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Abstract

A parity walk in an edge-coloring of a graph is a walk along which each color is used
an even number of times. Let p(G) be the least number of colors in an edge-coloring of
G having no parity path (a parity edge-coloring). Let p(G) be the least number of colors
in an edge-coloring of G having no open parity walk (a strong parity edge-coloring).
Always p(G) > p(G) > x'(G). We prove that p(K,,) = 218"l —1 for all n. The optimal
strong parity edge-coloring of K, is unique when n is a power of 2, and the optimal
colorings are completely described for all n.

1 Introduction

Our work began by studying which graphs embed in the hypercube @y, the graph with vertex
set {0, 1}* in which vertices are adjacent when they differ in exactly one coordinate. Color-
ing each edge with the position of the bit in which its endpoints differ yields two necessary
conditions for the coloring inherited by a subgraph G:

1) every cycle uses each color an even number of times,

2) every path uses some color an odd number of times.

Existence of a k-edge-coloring satisfying conditions (1) and (2) is also sufficient for a con-
nected graph G to be a subgraph of (). This characterization of subgraphs of )y appeared
in 1972 (Havel and Moravek [8]). The problem was studied as early as 1953 (Shapiro [13]).

Let the usage of a color on a walk be the parity of the number of times it appears along
the walk. A parity walk is a walk in which the usage of every color is even. Condition (1)
above states that every cycle is a parity walk, and (2) states that no path is a parity walk.
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In general, a parity edge-coloring is an edge-coloring with no parity path, and a strong
parity edge-coloring (spec) is an edge-coloring with no open parity walk (that is, every parity
walk is closed). Some graphs embed in no hypercube, but giving the edges distinct colors
produces a spec for any graph. Hence the parity edge-chromatic number p(G) and the strong
parity edge-chromatic number p(G), defined respectively to be the minimum numbers of
colors in a parity edge-coloring of G and in a spec of GG, are well defined. Elementary results
on these parameters appear in [5].

When T is a tree, p(T') = p(T') = k, where k is the least integer such that 7" embeds in
Qr [5]. Since incident edges of the same color would form a parity path of length 2, every
parity edge-coloring is a proper edge-coloring, and hence p(G) > x/(G), where x/(G) denotes
the edge-chromatic number. Although there are graphs G with p(G) > p(G) [5], it remains
unknown how large p(G) can be when p(G) = k. It also remains unknown whether there is
a bipartite graph G with p(G) > p(G).

When n is a power of 2, we will prove that the complete graph K,, has a unique optimal
spec (up to isomorphism), which will help us determine p(K,) for all n. With a suitable
naming of the vertices, we call this edge-coloring of K, the “canonical” coloring.

Definition 1.1 For A C F%, let K(A) be the complete graph with vertex set A. The
canonical coloring of K(A) is the edge-coloring f defined by f(uv) = u + v, where u + v is
binary vector addition. When n = 2*, letting A = F% yields the canonical coloring of K,,.

Lemma 1.2 For A C F%, the canonical coloring of K(A) is a spec. Consequently, if n = 2,
then p(K,) = p(K,) = X' (K,) =n— 1.

Proof. If W is an open walk, then its endpoints differ in some bit . Thus in the canonical
coloring the total usage of colors flipping bit ¢ along W is odd, and hence some color has odd
usage on W. The canonical coloring of K (F¥) uses 2¥ — 1 colors (the color 0% is not used).
The lower bound follows from p(G) > p(G) > X' (G) > A(G). n

Since every complete graph is a subgraph of the next larger complete graph, we obtain
p(K,) < 2Menl — 1. In Section 2, we prove that this upper bound is exact. Our proof is
expressed using linear subspaces of binary vector spaces.

Parity edge-coloring relates to a less restrictive problem. A walk of length 2k is repetitive
if the ith and (k + i)th edges have the same color, for 1 < ¢ < k. A Thue coloring is an
edge-coloring with no repetitive path, and the Thue number t(G) is the minimum number of
colors in a Thue coloring of G. Every parity edge-coloring is a Thue coloring, so t(G) < p(G).
Alon, Grytczuk, Haluszezak, and Riordan [2] observed that the canonical coloring yields
t(K,) < 2M'e"l — 1. Tt seems no good lower bounds on ¢(K,) are known. By our result, a
Thue coloring of K,, better than the canonical coloring must contain an open parity walk.

To further motivate our focus on complete graphs, we show that our main result strength-
ens a special case of Yuzvinsky’s Theorem on sums of binary vectors. To state it, we need
the Hopf-Stiefel function from the theory of quadratic forms.

2



Definition 1.3 (Hopf [9], Stiefel [14]) For positive integers r and s, define r o s to be the
least integer n such that (z + y)" is in the ideal of Fy[z, y| generated by " and y®.

In non-algebraic language, the definition has the following equivalent phrasing: r o s is
the least n such that (Z) is even for each k with n —s < k < r. The condition becomes

vacuous if n > r+s—1, so trivially ros <r 4+ s — 1.

Theorem 1.4 (Yuzvinsky [15]) For A, BCFs let C={a+b:a€ Abe B}. If|A| =7
and |B| = s, then |C| > ros.

Generalizations and alternative proofs of Yuzvinsky’s Theorem appear in [1], [4], [6]. The
theorem is related to our results via a simple formula for the Hopf-Stiefel function recently
proved by Plagne [12]. Subsequently, Karolyi [10] gave a short inductive proof. See [7] for a
thorough survey of alternative formulas, related results, and generalizations.

Theorem 1.5 (Plagne [12], Kérolyi [10]) ros = mingen {27 ([ ] + [2] - 1) }.

2k

When A = B and both have size r, the minimization yields r o r = 28”1, Yuzvinsky’s
Theorem for this case says that every canonical coloring of K, uses at least 21871 — 1 colors.
Our result shows that in the more general family of strong parity edge-colorings, it remains
true that at least 21871 — 1 colors are needed.

The canonical coloring extends to complete bipartite graphs in a natural way: if A, B C
F5 and K (A, B) is the complete bipartite graph with partite sets A and B, then the edge-
coloring defined by f(ab) = a + b is a spec. The bound in Yuzvinsky’s Theorem is always
tight (see [6]); that is, for r,s < 2F there exist A, B C F5 with |A| = r, |B| = s, and
|C'| = ros. Consequently, p(K,s) < ros. We conjecture that equality holds. A direct proof
in the graph-theoretic setting would strengthen all cases of Yuzvinsky’s Theorem.

Conjecture 1.6 p(K, ;) =ros.

2 The Lower Bound

In this section, we use the closure of linear spaces under addition to prove that p(K,) >
2Menl _ 1. The main idea is to introduce an additional vertex without needing additional
colors until a power of 2 is reached. We begin by proving that every optimal spec of K, is
a canonical coloring when n is a power of 2.

Definition 2.1 An edge-coloring f of a graph G satisfies the j-constraint if whenever
f(uv) = f(zy) and vz € E(G), also uy € E(G) and f(uy) = f(vz).

Lemma 2.2 If f is a parity edge-coloring in which every color class is a perfect matching,
then f satisfies the 4-constraint.



Proof. Otherwise, given f(uv) = f(zy), the edge of color f(vz) incident to u forms a parity
path of length 4 with uv, vx, and zy. [ ]

Theorem 2.3 If f is a parity edge-coloring of K, in which every color class is a perfect

matching, then f is a canonical coloring and n is a power of 2.

Proof. Every edge is a canonically colored K,. Let R be a largest vertex set such that |R|
is a power of 2 and f restricts to a canonical coloring on R. Define j by |R| = 2971, Let ¢
be a bijection from R to IF%_I under which f is the canonical coloring. We prove the claim
by showing that if |R| < n, then f canonically colors a subgraph twice as big.

Since f is canonical on R, every color used within R by f is used on a perfect matching
of R. The vertices of R have other neighbors in K,,, so there is a color ¢ not used within
R. Since c¢ is used on a perfect matching, ¢ matches R to some set U. Let R = RUU.
Define ¢': R' — T as follows: for z € R, obtain ¢/(z) by appending 0 to ¢(z); for = € U
obtain ¢'(x) by appending 1 to ¢(z’), where 2’ is the neighbor of = in color ¢. Within R, we
henceforth refer to the vertices by their names under ¢'.

By Lemma 2.2, the 4-constraint holds for f. The 4-constraint copies the coloring from
the edges within R to the edges within U. That is, consider 2/, 3" € U arising from x,y € R,
with f(zz') = f(yy') = ¢. Now f(2'y') = f(zy) = x +y = 2’ + ¢/, using the 4-constraint,
the fact that f is canonical on R, and the definition of ¢'. Hence f is canonical within U.

Finally, let u be the name of the color on the edge 0?u, for v € U. For any v € R,
let w = u + v; note that w € U. Both (Vv and uw have color v, since f is canonical
within R and within U. By applying the 4-constraint to {v0’, 0w, wu}, we conclude that
f(uv) = f(0?w) = w. Since w = u + v, this completes the proof that f is canonical on . m

For a proper edge-coloring of K, the 4-constraint is equivalent to the property that the
six edges on any four vertices receive three colors or six colors. Independently of our proof,
Keevash and Sudakov [11] proved that if that property holds for a proper edge-coloring with
n—1 colors (one where every color class is a perfect matching), then n is a power of 2. They
also observed that the canonical coloring has this property. Their proof appears also in [3].

In connection with the uniqueness result, Mubayi asked whether a stability property
holds. That is, when n is a power of 2, does there exist a parity edge-coloring or a spec of
K, that has only (1 + o(1))n colors but is “far” from the canonical coloring?

The main result needs several algebraic observations. Relative to any k-edge-coloring f,
the parity vector m(W) of a walk W is the binary k-tuple whose ith bit agrees in parity with
the usage of color ¢ along W. Let the parity space Ly be the set of parity vectors of closed
walks. We note that L is a linear subspace of F%.

Lemma 2.4 If f is an edge-coloring of a connected graph G, then Ly is a binary vector
space.



Proof. Since L; C F%, it suffices to show that L is closed under addition. Given a wu,u-
walk W and a v, v-walk W, let P be a u,v-path in G, and let P be its reverse. Following
W, P,W', P in succession yields a u, u-walk with parity vector 7(W) + 7(W"). u

For a vector space L, let w(L) be the least number of nonzero coordinates of a nonzero
vector in L (set w(L) = oo if L = {0}). For an edge-coloring f of K,, w(L;) determines
whether f is a spec. Let the weight of a vector in F§ be the number of nonzero entries.

Lemma 2.5 If an edge-coloring f of a graph G is a spec, then w(Lys) > 2. The converse
holds when G = K,,.

Proof. If the parity vector of a closed walk W has weight 1, then one color has odd usage
in W (say on edge e¢). Now W — e is an open parity walk, and f is not a spec.

If f is not a spec, then m(W’) = 0 for some open walk W’. In K,, the ends of W' are
adjacent, and adding that edge yields a closed walk whose parity vector has weight 1. ]

Lemma 2.6 For any colors a and b in an optimal spec f of K,, there is some closed walk

W on which the colors having odd usage are a, b, and one other.

Proof. We use Lemma 2.5 repeatedly. Since f is optimal, merging the colors a and b into a
single color a’ yields an edge-coloring f’ that is not a spec. Hence under f’ there is a closed
walk W on which f’ has odd usage for only one color ¢. Also ¢ # d/, since otherwise f has
odd usage on W for only a or b. With ¢ # @’ and the fact that f has odd usage for at least
two colors on W, both a and b also have odd usage on W, and W is the desired walk. [ ]

The same idea as in Lemma 2.6 shows that w(Ly) > 3 when f is an optimal spec of K,
but we do not need this observation. We note, however, that the condition w(L;) > 3 is
the condition for Ly to be the set of codewords for a l-error-correcting code. Indeed, when
n = 2% and f is the canonical coloring, L is a perfect 1-error-correcting code of length n—1.

A dominating vertez in a graph is a vertex adjacent to all others. We use dy(v) and
Ny (v) to denote the degree and neighborhood of a vertex v in a graph H.

Lemma 2.7 If f is an edge-coloring of a graph G with a dominating vertex v, then Ly is
the span of the parity vectors of triangles containing v.

Proof. By definition, the span is contained in L;. Conversely, consider any w(W) € Ly.
Let S be the set of edges with odd usage in W, and let H be the spanning subgraph of G
with edge set S. Since the total usage at each vertex of W is even, H is an even subgraph
of G. Hence H decomposes into cycles, which are closed walks, and (W) is the sum of the
parity vectors of these cycles.

It therefore suffices to show that S is the set of edges that appear in an odd number of
the triangles formed by v with edges of H —v. Each edge of H — v is in one such triangle, so
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we need consider only edges involving v. An edge vw lies in an odd number of these triangles
if and only if dy_,(w) is odd, which occurs if and only if w € Ng(v), since dy(w) is even.
By definition, vw € E(H) if and only if vw has odd usage in W and hence lies in S. [ |

Lemma 2.8 If f is an optimal spec of K,, that uses some color fewer than n/2 times, then
f extends to a spec of K, 1 using the same colors.

Proof. View K, . as arising from K, by adding a vertex u. Let a be a color used fewer
than n/2 times by f, and let v be a vertex of K, at which a does not appear.

We use f to define [ on E(K,.1). Let f’ agree with f on F(K,), and let f'(uv) = a. To
define f’ on each remaining edge uw, first let b = f(vw). By Lemma 2.6, there is a closed
walk W with odd usage precisely for @ and b and some third color ¢ under f. Let f'(uw) = c.

Note that f’ uses the same colors as f. It remains only to show that f’ is a spec. To do
this we prove that w(Ls) > 2, by showing that Ly C Ly. By Lemma 2.7, it suffices to show
that 7(7T") € Ly when T is a triangle in K, containing v.

Triangles not containing u lie in the original graph and have parity vectors in L;. Hence
we consider the triangle T formed by {u,v,w}. Now n(T) = n(W) € Ly, where W is the
walk used to specify f’(uw). [ |

Theorem 2.9 p(K,,) = 2"l — 1.

Proof. If some color class in an optimal spec is not a perfect matching, then p(K,) =
P(Kyy1), by Lemma 2.8. This vertex absorption cannot stop before the number of vertices
reaches a power of 2, because when every color class is a perfect matching the coloring is
canonical, by Theorem 2.3. It cannot continue past 2/'¢"! vertices, since the maximum degree
is a lower bound on ' and p. Hence p(K,,) = p(Kypen) = 2871 — 1. [

Corollary 2.10 If f is an optimal spec of K,,, then f is obtained by deleting vertices from
the canonical coloring of Kongn .

Proof. By Lemma 2.8, we may extend f to an optimal spec f’ of Kyngn1; by Theorem 2.3,
f' is the canonical coloring. |

One may ask whether every edge-coloring of K, that satisfies the 4-constraint is a spec
or a parity edge-coloring. Examples that show the answer is no. Similarly, not every parity
edge-coloring of K, is a spec. Nevertheless, it may be that every optimal parity edge-coloring
is a spec. We offer the following conjecture, which in [5] we proved for n < 16.

Conjecture 2.11 p(K,) = p(K,) for every positive integer n.
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