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Abstract—We present a local search strategy to improve
the mapping of a parallel job’s tasks to the MPI ranks of
its parallel allocation in order to reduce network congestion
and the job’s communication time. The goal is to reduce
the number of network hops between communicating pairs
of ranks. Our target is applications with a nearest-neighbor
stencil communication pattern running on mesh systems with
non-contiguous processor allocation, such as Cray XE and
XK Systems. Using the miniGhost mini-app, which models
the shock physics application CTH, we demonstrate that our
strategy reduces application running time while also reducing
the runtime variability.

Keywords-Task mapping, stencil communication pattern,
non-contiguous allocation, local search.

I. INTRODUCTION

Task mapping is the assignment of a job’s tasks to the
set of computational elements allocated to that job. When
using MPI programming, it is the decision of which MPI
rank performs which part of the computation. Improved task
mapping has been shown to significantly reduce job running
times for a variety of scientific applications (e.g. [1], [2], [3],
[4], [5]), including achieving a speedup of 1.64 on a quantum
system simulation [3]. Better task mapping reduces the
number of hops between communicating tasks and hence the
amount of system bandwidth consumed by each message. As
systems grow larger and processor performance continues to
improve faster than network performance, the importance of
task mapping will continue to grow.

The job’s communication pattern and the system’s net-
work topology are both important for task mapping. Here,
we focus on jobs with a nearest-neighbor stencil commu-
nication pattern, a very common pattern in computational
science applications. For this pattern, the tasks correspond to
integer points in a grid and communicate with their nearest
neighbors, the 4 closest points in the +x, −x, +y, and −y
directions for 2D or the 6 closest points for 3D (add the +z
and −z directions). This pattern arises naturally from spatial
decompositions into hyperrectangular regions.

In this paper, we target machines whose network topology
is a 3D mesh and allow the possibility that a job is allocated
to a non-contiguous set of nodes. This is appropriate for

the Cray XT, XE, and XK series of systems, including the
Cray XE6 (Cielo) we used for our experiments. An alternate
allocation model is used by systems such as the Blue Gene,
which always assigns each job a contiguous set of nodes
isolated from each other [6]. This isolation provides benefits
[7], but also decreases system utilization (e.g. [8], [9]).
There are task mapping algorithms designed specifically for
systems with contiguous allocation (e.g. [10], [11]). Note
that our algorithms can be applied to the contiguous setting
as well, but that the reverse is not true.

Although jobs are allocated nodes on our target machines,
our task mapping algorithms actually work in terms of
MPI ranks rather than compute nodes allocated to that job.
Each MPI rank is a single process in a distributed memory
program; we will refer to them simply as ranks. In general,
each compute node may support many ranks depending on
the number of cores it has and the mix of distributed-
and shared-memory programming models (e.g. MPI and
OpenMP) used.

A recent task mapping algorithm developed for our setting
is GEOMETRIC (GEOM) [12], which operates by finding
corresponding decompositions of the job tasks and allocated
ranks. This algorithm was shown to outperform a wide
variety of other algorithms, reducing application running
time by around 30% [12], [13].

Contribution: The main contributions of this paper are
as follows:

• We present a local search algorithm that improves on
GEOM by swapping pairs of tasks when doing so
improves the average distance between communicating
tasks.

• We demonstrate our algorithm in a proxy application
and show that it slightly improves the application’s total
running time. Furthermore, it does this while reducing
the variability in total running time.

• We examine the number of swaps made by our algo-
rithm, showing it is reasonable in practice. We also
show that some processor allocations require more, but
use the distribution of swaps made to provide guidance
on when to cut off the search and avoid pathological
cases.



At a high level, our results again demonstrate that GEOM is
a good task mapping algorithm, but show that local search
can be cheap enough to improve upon it.

Outline: The rest of this paper is organized as follows.
Section II describes our algorithms. Section III describes
the setup for our experiments and simulations. Section IV
describes our results. Section V summarizes related work.
Section VI concludes and discusses future work.

II. GEOM AND GSEARCH

We now describe our task mapping algorithms. GEOM
first rotates the job so that its dimension lengths have the
same order as the bounding box of the ranks (i.e. if the
bounding box of ranks is largest in the x dimension, then
the job’s largest dimension will also be x and so on).

After any necessary rotations, GEOM develops corre-
sponding decompositions of the set of tasks in the job
and the set of ranks allocated to it. Each of these are
represented with a list of coordinates, the coordinates of a
task being its position in the job’s communication pattern
and the coordinates of a rank being its position in the
machine’s 3D grid. In addition, the job is represented with a
triple giving its size in each dimension; the job is always a
hyperrectangle. At a given step, the job’s tasks are split into
two hyperrectangles as evenly as possible along its longest
dimension. For example, a 3× 4× 5 job would be initially
split into two hyperrectangles of size 3×4×3 and 3×4×2
respectively. The same dimension is then used to split the
ranks into two subsets with corresponding sizes. This would
put the 36 ranks with smaller z coordinates into the first
subset and the 24 ranks with larger z coordinates into the
second subset (ties broken consistently). The corresponding
subsets of tasks and ranks are then mapped to each other
recursively. The base case is subsets of size one, which are
handled by mapping the only task to the only rank.

Hoefler and Snir [14] describe a recursive bisection
algorithm for general job communication patterns. They
represent the communication pattern with a graph and use
the METIS graph partitioner [15] to split the graph. Often a
more general algorithm is preferable, but in this case GEOM
has two important advantages over the more general algo-
rithm. First, it is a simpler and faster algorithm. Second and
more importantly, it gives better mappings; Deveci et al. [13]
showed that it resulted in job communication times roughly
15% shorter than the more general algorithm. We attribute
this advantage to the benefit of using task coordinates at
every level of the recursion. Consider Figure 1, which shows
two levels of a possible GEOM decomposition. Because
task coordinates are used, tasks with low x coordinates are
near each other (in regions A and C) even when they are
separated by the decomposition’s first cut. This would not
necessarily be the case when a general graph partitioner is
used since reversing the roles of C and D or using different
dimensions to split the tasks and ranks could give equally

B first cut

next cuts

DC

A

Figure 1. Two levels of cuts in decomposition created by GEOM

do {
madeSwap = false;
for 1 ≤ i < num tasks

for i < j ≤ num tasks
if(swapping tasks i and j reduces average hops) {

make the swap
madeSwap = true;

}
} while(madeSwap);

Figure 2. Pseudocode for local search component of GSEARCH (version
without a swap limit)

good cuts. Using the coordinates allows GEOM to easily
exploit the full structure of the problem.

Our other algorithm, GEOM-BASED LOCAL SEARCH
(GSEARCH), uses the observation from [12] that job running
time correlates with the average number of hops between
communicating tasks (average hops metric). GSEARCH aims
to improve the mapping quality by performing a local
search to improve the average hops metric. Specifically, it
begins with the mapping generated by GEOM and examines
pairs of tasks, swapping the ranks executing them whenever
doing so reduces the average hops metric. Pseudocode for
the search part of GSEARCH is found in Figure 2. For a
fast implementation, the test of whether a swap reduces
the average hops (the if statement condition in Figure 2)
should not calculate the overall average hops metric, but just
compare the distances involving the tasks that have been
swapped since only these are changed; this optimization
is used in our implementation. In GSEARCH as shown in
Figure 2, the search continues until a local minimum is
found, at which point no pairs can be swapped to improve
the metric. We discuss setting a limit on the number of swaps
made in Section IV-B and some other variations of the search
strategy in Section IV-C.

III. EXPERIMENTAL SETUP

We evaluate these algorithms using experiments on a
large system and on a trace-based simulator. The simulations
were made comparable to the experiments when possible,



with a similar machine size, interconnect topology, and
processor allocation algorithm. This was done to correlate
the simulations to the experiments so that simulations could
be used when experiments were impractical.

The simulations did not model the effect of mapping on
running time so the algorithms are evaluated based on their
effect on average hops, but in exchange they allowed us
to examine our algorithms on many more jobs, each of
them taken from a real trace and allocated with a realistic
processor allocation algorithm.

A. Cielo

Our experiments were run on the ACES [16] system
Cielo [17], located at Los Alamos National Laboratories.
Cielo is a Cray XE6 with 8,944 compute nodes plus a
smaller number of service nodes connected in a Cray Gemini
3D torus in a sixteen by twelve by twenty-four (XYZ) topol-
ogy, with two nodes (sockets) per Gemini. Each compute
node is a dual AMD Opteron 6136 eight-core “Magny-
Cours” socket G34 running at 2.4 GHz. Each service node
is a 272 AMD Opteron 2427 six-core “Istanbul” socket F
running at 2.2 GHz. The bi-section bandwidth is 6.57 by
4.38 by 4.38 (XYZ) TB/s. As of November 2013, Cielo
was number 26 on the Top500 list [18].

The application used in the experiments was miniGhost.
As part of the exascale research program, the DOE lab
community is developing mini applications (miniApps) that
are representative of the computational core of major ad-
vanced simulation and computing codes. MiniGhost is a
miniApp for exploring boundary exchange strategies using
stencil computations in scientific parallel computing. The
miniGhost application [19] is a bulk-synchronous message
passing code whose structure is modeled on the compu-
tational core of CTH [20]. CTH is a multi-material, large
deformation, strong shock wave, solid mechanics code de-
veloped at Sandia National Laboratories.

A set of experiments consists of miniGhost runs for
various numbers of nodes (powers of 2). In each experiment,
the two mapping algorithms are run one after the other with
the same allocation to minimize the experimental variances
other than the task mapping algorithm used. All experiments
in a set were submitted to the system queue at roughly the
same time. We ran a total of six sets.

The communication pattern for each job was a 3D nearest
neighbor stencil with dimensions as shown in Figure 3.
(These dimensions are the same as those used for this
application in prior work on task mapping [12], [21]; the
aspect ratio comes from a shaped charge problem for CTH.)
Internode communication was performed with MPI. Each
MPI rank ran on all 16 cores in a node, with intranode
parallelism managed with OpenMP. The miniGhost output
includes total time, communication time as a percentage of
total time, and average hops between neighboring ranks in

Nodes Job Dimensions
4 1× 4× 1
8 2× 4× 1

16 2× 4× 2
32 2× 8× 2
64 4× 8× 2

128 4× 8× 4
256 4× 16× 4
512 8× 16× 4
1K 8× 16× 8
2K 8× 32× 8
4K 16× 32× 8

Figure 3. Job Dimensions used in miniGhost experiments

the application. The application spends about thirty percent
of its time communicating.

B. Simulator

For our simulation, we ran a trace-based simulator [22]
with the LLNL-Atlas trace (version 1.1 clean) from the
Parallel Workloads Archive [23]. The trace is from a cluster
with 9,216 nodes. To match this node count with a mesh
system, our simulation assumed it was a 24 × 24 × 16
mesh. From this trace, we took job start times, execution
times, and number of nodes needed. (Note that most Parallel
Workloads Archive traces give job arrival times and thus
require scheduling; since the LLNL-Atlas trace gives start
times instead, every job runs exactly when it did on the real
system.)

To identify the nodes allocated for each job, we used a
linear allocation algorithm called snake best fit that combines
ideas of Lo et al. [8] and Leung et al. [24]. This algorithm
organizes the nodes in a linear order along a “snake” or “s-
curve”, which curves back and forth along the machine’s
shortest dimension (z). The free nodes are grouped into
intervals by their position along the curve and the algorithm
allocates nodes from the smallest interval with enough nodes
(best fit). If no interval is large enough, then nodes are
selected to minimize the span, the maximum distance along
the curve between selected nodes. This scheme is fast and
generates good allocations [25]. It is also similar to the
algorithm used in practice on Cray systems.

IV. RESULTS

Now we present our experimental results in three parts.
First, we demonstrates that GSEARCH yields better task
mappings than GEOM. Second, we look at the number of
swaps that GSEARCH makes, a potential concern for its
running time. Third, we look at a couple of slight variations
on GSEARCH that were designed to reduce the number of
swaps needed.
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Figure 4. Running time by job size for miniGhost on Cielo (Average over
6 sets of experiments)

A. Mapping quality

The main criteria for task mapping quality is application
running time. Figure 4 shows the average running times
for miniGhost runs of different sizes using GEOM and
GSEARCH. The two algorithms are essentially tied at small
job sizes, with GSEARCH gradually becoming better as the
job size increases to 2K nodes and then essentially tying
again at 4K nodes. GSEARCH gives a better average time
for all these sizes, with the largest difference being 0.83
seconds at 2K.

The relatively close performance of the two algorithms at
4K nodes breaks the apparent performance trends up to that
point. In particular, it appears anomalous since the running
time of GEOM breaks its clear upward path prior to that
job size. One possible cause of this variation is random
noise due to contention from other jobs, which is known
to significantly affect running times [7]. An examination of
individual runs does reveal significant variation, but not in a
way that supports this explanation, however. In only one of
the six runs at 4K nodes did GEOM take longer than 24.25
seconds, its average time at 2K nodes. Even the best 4K
run for GSEARCH relative to GEOM only beat it by 0.52
seconds, less than the average amount by which GSEARCH
beat GEOM for the 2K node size. The apparent anomaly of
GEOM’s performance at 4K is an interesting open issue and
we return to it in Section VI.

A second criteria for task mapping quality is predictability
of performance. Figure 5 shows the difference between the
longest and shortest running times for each algorithm on
each job size. We see that the range of running times in-
creases with job size for both algorithms, but that GSEARCH
generally delivers only about two thirds of the runtime
variability of GEOM. Thus, the performance of GSEARCH
seems to be both slightly better and more predictable.

Our simulation results also support the idea that
GSEARCH improves upon GEOM task mappings. Figure 6
shows the average distance metric as a function of job size
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Figure 5. Difference between max and min running time by job size for
miniGhost on Cielo
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Figure 6. Average edge length by job size for LLNL-Atlas trace

for both task mapping algorithms; recall that the simulations
do not model the effect of mapping on running time but
that average hops has been shown to correlate with it.
Since GSEARCH explicitly optimizes this metric, it always
achieves average hops that are at least as low as GEOM.
In fact, it achieves a strictly better average hops for just
under half (49.7%) the jobs. Figure 6 does not show the
steadily increasing improvement depicted in Figure 5, but
we believe the specific peaks and valleys are artifacts of
the specific allocations received by jobs since many of
the points represent relatively few jobs and some of these
jobs ran right consecutively with same allocation. Certainly,
the curves are roughly parallel, suggesting that variations
are caused by allocation quality, which affects both task
mapping algorithms.

The reduction in average hops of GSEARCH relative to
GEOM may also lead to the reduction in runtime variability.
Much “random” variability in job running times is caused
by congestion on network links, which can delay messages
[7]. Reducing the number of hops between a pair of com-
municating tasks makes that pair’s messages less susceptible
to congestion. It also makes that pair’s messages less likely
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Figure 7. Number of swaps made by GSEARCH as a function of job size
(average and max over 6 sets of experiments on Cielo)

to interfere with other messages in the system, including
messages between other tasks in the same job.

B. Number of swaps needed

Having discussed mapping quality, we now examine the
number of swaps made by GSEARCH. This was one of
our initial concerns about GSEARCH; if the number of
swaps is too large, the extra time spent improving the task
mapping would eliminate the benefit of doing so. In order
to study this issue, we looked at the numbers of swaps used
in our experiments and simulations, as well as performing
additional simulations specifically to get a sense of the
distribution of swap frequencies. This work assuaged our
concerns and suggested bounds that could be used to limit
the number of swaps and avoid extreme worst-case behavior.

Figure 7 shows the average and maximum number of
swaps GSEARCH performed on jobs of each size during our
experiments on Cielo. Both the average and maximum val-
ues seem to grow linearly with the job size. The difference
between them shrinks in proportion of the average value,
though its absolute magnitude generally increases with job
size (not visible from the graph because of the log-log scale).
The exception is that the values are relatively close at 4K,
possibly because this size uses so much of the machine.
Jobs occupying a large fraction of the machine must have
large contiguous components and GEOM does well in this
case; it gives a perfect mapping if the allocation and job
communication pattern have matching shapes.

Figure 8 shows the number of swaps as a function of
job size for the trace-based simulation. The points show
the average value and the top of the error bar shows the
maximum value; we return to the line. This figure shows
considerably more noise than Figure 7, but the trends are
very similar. Again, the average number of swaps seems
to increase linearly with the job size, with most points
below the line of slope 0.35. The main exceptions are
points representing few jobs; the point for 6,601–6,800

line depicts 0.35n + 20
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Figure 9. Swap count frequencies from 100,000 random allocations on
16× 24× 24 system

represents one job of size 6,784 and the point for 5,201–
5,400 represents one job of size 5,256 and one of size
5,264. Among those representing more jobs, some of those
jobs have the same or similar allocations since they run
consecutively or separately by relatively small jobs; this
explains the points for 4,801–5,000 (high numbers of swaps
from 17 jobs of size 4,920) and 7,401–7,600 (38 jobs of
size 7,576). The upper envelope of the maximum numbers
of swaps also seems to be growing linearly.

To further demonstrate that the number of swaps is not
overwhelming, we ran some additional simulations: for a
variety of job sizes, we counted the number of swaps made
by GSEARCH on a randomly-chosen allocation of nodes.
Each job size was tested with 100,000 allocations. Figure 9
plots the number of allocations that resulted in each number
of swaps. All of sizes give bell-shaped frequency curves,
indicating that the number of swaps is fairly concentrated
about the mean value. As the job size increases, the curves
move to the right and do flatten somewhat, but the worst we
saw for any of these curves was 133 swaps above the mean
(for the 12× 12× 12 curve).
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Figure 10. Average edge length as a function of the number of swaps
made on sample jobs from the LLNL-Atlas trace. All selected jobs used
2,144 nodes

Random sampling like this may miss the outermost tails
of a probability distribution, but these results are useful for
determining a limit at which to stop seeking swaps. The
mean number of swaps made seems to consistently be a bit
below n/4 for a job of size n. To allow all the values shown
in Figure 9, we need a slightly higher fraction of the job size
and also to include an additive term so that small jobs are
given some flexibility. For example, the function 0.35n+20
works; this is the line plotted in Figure 8. Most jobs in the
trace-based simulations required fewer swaps than this, but
some did use more and a few used many more. We take
this as evidence that a limit on the number of swaps should
be used to ensure that the mapping algorithm finishes in a
reasonable time.

To check the behavior of GSEARCH if its search is
terminated due to hitting a limit on the number of swaps,
we had our simulator print the average hops metric after
each 100 swaps. Figure 10 shows the results for some jobs
of size 2,144; this size was selected because of the variety
of behavior of its jobs. Depicted are four jobs (out of 12
of this size) representing extremes in GSEARCH’s behavior
on jobs of this size. The first job received the worst initial
mapping from GEOM, was least improved (as a %) by the
local search, and had the worst final mapping. The others
improved the most, required the most swaps, and received
the best initial and final mappings, respectively. The amount
of improvement for most jobs was fairly similar in each
100 swaps, but there was some variation. (Having exactly
the same improvement would give a straight line in the
figure.) Different jobs also improved at significantly different
rates (appearing as different slopes) in a way that does not
appear to be related to the quality of the initial mapping; the
lines for some of the jobs not shown in Figure 10 actually
cross. (Recall that those jobs were selected because they are
boundary cases.)

Despite the variety of behavior appearing in Figure 10, the

5

1

2

6

0

7

3

4

 10

 10

 10

 10

 10

 12
Number of swaps

 10

 10

N
u

m
b

er
 o

f 
al

lo
ca

ti
o

n
s

 0  2  4

 10

 6  8

 10

Figure 11. Swap count frequencies from all possible allocations of a
4× 2× 1 job on a 4× 4× 2 system

evidence supports the idea that the gain from GSEARCH’s
search strategy is roughly proportional to the number of
swaps. The rate of gain may be slow, but it does not appear
that terminating the search early when a swap limit is hit
would harm the algorithm’s performance disproportionately.

In addition to these simulations on the effect of a limit,
we ran a couple of experiments with swap limits on Cielo.
Each consisted of a series of miniGhost runs with different
limits. Every run in an experiment had the same allocation
and they were executed consecutively, but random noise
causes the performance to jump much more than the smooth
progression shown in Figure 10 suggests. Despite this, using
a limit does not appear to harm the algorithm, which is all
we really need since the goal of using a limit is to prevent
pathological behavior.

In order to investigate the true worst case number of
swaps, we also exhaustively tried GSEARCH on all allo-
cations for some small cases. We found that a 4× 2× 1 job
can require as many as 12 swaps (1.5 times the job size) on
a 4× 4× 2 machine. Using this many swaps is vanishingly
rare, however, with only 4 allocations of

(
32
8

)
= 10, 518, 300

requiring this many; see Figure 11 for the full distribution.
We also observed that it is important to start with a

good initial task mapping. We were able to hand construct
bad initial mappings that gave longer sequences of swaps
than any we saw with GSEARCH. In particular, we found
improving sequences of swaps of length 14 for a 2×3 job, 23
for a 3×3 job, 31 for a 3×4 job. These give ratios of number
of swaps to job size of 2.3, 2.5, and 2.585 respectively, much
higher than even the 1.5 that we saw above when running
GSEARCH on all allocations; clearly the quality of the initial
mapping matters.

It seems challenging to give an absolute bound on the
number of swaps that are possible. One idea is to bound the
number of times a given pair of tasks can swap. Surprisingly,
we observed several cases in which a pair of tasks can swap
more than once, with the second swap putting the tasks back



onto their original ranks. This can happen when intervening
swaps move their neighbors in a way that makes the original
swap detrimental.

C. Variations on GSEARCH

Thus far, this paper has discussed a particular local search
strategy which makes any swap that improves the average
distance as soon as it is identified. Early in this research, we
used simulations to compare this algorithm (GSEARCH) with
a couple of alternate ways to choose swaps. In particular, we
looked at the following alternatives:

1) Consider swaps rank by rank, testing all swaps involv-
ing a given rank before making the best one (i.e. the
one which improves the average distance by the most).

2) Test swaps of all pairs before making the single best
one.

The goal of each of these alternatives was to reduce the
number of swaps by avoiding long sequences of swaps that
provide little benefit. We found that the alternate algorithms
accomplish this, reducing the number of swaps performed by
12% and 35% respectively while giving final mappings that
are of essentially indistinguishable quality (average distance
within 0.2%). Unfortunately, the additional time required to
find each of the swaps eliminated the savings of doing fewer
of them; the first alternative took 2% longer than GSEARCH
and the second took 2.5 times as long. The simple strategy
used by GSEARCH seems to be the best of these ideas.

V. RELATED WORK

There is a wide variety of prior research on task map-
ping in different settings, which we now summarize. Be-
fore GEOM, the main algorithms for task mapping with
non-contiguous allocations were based on linear orderings.
MiniGhost’s default behavior is to assign tasks to ranks in
row-major order; this is typical for applications that do not
specifically consider task mapping. With ALPS and Moab,
MPI ranks are determined by the allocation order, which
comes from a node numbering along a space-filling curve
[26] using an algorithm similar to the one described in
Section III-B. The default mapping then assigns rows along
this curve, which can create long edges in the task columns
and at the end of each row. Barrett et al. [21] observed that
this mapping did not scale well above 4K cores (256 nodes)
on Cielo and improved it by renumbering the tasks so that
a submeshes of the job are assigned to each node.

GEOM was proposed by Leung et al. [12], who originally
called it RCB. They showed that it beat the strategies
above and adaptations of task mapping algorithms from the
contiguous setting proposed by Bhatelé et al. [11]. Deveci
et al. [13] created MULTI-JAGGED (MJ), a slight general-
ization of GEOM that uses multi-way partitions instead of
bisections to decompose the sets of tasks and ranks. They
also considered shifts to account for the wraparounds of a
torus interconnect and trying all rotations rather than just

the one that gives the job and ranks the same dimension
ordering. The shifts and extra rotations gave a slight benefit
to miniGhost and more for miniMD [27], a miniapp based
on a molecular dynamics application whose communication
pattern can propagate information further in a single step.
For both applications, GEOM and MJ outperformed the
graph partitioning-based mapping algorithm by Hoefler and
Snir [14] described in Section II.

Local search using swaps that improve the current map-
ping has been proposed by others, though only in the context
of the unstructured problem where the job communication
pattern is an arbitrary graph. Bokhari [32] alternated stages
of local search with making random swaps. Lee and Aggar-
wal [33] ran local search from an intial greedy assignment.
Hoefler and Snir [14] use a search that is a variation on
simulated annealing that tests some random swaps to see if
they improve an initial solution.

Other heuristic strategies have also been applied to task
mapping with non-contiguous allocations, including greedy
[28], genetic algorithms [29], simulated annealing [30], and
partitioning by spectral methods [31].

VI. DISCUSSION

We have shown that the local search strategy GSEARCH
can slightly improve the running time of stencil-based appli-
cations while meaningfully reducing the variation between
runs. On one hand, our results further demonstrate the
quality of the GEOM algorithm, which seems to obtain
solutions near a local optimum. On the other hand, they also
show that local search is cheap enough to be beneficial.

The main outstanding question from our work is to explain
the apparent anomaly of GEOM improving between the 2K
and 4K sizes. A similar phenomenon was reported in a
slightly different setting in prior work by Leung et al. [12].
Specifically, they reported a slight decline in GEOM running
time for miniGhost going from 2K nodes to 4K nodes when
each MPI rank ran on 4 cores rather than 16 as in our
experiments. One likely explanation is that this improvement
comes from the job using such a large part of the machine;
this necessarily means that many of the allocated processors
are contiguous, which simplifies task mapping, and also
lessens the interference from other jobs since there are
fewer of them. This explanation is not entirely consistent
with Figure 6, however, since that figure shows GSEARCH
improving the average hops metric for all job sizes. Possible
reasons for this discrepancy include the following:

• Architectural differences; the simulated system has a
longer y-dimension instead of 2 nodes at each mesh
location as Cielo does.

• Differences in job shapes.
• Imperfections in metric; average hops is not the same as

job running time, despite the correlation between them
and other evidence of the metric’s usefulness as a proxy
for running time (like the benefits from GSEARCH).



We plan to investigate these issues and also consider other
possible causes of GEOM’s performance improvement at the
largest size.

Beyond this open question, a logical next step in this work
is to develop a fully parallel implemenation of GSEARCH;
our current version computes the mapping serially even
though all nodes in the allocation are available. The search
space of possible swaps is large and most swaps are inde-
pendent so parallelism should help reduce the search time,
but it is not obvious how to decompose the search space or
handle swaps that will affect multiple parts of it. One idea
is to build on MJ [13], which already investigates different
shifts and rotations in parallel.
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task mapping for reducing communication contention on large
parallel machines. In Proc. 20th IEEE Intern. Parallel and
Distributed Processing Symp. (IPDPS), 2006.

[29] T. Chockalingam and S. Arunkumar. Genetic algorithm
based heuristics for the mapping problem. Computers and
Operations Research, 22(1):55–64, 1995.

[30] S.W. Bollinger and S.F. Midkiff. Heuristic technique for
processor and link assignment in multicomputers. IEEE
Trans. Computers, 40(3), 1991.

[31] I-Hsin Chung, Che-Rung Lee, Jiazheng Zhou, and Yeh-Ching
Chung. Hierarchical mapping for HPC applications. In Proc.
Workshop on Large-Scale Parallel Processing, pages 1810–
1818, 2011.

[32] S.H. Bokhari. On the mapping problem. IEEE Trans
Computers, C-30(3), 1981.

[33] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for parallel
processing. IEEE Trans. Computers, C-36(4), 1987.


