inclusion of concurrent programming in core courses of the computer
science major and present a brief unit that quickly introduces some key concepts.

1 Introduction

Computing has long benefited from Moore’s law, often stated as claiming that microprocessor
performance doubles roughly every 18 months. This exponential growth has been achieved since the
1970s through a combination of exponential growth in both the number of transistors on a chip and
the speed at which chips are clocked. Unfortunately, clock speed seems unlikely to increase further
because processor power consumption grows superlinearly with clock speed and heat dissipation is
reaching its limits. The number of transistors on a processor continues to grow, but traditional ways
of using them for performance, such as instruction-level parallelism, are also reaching their limits.
Together, these factors seem to require that additional performance come from adding processing
elements rather than increasing the performance of an individual processing element. Indeed, this
direction is being pursued by microprocessor manufacturers, all of whom are designing and building
processors with multiple cores per chip. A typical computer purchased today has two cores, with
larger numbers available in high-end systems.

How does the introduction of multiple cores affect programmers and, by extension, computer
science educators? The obvious way to use multiple cores is simply to assign each a different
program. This idea works as long as the user runs enough programs to use all the cores, but it has
definite limits. Since an Intel engineer recently wrote “developers should start thinking about tens,
hundreds, and thousands of cores” in a corporate blog [8], it is clear that we will want multiple
cores working on a single application. The imminent emergence of truly large numbers of cores
per processor (so called manycore systems) is now conventional wisdom for many computer science
researchers (cf. [3]).

Although manycore processors do not yet exist and no one knows exactly how they will be pro-
grammed, we believe that exposing students to the general principles of concurrent programming
can (and should) begin immediately. This paper describes an effort to create a short unit introducing
concurrent programming that fits within an existing course. Our unit took the form of a lab activ-
ity and followup homework assignment on multi-threaded programming. Importantly, the course
was unchanged except for this lab, the homework, and about half a period of followup discussion
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during lecture. With this minimal change, we were able to quickly introduce the following con-
cepts: the fork/join paradigm, race conditions, parallel speedup, and load balance. Multi-threaded
programming seems to be a particularly appropriate way to address the manycore challenge since
cores sharing a chip are more likely to support a shared memory space than larger-scale systems.
In addition, as we show, it is relatively easy to quickly present threads to students.

The general problem used in our assignments is hinted at in the Java documentation for the
Thread class. What is novel about our unit is the ease of fitting it into an already-crowded cur-
riculum. Synchronization and race conditions are often taught in operating systems (OS) courses
as part of the concurrency core topic (OS3) specified by the CC2001 curriculum [20] and we simply
focused part of that topic on multi-threaded programming.

This course change did not require any special computing resources. At the time, our lab com-
puters were dual-processor AMD Athlon MP 1900+s. These older machines (released in 2001!) were
among the first multiprocessor desktops, but our assignments also work on run-of-the-mill newer
machines, which are typically dual-core. Furthermore, the assignments will get more interesting
over time as new processors have more cores and allow higher levels of concurrency.

Another virtue of our approach is that it exposes students to concurrent programming in a
required course. Most courses teaching this topic are specialized electives [27], which limits the
number of students who see this material.

Despite the positive attributes of our concurrency unit, let us make it clear that we see much
room for improvement. Our assignments solve a toy problem. This exposes the underlying issues,
but does not provide as much motivation as a more realistic problem. The very briefness of the
unit also lessens its effectiveness since students do not have much chance to practice or develop
intuition. It would undoubtedly be more effective to discuss concurrency throughout the curriculum
as advocated by others (cf. [7, 26]). Since curricula change slowly, however, we assert the value of
quick “band-aid” solutions as well as more thorough approaches.

In the rest of this paper, we summarize previous work on teaching concurrent programming,
discuss relevant parts of the Java API, give our sample unit, and then discuss possible extensions.

2 Related Work

We are far from the first to advocate a greater focus on concurrent programming in computer
science education. Nearly fifteen years ago, there was even a workshop exclusively devoted to this
topic [25, 21]. What has changed in the intervening time is the advent of multicore machines.

Our sample unit uses Java because we liked its interface for threading and synchronization.
(The synchronization commands were surprisingly tricky in early versions of Java [13, 15], but
these problems have been fixed in version 1.5.) We do not view language selection as crucial
for multi-threaded programming provided the API is clean enough to not obscure the underlying
concepts. Particularly well suited are languages with built-in concurrency support. Goldwasser and
Letscher [10] discuss a Python-based CS 1 course in which students write a multi-threaded chat
server as part of a module on networking. This ambitious project is facilitated by the ease of creating
threads in Python. Sheehan [30] describes the benefits of teaching operating systems in Ruby, which
implements user-level threads and provides concurrency control features such as mutexes. Ada has
also been used since it has built-in task creation and synchronization primitives [4, 17, 29].

A more traditional introduction to multi-threaded programming uses C, a choice inherited from
its use in the OS course, where interprocess communication (IPC) is a typical topic. Threads and



synchronization primitives are not built into C, but POSIX-standard implementations of threading
(pthreads) and semaphores (sem_init, sem wait, sem post, ...) are widely available. To further
simplify their use, libraries [5, 16] and a simulator [22] have been developed to provide nicer in-
terfaces and debugging support. Most of the rest of the course in which our unit was taught used
C since other course goals were to expose students to pointers, manual memory management, and
linking. This led a colleague to adapt our unit to C for a subsequent iteration of the course.

Another approach to teaching concurrent programming is to use a special-purpose language.
Exemplifying this trend is the work of Jacobsen and Jadud [18], who use occam-m to program
robots. When using occam-m, the programmer defines a system of processes' joined by unidi-
rectional communication channels. The compiler and runtime system distribute these processes
among processors/cores and handle synchronization of the communication channels. Both of these
services hide complexity from the programmer. The language also includes a construct for the
programmer to indicate the independence of statements in a code block, allowing the system to
run them in parallel. A course based on this language has been taught to undergraduates and as a
workshop for experienced software professionals [19]. Other courses using special-purpose languages
are described by Hartley [12] and McDonald [24].

Other library options are MPI and OpenMP, typically used for scientific computing. Apon et
al. [2] describe several parallel programming courses using these libraries, with an emphasis on
MPI. Pan [28] describes a course teaching both MPI and OpenMP rather than focusing on only
one. All of these courses used a cluster as the parallel system, which differs from our focus on
multi-threaded programming.

Shene [32] describes a course similar to ours, but with a much greater emphasis on multi-
threaded programming. (All 4 assignments during the quarter involved threads and IPC, followed
by writing a thread system as the final project.) His first assignment is a fork-join program with
no other synchronization such as matrix multiplication (one thread per element) or quicksort (one
thread per partition). These are similar toy problems to the one we discuss in this paper, but
we add explicit consideration of load balancing and more synchronization. Shene also wrote a
tutorial [31], which is a good resource on these concepts and looks at some other problems.

Jackson [17] describes a 5-lecture “mini-course” to teach concurrency. The first of these is on
processes, part of any OS course, but the other four cover synchronization and race conditions as
well as topics beyond the scope of our unit.

Ernst and Stevenson [7] describe their work to introduce concurrency throughout their curricu-
lum. They have students use threads to solve embarrassingly parallel problems in CS 1. Simple
synchronization requirements are introduced in CS 2 using problems like ray tracing and more com-
plicated synchronization is discussed in Algorithms, where multi-dimensional dynamic programming
is used as a motivating problem.

Also related are some textbooks [14, 23] that teach concurrency in Java, though using versions
before 1.5 without high-level features like semaphores. A recent trade book is Goetz et al. [9].

3 Threads in Java

Now we give a brief overview of some relevant parts of the Java API. A key class for writing
multi-threaded programs is java.lang.Thread, which encapsulates a single thread of execution.

!We retain the terminology of Jacobsen and Jadud [18], but the reader should note the difference between OS
processes and these processes, which the occam-7 runtime system manages.



Once a Thread is created, it starts execution when its start() method is called. This method
marks the Thread object ready and returns, allowing the caller to continue execution. The started
Thread executes its run() method. If the caller (or some other piece of code) wants to wait for
this Thread to finish, it calls the Thread’s method join(), which blocks until run() returns.

Since it is up to the programmer to specify what a Thread does, by default run() does nothing
and returns immediately. There are two ways to specify work for a Thread to perform. Most
directly, the programmer can create a class extending Thread and override run(). Alternately, the
programmer can create a class implementing the Runnable interface, which has a single method
run(). Passing a Runnable object to the constructor of Thread causes that Thread’s run() method
to invoke the run() method of the Runnable object. In our course, we used the second approach
since it seemed conceptually simpler to pass work to a thread than override part of a complex class.

Creating Thread objects allows programmers to easily create a program with multiple threads.
It is nearly always necessary for these threads to communicate. On one hand, this is simple since
threads share an address space and can share variables directly. On the other hand, it is necessary
to prevent one thread from accessing data during an update performed by another thread. Again,
Java provides a simple way to do this. The keyword synchronized specifies that the lock attached
to a particular object must be held during a code block. For example, the code

synchronized(obj) {

¥

acquires the lock attached to obj, runs the block, and then releases the lock. The object obj can
be a member of any class. A thread trying to acquire a lock that is already held will block. For
convenience, synchronized can also modify a method signature, as in

public synchronized void method() {

¥

which is equivalent to placing the method body inside a synchronized block that locks on this.
Java also has more general synchronization primitives such as semaphores in java.util.concurrent,
but these are not used in our unit.

4 Sample Unit

Now we discuss our sample unit. It was covered midway through a course based on “Operating
systems and networking” in the CC2001 small department curriculum [20]. Our course meets for
lecture three times a week and for lab once a week. Each meeting lasts for 70 minutes so we achieve
the contact hours of a 15-week semester in only 10 weeks. (For more details about our curriculum,
see Dooley [6].) Prior to the lab below, we had discussed mutexes in the context of classic IPC
problems (Dining Philosophers and Readers and Writers), generally following the treatment in
Tanenbaum [33], but the students had no previous exposure to multi-threaded programming.

4.1 Lab exercise

Our coverage of multi-threaded programming began with a lab in which the students followed
a handout that provided background and guided them through the assignment. During lab, the in-



structor wandered between students answering questions. Students are not graded on lab exercises,
but attend and participate anyway because lab exercises often relate to homework.

At the beginning of lab, the students examine a simple serial program to count the number
of primes in the range 2-2,000,000. This program uses a helper function isPrime() to test each
odd integer in the range and then prints the number of primes. The isPrime () function takes an
integer n and tests whether any integer from 2 to y/n divides it. The students are given this version
to remind them of prime numbers and let them examine the program without any threading code.

Next, the students examine a naive attempt to parallelize this program, the bulk of which
appears in Figure 1. This program uses an inner class PrimeFinder for the task of counting primes
in some range. The program creates one thread for the range 3-1,000,000 and one for 1,000,001—
2,000,000. As primes are found, the shared variable pCount is incremented.

The given code has two fatal bugs. First of all, main() does not wait for the threads to
finish before printing the result. Second, access to pCount is not synchronized, resulting in a race
condition. The students are told to run the initial program and then fix the first bug. This bug
gives them a reason to examine the code and learn the parts of a fork/join program in Java. The
resulting program still slightly undercounts the number of primes and they are asked to find the
reason. (The handout has a strategic page break to prevent them from accidentally reading ahead.)
This bug is meant to be somewhat puzzling; it should be findable based on the coverage of mutexes
in class, but is hidden because it occurs when a thread is interrupted in the middle of a line of Java
code. The challenge of finding this bug makes the idea of a race condition more memorable and
illustrates how hard they can be to find.

The obvious fix for the race condition is to put the line pCount++ in a synchronized block.
The students are told to do so and then observe that the program works correctly.

The rest of the lab is concerned with performance. The handout has them use the Unix
command time to compute the program’s speedup, a concept the students had not seen previously.

To improve performance, the students are first directed to reduce the contention on the shared
variable pCount. Instead of having the threads acquire the lock each time a prime is found, a more
efficient solution is for each thread to keep a private count of the primes it finds and add this number
to the global sum after examining its entire range. This change greatly reduces the number of times
the lock is acquired. Although the performance impact turns out to be minimal (the critical section
is short and the threads encounter primes at different enough times to minimize contention), the
idea of making private copies to reduce contention is an important one for the students to see.

The resulting program has a speedup of 1.6, hardly impressive since the problem is so easy
to split into completely independent components. The problem is that the load is unbalanced;
on average, it takes longer to test larger numbers for primality. The lab concludes by asking the
students to identify and fix this problem themselves. They were given the following hint: “What
happens when you set the two parts to find primes within the ranges 1-1,100,000 and 1,100,001—
2,000,000 instead of splitting the test region evenly?”.

We discussed this lab in the following lecture, reviewing fork/join programs, race conditions,
speedup, and load balance. We specifically talked about achieving better load balance in the hunt
for primes. Most of the students, perhaps led astray by the handout’s hint, balanced the load
by manipulating the size of each range. We talked about how this approach is not very useful
without a way to estimate how long each part takes (including a brief aside about the possibility
of estimating the load in our problem using the distribution of prime numbers). One student split
the range into more than two parts, each with its own thread. We talked about how this approach



public class ThreadedPrimes {
public static int pCount;

static class PrimeFinder implements Runnable {
private long from;
private long to;

//constructor & isPrime omitted...

public void run() {
long nextCand = from;

while(nextCand < to) {
if (isPrime (nextCand))
pCount++;

nextCand += 2;
}
}
}

public static void main(String args[]) throws InterruptedException {
pCount = 1; //(already found 2)

PrimeFinder pl = new PrimeFinder(3,1000000);
Thread t1 = new Thread(pl);

PrimeFinder p2 = new PrimeFinder (1000001, 2000000) ;
Thread t2 = new Thread(p2);

tl.start();
t2.start();

System.out.println(pCount + " primes");

Figure 1: Initial (broken) multi-threaded program



creates a more balanced load since a core that finishes more quickly simply takes another part.
Following their idea to its logical conclusion, this student had discovered that poor performance
results from using a very large number of threads, which led to a discussion of thread creation
overhead and the possibility of using a work pool rather than a separate thread for each part. We
also talked about what seems to be the most elegant solution: one part looks for primes of the form
4k + 1 over the entire range and the other looks for those of the form 4k 4 3. Each part contains
numbers of equivalent size and the load balances nicely.

4.2 Homework assignment

Following this discussion, the students did a related homework assignment. The basis for this
homework is a faster serial version of the prime counting program. Instead of isPrime() trying
to divide its argument n by each number from 2 to y/n, the new version only tries to divide n by
the primes in this range. To do so, the program must keep a list of the primes identified so far,
but the change saves many division operations. The new implementation of isPrime () appears in
Figure 2. The sequential program with this improvement is faster than the best concurrent program
developed in lab, demonstrating a variation of the saying “premature optimization is the root of all
evil” (attributed to both Knuth and Hoare). In our case, we made a slow program multi-threaded
rather than finding the faster version and then multi-threading it. (Hard to do in practice, but a
point worth making in any case.)

It is not as clear how to use multiple threads with this version of isPrime() because calls
to isPrime() on larger numbers now depend on the result of earlier calls. Since it was harder,
the assignment was given in two parts. In the first part, students are told to parallelize the code
using the approach that ultimately works: first, the program sequentially finds the primes up to
v/2,000,000, which allows isPrime() to work on all the values it is called on. Then the program
uses a pair of threads to count the other primes. Small primes are stored in an ArrayList and
the others are counted using a private variable for each thread. Using an ArrayList rather than
its synchronized cousin Vector is crucial to avoid synchronization overhead and works even with
multiple threads because its contents are not modified once simultaneous accesses begin.

For the assignment’s second part, students are asked about parallelizing this program in the
same way as the initial prime-counting program; use a synchronized block to control access to

public static boolean isPrime(long num) {
long limit = (long) Math.sqrt(num);

long val;
int i = 1; //num is odd so skip 2
while((i<primes.size()) && ((val=primes.get(i)) <= limit)) {
if (num % val == 0)
return false;
i++;

I

return true;

Figure 2: Using a sieve; primes is ArrayList of known primes (in increasing order)
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the ArrayList and have two threads identify primes of the form 4k + 1 and 4k + 3 respectively.
Specifically, they are told that this version suffers from overhead and a race condition, then asked
to identify the source of each. (The overhead is contention entering the synchronized block; the
critical section is small, but it is inside the main loop of isPrime(). The race condition involves
the order in which primes are found and added to the list; isPrime () assumes that the primes are
sorted (and is slower without this assumption).)

4.3 Evaluation

Overall, we were pleased with the outcome of our unit. The students generally did well on the
homework assignment, earning a higher average than for homeworks overall. The only conceptual
problem that appeared on the first part was that 2 students (out of 8) modified isPrime() so
that on small numbers, it tested numbers 3 through /n as possible divisors in addition to trying
the already-identified primes. This error makes the program inefficient, but not incorrect. We
believe it was caused by lack of familiarity with prime numbers rather than a misunderstanding of
CONCUrTency.

There were more errors on the second part of the homework. The main cause seems to be
confusion about what the problem required, however, because the description of the naive threaded
version was rather vague. In retrospect, the assignment should have included code for this version,
which had been written while creating the assignment.

The students seemed to appreciate this unit. They were asked to comment on it in their course
evaluations and the only comment received was “I enjoyed the multithreading part of the course—
in fact, I think it could have been even more challenging.” Several students have asked for more
coverage of concurrent programming in person or via email.

Based on the student feedback and how well they did on the assignment, it probably should
have been harder. Since the students had never done concurrent programming, the assignment was
designed to be fairly straightforward and brief (they were given only 3 days). The next iteration
of this assignment will require them to do more of the design for the multi-threaded program.

5 Discussion

We have described the need to expose students to concurrent programming and presented a
short unit that attempts to do so. This unit consists of a single lab period, a short homework,
and a brief in-class discussion. This minimal commitment makes the unit easy to add to an
existing course. Materials for this unit, including handouts and given code, are available at http:
//faculty.knox.edu/dbunde/teaching/threadIntro.

Although we believe this unit is a start, there is plenty of room for improvement. Ideally,
concurrency will be presented more thoroughly and more often than is possible with a single small
unit. Even if the coverage remains brief, it would be preferable to use a problem more interesting
than counting prime numbers. Ideal would be to use several problems that vary in how well they
load balance since linear speedup is often not a realistic goal. Programs with a longer serial section
would also allow introduction of Amdahl’s law. We hope others are inspired to create materials
and assignments. Steve Heller has created a wiki [27] for use in getting and sharing ideas.

Another question that arises is how to scale up this type of assignment to a higher level of
concurrency. Processors in the future may have hundreds of cores, but typical machines today



have only two. Many scalability issues are hidden with such a low level of concurrency, making
dual-core machines unsatisfying as a testbed. One solution is to use a server-class machine. A
more inexpensive solution (with higher latency) would be to use a small cluster of machines, either
lab machines or an Microwulf cluster [1]. Another possibility is being explored by the RAMP
project [11], which aims to build simple manycore processors in FPGAs.
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