
Efficient Scheduling to Minimize Calibrations

Michael A. Bender
∗

Stony Brook University & Tokutek
David P. Bunde

†

Knox College
Vitus J. Leung

‡

Sandia National Laboratories

Samuel McCauley
∗

Stony Brook University
Cynthia A. Phillips

‡

Sandia National Laboratories

ABSTRACT
Integrated Stockpile Evaluation (ISE) is a program to test nuclear
weapons periodically. Tests are performed by machines that may
require occasional calibration. These calibrations are expensive, so
finding a schedule that minimizes calibrations allows more testing
to be done for a given amount of money.

This paper introduces a theoretical framework for ISE. Machines
run jobs with release times and deadlines. Calibrating a machine
requires unit cost. The machine remains calibrated for T time steps,
after which it must be recalibrated before it can resume running
jobs. The objective is to complete all jobs while minimizing the
number of calibrations.

The paper gives several algorithms to solve the ISE problem for
the case where jobs have unit processing times. For one available
machine, there is an optimal polynomial-time algorithm. For mul-
tiple machines, there is a 2-approximation algorithm, which finds
an optimal solution when all jobs have distinct deadlines.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

Keywords
Integrated Stockpile Evaluation, approximation algorithms, cali-
bration, resource allocation, scheduling.

1. INTRODUCTION
∗Supported in part by NSF grants IIS 1247726, CCF
1217708, CCF 1114809, and CCF 0937822. This work
partially done while visiting Sandia National Laboratories.
{bender,smccauley}@cs.stonybrook.edu.
†Partially supported by contract 899808 from Sandia National Lab-
oratories. dbunde@knox.edu.
‡Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000. {vjleung,
caphill}@sandia.gov.

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
SPAA’13, June 23–25, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

Integrated Stockpile Evaluation (ISE) is a program at Sandia
National Laboratories to test nuclear weapons periodically to en-
sure that the weapons will continue to function according to their
specifications [1]. These tests require a great deal of precision and
dependability, and given the nuclear context, safety mistakes can
have serious ramifications. Testing machines are expensive, and
some must be calibrated on a regular basis. The calibrations them-
selves are also expensive—in a monetary though not necessarily
temporal sense. Efficient scheduling of these tests and the calibra-
tions necessary to perform them allows more weapons to be tested
within a given budget. This paper gives a theoretical framework,
motivated by the ISE problem, for scheduling tasks on machines
that need to be calibrated periodically.

We model calibrations in a multi-machine setting as follows. We
can calibrate a machine for unit cost. The machine stays calibrated
for T ≥ 2 time steps, after which it must remain idle until it is
recalibrated. We refer to these T time steps following a calibration
as an interval. Calibrating a machine is instantaneous, meaning that
a machine can be recalibrated between two job executions running
in successive time steps. Minimizing the number of calibrations
helps minimize the total cost of an ISE instance.

We abstract the ISE problem by saying that we have a set of
jobs J = {1, . . . , n}, corresponding to weapons tests. Each job
must be scheduled on one of P identical testing machines. A job j
has a release time rj , a due date dj , and a processing requirement
(length) pj . If a job j is scheduled at time t, we must have rj ≤ t
and t+ pj ≤ dj . In most of this paper, we assume unit processing
times, i.e., pj = 1 for all j. This testing schedule is determined in
advance, meaning that the jobs arrive offline.

Our objective is to find the feasible schedule that minimizes the
number of calibrations. In the notation developed in [9], we denote
the ISE problem as P |rj , dj |#calibrations.

Related Work
One aspect of the ISE problem distinct from many classical
scheduling problems is that it often makes sense to delay schedul-
ing a job beyond its earliest feasible time step; see Figure 5. In con-
trast, for metrics such as minimizing maximum lateness or average
completion time, scheduling a job later never helps; see e.g, [11].
This property that a job should be scheduled as early as possible
often makes scheduling easier. For example, if the cost function
has this property and jobs are restricted to unit size, the problem is
polynomial even on multiple machines [5, 13].

One scheduling problem, somewhat reminiscent of the ISE prob-
lem, is that of minimizing the number of idle periods [2]. This
problem can be solved in polynomial time for unit-sized jobs by

dynamic programming. Minimizing idle periods captures the no-
tion that it is expensive to turn on a machine that has been idle,
whereas the ISE problem captures the notion that it is expensive to
start a constant-sized period of activity. In [2] both machine activa-
tion and job processing time contribute to cost, whereas in the ISE
problem only the activation intervals are important.

The restriction of unit size jobs can cause some otherwise NP-
hard problems to become polynomial [4–6, 8, 12, 14, 18]. Other
problems remain NP-hard; these include flow shop problems on
multiple machines with a cost for switching machines [19], requir-
ing additional resources for each job [3, 7, 8], or a partial ordering
on the execution order of the jobs [16, 17]. It is not clear if the ISE
problem remains NP-hard when restricted to unit-length jobs.

Results
We give the following results for the ISE problem with unit-sized
jobs, and show that the problem is NP-complete with arbitrary-
sized jobs:

• We give a greedy scheduler for any instance feasible on one
machine.

• We show this single-machine solution remains optimal even
if more machines become available. However, if an instance
requires multiple machines, adding more machines may de-
crease the optimal cost.

• We give a polynomial-time 2-approximation algorithm for
multi-machine ISE instances. This approximation algorithm
gives an optimal solution for the special case where all jobs
have distinct deadlines.

Overview
The rest of the paper is organized into single-machine results (Sec-
tion 2) and multiple-machine results (Section 3). We conclude
(Section 4) with generalizations that capture further aspects of the
ISE application.

2. SINGLE-MACHINE ISE
In this section, we give an optimal algorithm for single-machine

ISE. If a scheduling instance is feasible on a single machine, then
the best single-machine schedule is optimal, even if more machines
are available.

We focus on unit-sized jobs in this paper, since for arbitrary job
lengths on any number of machines P ≥ 1, the ISE problem is
NP-hard.

THEOREM 1. The ISE Problem is (weakly) NP-hard for any
number of machines P ≥ 1.

PROOF. Hardness follows from a reduction from Partition.

EDF Scheduling with Intervals
Our ISE algorithms run jobs based on the Earliest Deadline First
(EDF) scheduling policy. Although Section 2 discusses the single-
machine ISE, we also explain here how EDF works on multiple
machines.

The EDF scheduler maintains a priority queue of jobs ordered by
increasing deadline. If two jobs have the same deadline, the priority
queue breaks ties arbitrarily but consistently.

EDF schedules jobs by iterating over time slots from earliest to
latest. When EDF reaches a time slot t during which a new job
j arrives (rj = t), EDF adds j to the priority queue. Then EDF
selects up to P jobs to run in time step t by popping these jobs
from the priority queue.

LEMMA 2 ([10, 15]). If jobs have unit size, EDF finds a fea-
sible schedule on single or multiple machines if one exists.

EDF also schedules optimally in the multi-machine ISE set-
ting where machines can run only during specific active length-
T intervals and otherwise must remain idle. To see why, create
“dummy” jobs for each time step of each inactive machine, where
each dummy job is constrained to run in its time step. Given the
EDF schedule, we can permute the jobs among machines without
changing their running time to create the proper intervals.

Optimal Single-Machine Algorithm
Although EDF always finds a feasible schedule, it may not min-
imize calibrations. We use EDF as a subroutine in another algo-
rithm that we call Lazy-Binning. Lazy-Binning delays the start of
an interval for as long as possible, until delaying it further would
make it impossible to find a feasible schedule.

Before giving the algorithm, we define the notion of a push.

DEFINITION 3. A push is a move of an interval from time t to
t+ 1. This may mean that later intervals on the same machine are
recursively pushed, so that no two intervals overlap.

Algorithm 1 Lazy-Binning
1: for Each time step t until all jobs are scheduled do
2: if No working interval that contains time t then
3: Run EDF starting at time step t+ 1
4: if EDF cannot find a feasible schedule then
5: Begin a working interval at time t.
6: end if
7: else
8: Schedule jobs in the current interval using EDF
9: end if

10: end for

Lazy-Binning is the algorithm we obtain by performing all fea-
sible pushes.

THEOREM 4. Lazy-Binning is optimal.

PROOF. To obtain a contradiction, assume that Lazy-Binning is
not optimal. Consider the time t ≥ 0 when Lazy-Binning first
differs from every optimal schedule. In other words, from time
0 to t − 1, there exists at least one optimal schedule OPT that
matches Lazy-Binning exactly, but no optimal schedule matches
Lazy-Binning through time t. Furthermore, assume without loss of
generality that OPT uses EDF to schedule jobs within an interval,
as Lazy-Binning does. Thus, there are two ways for Lazy-Binning
to differ from OPT:
• In Case A, Lazy-Binning starts an interval at time t while

OPT remains idle.
• In Case B, Lazy-Binning does not start an interval at time t,

OPT does.
We argue that neither of these cases is possible, leading to a con-
tradiction.

Case A: Lazy-Binning starts an interval at time t, while OPT
remains idle. This means that EDF failed to find a feasible schedule
starting the next interval at time t+1 or later. But OPT is a feasible
schedule that starts the next interval at time t+ 1.

Case B: OPT starts an interval at time t, whereas Lazy-Binning
remains idle. Consider a schedule OPT′ which has identical inter-
vals to OPT, except that the interval that OPT starts at t is pushed.

OPT′ matches Lazy-Binning until time t + 1 so it cannot be an
optimal schedule by our definition of t. Since OPT′ uses the same

number of intervals as OPT, the cost for the schedule is the same,
so it must be that OPT′ is infeasible; it cannot be suboptimal.

Let j be the first job that misses its deadline when EDF schedules
jobs in OPT′. Any subsequent intervals that we add will be after
j’s deadline and cannot make OPT′ feasible. Therefore, j cannot be
feasibly scheduled after the push, which means that Lazy-Binning
starts an interval at t.

We thus have an optimal algorithm for the single-machine case,
as well as a test to see if a feasible schedule exists.

Lazy-Binning, as stated in Algorithm 1, runs in pseudopolyno-
mial time, but the algorithm is easily modified to run in polynomial
time. The issue is that if release times and deadlines have exponen-
tial values, Lazy-Binning may iterate through an exponential num-
ber of time steps. However, an interval need never start more than
n time steps before the deadline of any job, giving a polynomial
solution.

Why Adding Machines Does Not Help
We show that if an instance can be feasibly scheduled on one ma-
chine, adding more machines does not decrease the cost.

THEOREM 5. If the ISE instance is feasible for a single ma-
chine, the one-machine schedule is optimal

The following definitions and lemma are used to prove Theo-
rem 5. A configuration C for a one-machine scheduling instance
is a bit string where the tth bit is 1 if the machine is active at time
t, and 0 if the machine is idle. The string indicates when the ma-
chine is working, but not which jobs are being executed. We say
that a configuration is feasible if there exists a feasible schedule
corresponding to that configuration.

LEMMA 6. Consider a feasible one-machine scheduling in-
stance on n jobs, and a feasible configuration C on jobs 1 . . . n−1
but not n, and a time t such that rn ≤ t < dn.

If t is idle let tR = t. Otherwise, let tR be the earliest idle time
step after t, and tL be the latest idle time step before t. Then at least
one of the following configurations for jobs 1, . . . , n is feasible:

1. CL, which is identical to C except that tL is an active time
step.

2. CR, which is identical to C except that tR is an active time
step.

PROOF. Suppose that neither configuration is feasible. Let X =
tR − tL − 1 denote the number of time slots between tL and tR.
Note that this does not include tL or tR itself.

Because neither configuration is feasible, rn > tL and dn ≤ tR.
If this were not the case, job n could be scheduled in tL or tR,
making CL or CR feasible, respectively.

Let EDF[C] denote the schedule obtained by assigning jobs to
the active times in configuration C using EDF. Consider the time
slots between tL and tR in EDF[C]. They are all full, so there
must be X jobs running in these time steps; call this set of jobs
JX . There exists some job i ∈ JX such that ri ≤ tL or di >
tR. Otherwise, JX ∪ {n} is a set of X + 1 jobs that must be
executed in X time steps, which is impossible in a feasible schedule
on one machine. Let ti be the time when i is scheduled in EDF[C].
Assume without loss of generality that i can be scheduled in tR
(if not analyze the mirror image of the schedule where time flows
backwards and release times and deadlines trade roles).

There are three cases for ti:
• Case 1: tL < rn ≤ ti < dn ≤ tR.
• Case 2: dn ≤ ti < tR.

i

tL tR tL tR

in

tL

Figure 1: Case 1 from the proof of Lemma 6. Job i can be
scheduled in tR, and job n can be scheduled in ti where i was
previously.

i

tL tRtL

rn dn

i

tL tRtL

rn dn

Figure 2: Case 2 from the proof of Lemma 6. Job i can be
scheduled in tR. Job n cannot be feasibly scheduled, but after
a finite number of Case 2 instances we must get Case 1, when
job n can be scheduled. The top of the figure depicts the sched-
ule before the exchanges (denoted by arrows), and the bottom
depicts the schedule after.

• Case 3: tL < ti < rn.
The first two cases are shown in Figures 1 and 2, respectively.

We prove that Case 1 means that CR is feasible, Case 2 leads to
a smaller instance of Lemma 6, allowing for a finite number of
iterated steps until Case 1 is reached, and Case 3 can never occur.
Note that we consider cases in order; Case 2 is only used if Case
1 does not apply, and Case 3 is only used if Cases 1 and 2 do not
apply.

Case 1 (Figure 1): Schedule job n in time slot ti and schedule
i in tR (feasible by definition of i). Keep all other jobs scheduled
at the same time as in EDF[C]. Thus, CR is feasible, contradicting
our assumption.

Case 2 (Figure 2): Schedule i in tR. Create a new configuration
C′ which is the same as C except time slot tR is set to 1 and ti is
set to 0. Now C′ is a new instance of Lemma 6 where ti becomes
the new tR and tL stays the same. Each time we hit Case 2, X
decreases, so eventually Case 1 must occur (we will show Case 3
never occurs).

Case 3: If there are multiple jobs that meet the conditions for
case 3 (tL < ti < rn) that can be scheduled in tR, let i be the one
scheduled in the latest time slot in EDF[C].

Consider the set of jobs scheduled strictly between ti and tR; we
must be able to schedule one in ti. Otherwise, there are tR− ti−1
jobs that cannot be scheduled in tR or ti, so each must be scheduled
in tR−ti−1 time steps. Job n must be scheduled between rn > ti
and dn ≤ tR, so it must be scheduled in one of these time steps as
well. Then there are tR − ti jobs that must be scheduled in one of
tR − ti − 1 time steps, which cannot be feasible on one processor.

Let i′ be the job that can be feasibly scheduled in ti. This job
has deadline before tR, since we picked the i that can be scheduled

MS1

M

MS′
1

Figure 3: Moving jobs from I to M without increasing the cost.
The Type 2 jobs, shown in white, can be moved over immedi-
ately, as shown on the first line of the figure. Afterwards, as
shown on the second line, the Type 1 jobs shown in black must
be moved over using Lemma 6, which may include shuffling
some jobs scheduled on M . Finally we obtain S′

1, where all
jobs from I are scheduled on M .

in tR that is scheduled latest in EDF[C]. But then i′ comes before
i in EDF order, so when EDF reached ti it would have scheduled i′

instead of i. Contradiction.

PROOF OF THEOREM 5: Given a schedule on multiple ma-
chines, we move all intervals one at a time to the first machine
M . Each time we move an interval I , we only calibrate M one
additional time at most. We diagram our strategy in Figure 3.

Suppose we are moving an interval I from machine M ′ to ma-
chine M . There are two types of jobs in I , those that have a job
scheduled at the same time on M , which we call Type 1, and those
that do not, which we call Type 2. First, move all jobs in I of Type
2 to M , which produces no infeasibility.

Let S1 and S′1 be the schedule of jobs on M before and after the
jobs from I are added, respectively. Let tF and tL be the first and
last time where S1 and S′1 differ.

Consider moving a type-1 job that ran at time t on machine M ′

to machine M . Because this is a type-1 job, machine M is busy at
time t. Let t1 be the last idle interval before t on machine M and let
t2 be the first idle time after t on Machine M . Use the algorithm
from Lemma 6 to add a job with desired time t. This algorithm
always places a job into either time t1 or time t2, extending the
block of completely busy time covering time t. Thus the interval
from tF to tL is completely busy on Machine M in configure S′1.
Therefore S′1 requires at least q = d tL−tF+1

T
e intervals to cover

the active jobs in S1 in from tF through tL. Because moving one
interval from machine M ′ moves at most T jobs into the interval
tF . . . tL, configuration S1 is inactive for at most T time steps in
this interval. Therefore, configuration S1 requires at least q− 1 in-
tervals to cover jobs in tF . . . tL before receiving jobs from interval
I .

To cover configuration S′1, place one new interval at the first idle
time in configuration S1 not covered by an interval in configuration
S1 and push the following intervals as necessary, up to T time units,
to eliminate interval overlap. The interval before tF is covered
by intervals as before in configuration S. The time between tF
and tL is completely covered by q adjacent (touching) intervals.

Release time Deadline

T T

Two-Machine
Schedule

Three-Machine
Schedule

3T Jobs

Figure 4: This schedule is feasible on two machines, but optimal
on three. There are 3T jobs with a release time of zero and
a deadline of 3T/2. On two machines four calibrations are
necessary, but with three matchines only three calibrations are
necessary.

Each time after tL that was covered in S1 is still covered in S′1.
Either the original interval doesn’t move, or it is pushed. But if
an interval is pushed, then it is part of a set of adjacent intervals
extending forward at least to tF . Thus anything covered by the
pushed interval is still covered by the new set of intervals.

Theorem 5 does not extend to instances that require at least two
machines for feasibility. With more machines, it is no longer true
that using the minimum number of machines gives the optimal
number of intervals. Consider an instance with kT jobs released
at time 0 with common deadline 1.5T , k > 2. These can be run on
k machines with k intervals from 0 to T , but require k+1 intervals
on k−1 machines. Figure 4 illustrates k = 3. Note that for k = 2,
it is not feasible to go down to a single machine. By using this
structure repeatedly, we see that removing a machine may increase
the number of intervals by more than one.

3. ISE ON MULTIPLE MACHINES
We first characterize the structure of optimal solutions to the ISE

problem on multiple machines. We then give a 2-approximation
algorithm. We describe conditions under which our algorithms find
optimal solutions.

Round Robin Machine Assignment
Let I = (I1, I2, . . . , IN) be a sequence of intervals, a partial so-
lution for a set of jobs, ordered by increasing start time. Ties are
broken consistently. For our multiple-machine algorithm, ties can
be broken by interval creation time, since the algorithm is incre-
mental. Without loss of generality, no two intervals in I on the
same machine have start times within T of each other.

Each interval Ij ∈ I is scheduled on some machine Pj . Assign-
ing intervals to machines can be done using a round-robin method
for any feasible schedule.

LEMMA 7. Given a feasible schedule S on P machines, there
exists a schedule having the same cost and the same assignments
of jobs to intervals where Pj ≡ j (mod P).

PROOF. We use an inductive argument on N = |I|, the number
of intervals. The lemma is true for N = 1, where we can place the
first interval on the first machine.

Suppose we have legally placed the first k intervals. Let t denote
the time when Ik+1 begins. If scheduling Ik+1 on machine (k+1)

(mod P) is not feasible, there exists another interval Ic scheduled
at time tc on Pk+1 such that t − T < tc ≤ t. Since all previous
intervals are scheduled using round-robin, there are P −1 intervals
starting between times tc and t. Each of these must also be sched-
uled at or before t and after t−T , so in total there are P+1 intervals
that must be scheduled in that range. Since there are P processors,
two of the intervals must be scheduled concurrently on the same
machine, which is infeasible. This contradicts the assumption that
the schedule of the first k intervals is feasible.

Lemma 7 means that our algorithm need not explicitly determine
an assignment of intervals to machines.

Our algorithm returns a sequence of interval start times. Given
this sequence, we assign intervals to machines using round robin
and schedule jobs within intervals using EDF.

Before proceeding, we further specify how EDF breaks ties.

INVARIANT 8. When EDF removes job j from the priority
queue to run at time step t, there may be multiple machines on
which j could run. EDF breaks ties by assigning j to the first inter-
val I ∈ I that does not yet have a job assigned at time slot t (but
contains time slot t).

Characterization of Pushes
When there are multiple machines, intervals can overlap provide
they are on different machines. This leads to more subtlety in how
we characterize a push.

DEFINITION 9. A push is a move of an interval I ∈ I from
time t to t+ 1 that may recursively push later intervals in order to
maintain the following:

1. The ordering of intervals in I does not change. Thus, any
other interval that starts at t and is ordered after I in I is
also pushed.

2. The intervals on each processor are nonoverlapping. Thus,
any interval that starts at t + T on the same processor as I
is also pushed.

Suppose the push of an interval results in a new set of intervals
I′ and let t be the latest start time of any interval in I′. This push is
feasible for an instance of jobs if by augmenting I′ by zero or more
intervals, each starting at time t or later, all jobs can be feasibly
scheduled.

We categorize feasible pushes of the last currently-scheduled in-
terval into four cases. Because we only consider pushing the last
interval, we do not need to worry about cascades of pushes. There
may be jobs in J that cannot be scheduled in any of the intervals.

DEFINITION 10. Each feasible push of the last interval I fits
one of four cases. When I is pushed, there may exist some job in
I before the push that EDF no longer schedules after the push; de-
note this job jout. Similarly, there may exist some job not scheduled
before the push that EDF schedules after the push; denote this job
jin.

Case 1: There exists no job jout.
Case 2: There exists a job jout but no job jin.
Case 3: Job jout is after jin in EDF order.
Case 4: Job jout is before jin in EDF order.

Framework for Optimal Solutions
We extend Lazy-Binning to multiple machines.

DEFINITION 11. A push algorithm repeatedly creates a new
interval at the end of I and then pushes that interval. The algorithm

• performs all Case-1 and Case-3 pushes,
• never performs an infeasible push, and
• has the flexibility to choose which Case-2 and Case-4 pushes

to perform.
Once the algorithm stops pushing the interval, if there are remain-
ing unscheduled jobs, the algorithm creates a new interval and be-
gins pushing again.

At intermediate steps of a push algorithm, EDF assigns jobs to
intervals only temporarily. EDF may assign some job j to some
interval, but when an interval is pushed or a new interval is added
to I, re-running EDF may assign j to a different interval.

When P = 1, all feasible pushes are Case 1 and Case 3, so Lazy-
Binning is a push algorithm. Theorem 4 proves a push algorithm
is optimal for P = 1. Theorem 18 shows that an optimal push
algorithm always exists for any number of processors.

Algorithm 2 Push Algorithm
1: t← 0
2: while Not all jobs are scheduled do
3: Remove all assignments of jobs to intervals
4: if t is contained in P or more intervals then
5: t← next time with ≤ P − 1 intervals
6: end if
7: Create a new interval I at t
8: Schedule jobs in all intervals with EDF
9: while Pushing I is Case 1 or Case 3 do

10: Push I
11: t← t+ 1
12: end while
13: Perform 0 to T Case-2 or Case-4 pushes on I
14: end while

LEMMA 12. A push of an interval I starting at t is of type Case
2 or Case 4 if and only if

1. before this push there is a tf ≤ t + T such that jobs are
scheduled in all calibrated time slots between t and tf

2. each of these jobs is due no later than tf , and
3. the push is feasible.

The smallest such tf has the property that tf − t ≥ 2 and at least
two jobs are due exactly at tf .

PROOF. We first explain why tf − t must be greater than 1. If
tf − t = 1 then there exists a job j that must be scheduled at time
t, the first time step of I before the push. Scheduling j later would
miss its deadline. Thus after the push, when I starts at t+ 1, EDF
does not schedule j in I . By Invariant 8, EDF schedules in the
earliest possible interval in I, so if j could be feasibly scheduled
in an earlier interval it would be scheduled there before the push.
Thus, j cannot be scheduled in an interval before I in I. All later
intervals must also start after the deadline of j by Definition 9, so
j cannot be scheduled there either. Thus, if f = 1 the push is
infeasible.

(⇐) If these jobs do exist, there must be a jout, because after we
push I forward there are more jobs that must run between t and tf
than there are calibrated time steps between times t and tf . The
push cannot be Case 3 because before the push, any jobs released
by time t + T that precede jout in EDF order would have been
scheduled before jout and they still will be after the push. If jin is
released at t+T , its deadline is at least t+T +1. This is after jout

because jout has deadline no later than tf ≤ t+ T .
(⇒) We now show that if there is a Case-2 or Case-4 push, such a

tf must exist. Let tf be the deadline of jout. We must have tf ≤ t+

T because if jout could be scheduled at t+T , it could be scheduled
in I after the push, ruling out Case 2. In Case 4, jout is replaced in
the set of scheduled jobs by a job later in EDF order. That would
not happen if jout could be feasibly scheduled in the new set of
intervals.

After the push, all Y calibrated time slots from t to tf must con-
tain jobs since jout cannot be scheduled. The configuration after
the push is the same as before except that the slot in I at time t is
replaced by a slot at time t+ T . The EDF schedule is the same up
to the slot at time t that is removed. This is the last slot in time t
since I is the last interval. If there is no job in that slot, then the
rest of the schedule can run as before and there is no jout, which
contradicts the type of push. The job jb that ran at time t in I must
compete with newly-released jobs at time t + 1. Some may have
earlier deadlines than jb so jb may not recieve the very next slot.
If jb is never scheduled, it is jout and all slots are full through tf .
Otherwise jb is scheduled at some time t < tb ≤ tf . By the same
arguments as above, that slot must have held a job before the push.
This job is either jout, delayed by other jobs till past its deadline, or
it displaces another till the cascade finally ends with the real jout.
All slots are then full until jout fails to meet its deadline at time tf .

All Y jobs the run between t and tf in the pushed schedule also
ran between t and tf before the push. All jobs affected by the push
(including jout) ran no earlier than time t before the push. Every
job in this set runs no earlier after the push (most at the same time
except those involved in the cascade). All finish by tf since only
jout was pushed later (to failure). Job jout also ran before tf before
the push, since tf is job jout’s deadline. Thus, there were Y + 1
jobs running in the Y + 1 slots between time t and tf before the
push.

None of the Y + 1 jobs just described has a deadline later than
tf . Consider the discussion above about how the push affects the
schedule. All jobs scheduled between times t+ 1 and tb, when the
displaced job jb is finally scheduled, had deadlines no larger than
job jb’s deadline. This is because jb was scheduled later by EDF.
Job jc, displaced by jb, has a deadline no earlier than jb’s dead-
line and no earlier than the deadline for any job scheduled between
tb and tc. Thus the displaced jobs have monotonically increasing
deadlines and the current displaced job has a deadline no smaller
than that of any job schedule since time t. Thus, job jout has dead-
line no smaller than that of any job that ran between t and tf .

We now show that at least two jobs are due exactly at the smallest
tf . Consider the smallest tf . Because tf − t > 1, there is at least
one job scheduled at time tf−1 among the Y jobs described above
(in interval I , for example). There is at least one job scheduled
before tf − 1 due after tf − 1; otherwise tf − 1 would satisfy the
definition for tf , violating the assumption that this is the smallest
tf . All jobs scheduled at tf − 1 are due at tf . There must be at
least one such job in interval I . Thus, there are at least two jobs
due at tf .

COROLLARY 13. Every push algorithm does no more than T
Case-2 or Case-4 pushes on any interval.

PROOF. Since there exists a job in I with deadline no later than
tf , by definition of the jout for the push, I cannot be pushed past tf .
Otherwise that job could not be feasibly scheduled. Since tf ≤ T
the lemma follows.

LEMMA 14. If intervals are added to a schedule, EDF sched-
ules all jobs no later than without the added intervals.

PROOF. Let S and S′ be the schedule before and after the in-
tervals are added. Assume the contrary: there exists a job j that
is scheduled later in S′ than in S. Let j be the first such job in

EDF order and let t be the time when j is scheduled in S. When
EDF reaches t in S′, there must be some job j′ before j in EDF or-
der that has not been scheduled (otherwise EDF would schedule j).
But j′ must have already been scheduled when EDF reached t in S
(otherwise EDF would schedule j′ at t in S). Then j′ is scheduled
later in S′ than in S, which contradicts our definition of j.

LEMMA 15. Consider a Case-1 or Case-3 push of an interval
I . If we remove any set of jobs J ′ from J , this will still be a Case-1
or Case-3 push.

PROOF. It is immediate that removing jobs can never result in
infeasibility.

We now show that removing jobs cannot cause a push to become
Case 2 or Case 4. Assume the contrary, that the push of interval I at
time t becomes Case 2 or Case 4 after removing J ′. By Lemma 12,
there must be some time step tf where each calibrated time slot
between t and tf is running a job that must be scheduled before
tf . In each time slot, removing J ′ can only cause a job with a later
deadline to be scheduled by EDF. Then before J ′ is removed, all
calibrated time slots between t and tf were already active with jobs
with potentially earlier deadlines. Then this was a Case-2 or Case-4
push initially, leading to a contradiction.

LEMMA 16. Performing Case-1 and Case-3 pushes can never
increase the number of calibrations. That is, there is always an
optimal schedule that performs a Case-1 or Case-3 push whenever
one is available during the incremental schedule construction.

PROOF. To obtain a contradiction, assume the contrary: no op-
timal schedule performs all available Case-1 and Case-3 pushes.
Let OPT be the schedule that performs the most Case-1 and Case-3
pushes. We show that we can obtain a schedule that performs one
more Case-1 or Case-3 push without increasing the cost, reaching
a contradiction.

A Case-1 or Case-3 push is only defined on the last interval
placed so far while we are making the schedule, so we refer to
the push as Case 1 or Case 3 if the push is Case 1 or Case 3 with
subsequent intervals removed. That is, EDF schedules jobs from
the beginning after this removal to determine the case of the push.

We show that we can feasibly schedule all jobs in OPT after an-
other Case-1 or Case-3 push on some interval I without increasing
the number of intervals. Let t be the start time of the first interval I1
in OPT that did not have all Case-1 or Case-3 pushes applied. So a
push on I1 is Case 1 or 3. Let I be the last interval started at time t.
A push on I must also be Case 1 or 3. If it were Case 2 or 4, then by
Lemma 12 there must be a time tf before which all calibrated time
slots must contain jobs with deadlines before tf . But since EDF
schedules in time slots in order by interval, all jobs in time slots
before tf in I1 must also have deadlines before tf . This means I1
is Case 2 or 4, which contradicts our definition. Thus pushing I is
Case 1 or 3. Furthermore, all subsequent intervals in OPT start at
t + 1 or later, so pushing interval I preserves the ordering of the
starting times of the intervals.

Let t be the time when I starts in OPT. For now, assume that all
later intervals in OPT start strictly later than t. We will consider the
case where one starts at t later in this proof.

We set the stage for an exchange argument. Schedule all jobs
in OPT using EDF. There is a (possibly empty) set of jobs J ′ that
are (1) scheduled between times t and t+ T − 1 inclusive, and (2)
scheduled in an interval after I in OPT. Figuratively, we remove
these jobs and set their time slots as inactive. What we really do
is peg these jobs to these time slots for our exchange, so that their
positions in the schedule are not determined by rerunning EDF.

Perform the push on I in OPT with J ′ removed; now we have a
sequence of intervals OPT′. When I was the last interval placed so

far, the push was a Case-1 or Case-3 push. Now define jout and jin

as in Definition 10. By Lemma 15, job jout, if it exists, is released
before jin and has a deadline after jin in EDF order. To summarize,
jout and jin are defined, assuming that we run the schedule only
allocating intervals up to I .

When we transform OPT into OPT′, we push I , and run EDF on
OPT′ ignoring the jobs in J ′ and their time slots. Interval I ends
at t+ T . Let j′out be a job scheduled before t+ T (in any interval)
in OPT but after t + T and not in I in OPT′; let j′in be any job
scheduled in an interval after t + T in OPT but before t + T or in
I in OPT′.

Then j′in is jin and j′out is jout if it exists. This is because when I
was the last interval, the push was Case 1 or Case 3. After adding
subsequent intervals, none of the jobs scheduled in I are scheduled
later than t+T , nor will a later job be scheduled in I or earlier than
t+ T .

Now we exchange jobs to show that OPT′ is feasible. We sched-
ule the intervals up to the pushed I according to (the new) EDF. We
schedule the jobs strictly after the interval I ends according the old
EDF, except that in the slot where j′in used to be, we replace that
with j′out. We keep the jobs J ′ exactly where they were before.

Then we have performed an extra Case-1 or Case-3 push of I
without increasing the cost of the schedule, contradicting our as-
sumption that we have the OPT with the most Case-3 pushes.

As described, this exchange argument leaves out an important
detail. This argument applies when interval I has a gap before the
next interval on the same processor. If there is no gap, that is, the
two intervals are adjacent, then we need to adjust our argument
slightly. A simple adjustment is just to view the adjacent intervals
as one bigger interval and then to define the j′out where j′in according
to this superinterval.

LEMMA 17. A set of k Case-2 pushes on an interval I can only
be a part of an optimal push algorithm if, after the Case-2 pushes
are performed, the next push would be a Case-4 push.

PROOF. We will show that no job in J can be scheduled in the
newly-calibrated time slots after the Case-2 pushes. Let JI be the
set of jobs feasibly scheduled by EDF in the first I intervals, before
I is pushed. Let J ′I be the jobs that cannot be feasibly scheduled,
so J ′I = J \ JI . Since the pushes are Case 2, none of the jobs
in J ′I can be scheduled in I after the Case-2 pushes on I . Adding
subsequent intervals can only cause jobs to be scheduled earlier by
Lemma 14, so no job in JI is scheduled at a later point after we
add intervals later than I in I. Thus, no job in either J ′I or JI can
be scheduled in the newly-calibrated time slots.

By Lemma 12, after a Case-2 push, any further feasible pushes
on the interval are Case 2 or Case 4.

Thus, any newly calibrated time slots due to the push remain
inactive, and the pushes cannot decrease the cost of the remaining
schedule unless there is a later Case-4 push.

THEOREM 18. There exists a sequence of Case-2 and Case-4
pushes such that the corresponding push algorithm is optimal.

PROOF. This proof generalizes Theorem 4. All Case-1 pushes
are identical to the single-machine case, and can still always oc-
cur without added cost. We show that Case-3 pushes never add to
cost in Lemma 16. The remainder of the argument proceeds as in
Theorem 4.

2-Approximation Algorithm
We now give a 2-approximation algorithm (Algorithm 3). Algo-
rithm 3 is not a push algorithm, though it has structural similarities.
Observe that the algorithm also becomes Lazy-Binning if P = 1.

Algorithm 3 pushes intervals similarly to a push-algorithm. It
never performs an infeasible push and performs all Case-1 and
Case-3 pushes of each interval I . Whenever it sees an opportunity
for an interval I to have a Case-4 push or a series of Case-2 pushes
followed by a Case-4 push, Algorithm 3, instead, creates another
interval I ′ right after I . These extra intervals are ignored for the
purpose of determining the case of a push; otherwise the pushed
interval may not be the last one scheduled. Like Lazy-Binning,
this algorithm is pseudopolynomial as written. If release times and
deadlines have exponential values, Algorithm 3 may iterate through
an exponential number of time steps. However, an interval need
never start more than n time steps before the deadline of any job.
Incorporating this restriction makes Algorithm 3 run in polynomial
time.

Algorithm 3 Lazy-Binning on Multiple Machines
1: t← 0; I ← ∅
2: while Not all jobs are scheduled do
3: Remove all assignments of jobs to intervals
4: if P or more intervals overlap with I then
5: t← next time with ≤ P − 1 intervals
6: end if
7: Create a new interval I at t
8: while Pushing I is Case 1 or Case 3 do
9: Push I

10: t← t+ 1
11: end while
12: t′ ← t
13: while Pushing I from t′ is Case 2 do
14: t′ ← t′ + 1
15: end while
16: if Pushing I is Case 4 then
17: Create another interval at t+ T
18: end if
19: end while

LEMMA 19. The set of jobs scheduled in the first i intervals of
any push algorithm A can be feasibly scheduled after i rounds of
Algorithm 3 (a round refers to an iteration of the while loop in Step
2).

PROOF. By Corollary 13, any time when a time slot is calibrated
in A’s schedule, the corresponding time slot is also calibrated in Al-
gorithm 3’s schedule. Thus, for the first i intervals, we can copy the
assignments of jobs to machines and times from A directly to time
slots calibrated by Algorithm 3, giving a feasible schedule.

COROLLARY 20. Algorithm 3 gives a solution with cost no
more than twice optimal, i.e. it is a 2-approximation.

COROLLARY 21. Algorithm 3 is optimal if all deadlines are
distict.

PROOF. From Lemma 12, a Case-4 push occurs only when mul-
tiple jobs have the same deadline. Thus, if no two jobs have the
same deadline, Algorithm 3 adds no extra intervals and gives an
optimal solution.

No-Push
Schedule

Two-Push
Schedule

Calibrations

Calibrations

T

Figure 5: An example showing that both Case-2 and Case-4
pushes are sometimes necessary to obtain an optimal solution.
This is also an example where Algorithm 3 gives a solution that
is 3/2 times optimal. Four jobs have release time 0 and dead-
line 4. Two jobs have release time 2+T and deadline 3+T . Al-
gorithm 3 gives the solution shown in the top of the figure with
a cost of three. Pushing the first interval twice (first a Case-2,
then a Case-4 push) gives the solution shown in the bottom of
the figure, with a cost of 2.

LEMMA 22. Algorithm 3 is no better than a 3/2-approximation.

PROOF. Consider an ISE instance with four jobs that have re-
lease time 0 and deadline 4, and two jobs that have release time
T + 2 and deadline T + 3; see Figure 5. Algorithm 3 gives a so-
lution with three intervals. However, the optimal solution pushes
the first interval twice (a Case-2 and a Case-4 push) and gives a
solution with two intervals.

4. CONCLUSION
The complexity of the ISE problem with unit-sized jobs on mul-

tiple machines remains open. We suspect that the analysis of Al-
gorithm 3 can be tightened, given that it performs better than twice
optimal on all instances we have constructed.

As a next step we hope to generalize our model to capture more
aspects of the actual ISE problem. For example, machines may not
be identical, and calibrations may require machine time. Moreover,
some jobs may not have unit size. We hope that efficient constant-
factor approximations are still possible on more general instances
of the ISE problem.

5. REFERENCES
[1] New integrated stockpile evaluation program to better ensure

weapons stockpile safety, security, reliability, March 2006.
http:
//www.sandia.gov/LabNews/060331.html.

[2] P. Baptiste. Scheduling unit tasks to minimize the number of
idle periods: a polynomial time algorithm for offline
dynamic power management. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 364–367, 2006.

[3] J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Scheduling subject to resource constraints: classification and
complexity. Discrete Applied Mathematics, 5(1):11–24,
1983.

[4] P. Brucker. Scheduling Algorithms. Springer, New York,
2007.

[5] M.I. Dessouky, B.J. Lageweg, J.K. Lenstra, and S.L. van de
Velde. Scheduling identical jobs on uniform parallel
machines. Statistica Neerlandica, 44(3):115–123, 1990.

[6] M.M. Dessouky. Scheduling identical jobs with unequal
ready times on uniform parallel machines to minimize the
maximum lateness. Computers and Industrial Engineering,
34(4):793–806, 1998.

[7] M.M. Dessouky, M.I. Dessouky, and S.K. Verma. Flowshop
scheduling with identical jobs and uniform parallel
machines. European Journal of Operational Research,
109(3):620–631, 1998.

[8] M.R. Garey and D.S. Johnson. Complexity results for
multiprocessor scheduling under resource constraints. SIAM
Journal on Computing, 4(4):397–411, 1975.

[9] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.
Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5(2):287–326, 1979.

[10] J.R. Jackson. Scheduling a production line to minimize
maximum tardiness. Technical report, Management Science
Research Project Research Report 43, University of
California, Los Angeles, 1955.

[11] D. Karger, C. Stein, and J. Wein. Scheduling algorithms.
CRC Handbook of Computer Science, 1997.

[12] W. Kern and W.N. Nawijn. Scheduling multi-operation jobs
with time lags on a single machine. In Twente Workshop on
Graphs and Combinatorial Optimization, pages 81–86,
1991.

[13] B.J. Lageweg, E.L. Lawler, J.K. Lenstra, and A.H.G.
Rinnooy Kan. Computer aided complexity classification of
deterministic scheduling problems. Technical Report BW
138/81, Stichting Mathematisch Centrum, Amsterdam, 1981.

[14] Y. Lin and W. Li. Parallel machine scheduling of
machine-dependent jobs with unit-length. European Journal
of Operational Research, 156(1):261–266, 2004.

[15] B. Simons and M. Sipser. On scheduling unit-length jobs
with multiple release time/deadline intervals. Operations
Research, 32(1):80–88, 1984.

[16] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo.
Implications of classical scheduling results for real-time
systems. Computer, 28(6):16–25, 1995.

[17] J. D. Ullman. Polynomial complete scheduling problems.
ACM SIGOPS Operating Systems Review, 7(4):96–101,
January 1973.

[18] W. Yu. The two-machine flow shop problem with delays and
the one-machine total tardiness problem. PhD thesis,
Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, 1996.

[19] W. Yu, H. Hoogeveen, and J.K. Lenstra. Minimizing
makespan in a two-machine flow shop with delays and
unit-time operations is NP-hard. Journal of Scheduling,
7(5):333–348, 2004.

