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Abstract

A parity walk in an edge-coloring of a graph is a walk along which each color is used
an even number of times. Let p(G) be the least number of colors in an edge-coloring of
G having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors
in an edge-coloring of G having no open parity walk (a strong parity edge-coloring).
Always p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = 2dlg ne−1 for all n. The optimal
strong parity edge-coloring of Kn is unique when n is a power of 2, and the optimal
colorings are completely described for all n.

1 Introduction

Our work began by studying which graphs embed in the hypercube Qk, the graph with vertex

set {0, 1}k in which vertices are adjacent when they differ in exactly one coordinate. Color-

ing each edge with the position of the bit in which its endpoints differ yields two necessary

conditions for the coloring inherited by a subgraph G:

1) every cycle uses each color an even number of times,

2) every path uses some color an odd number of times.

Existence of a k-edge-coloring satisfying conditions (1) and (2) is also sufficient for a con-

nected graph G to be a subgraph of Qk. This characterization of subgraphs of Qk appeared

in 1972 (Havel and Morávek [8]). The problem was studied as early as 1953 (Shapiro [13]).

Let the usage of a color on a walk be the parity of the number of times it appears along

the walk. A parity walk is a walk in which the usage of every color is even. Condition (1)

above states that every cycle is a parity walk, and (2) states that no path is a parity walk.
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In general, a parity edge-coloring is an edge-coloring with no parity path, and a strong

parity edge-coloring (spec) is an edge-coloring with no open parity walk (that is, every parity

walk is closed). Some graphs embed in no hypercube, but giving the edges distinct colors

produces a spec for any graph. Hence the parity edge-chromatic number p(G) and the strong

parity edge-chromatic number p̂(G), defined respectively to be the minimum numbers of

colors in a parity edge-coloring of G and in a spec of G, are well defined. Elementary results

on these parameters appear in [5].

When T is a tree, p̂(T ) = p(T ) = k, where k is the least integer such that T embeds in

Qk [5]. Since incident edges of the same color would form a parity path of length 2, every

parity edge-coloring is a proper edge-coloring, and hence p(G) ≥ χ′(G), where χ′(G) denotes

the edge-chromatic number. Although there are graphs G with p̂(G) > p(G) [5], it remains

unknown how large p̂(G) can be when p(G) = k. It also remains unknown whether there is

a bipartite graph G with p̂(G) > p(G).

When n is a power of 2, we will prove that the complete graph Kn has a unique optimal

spec (up to isomorphism), which will help us determine p̂(Kn) for all n. With a suitable

naming of the vertices, we call this edge-coloring of Kn the “canonical” coloring.

Definition 1.1 For A ⊆ Fk
2, let K(A) be the complete graph with vertex set A. The

canonical coloring of K(A) is the edge-coloring f defined by f(uv) = u + v, where u + v is

binary vector addition. When n = 2k, letting A = Fk
2 yields the canonical coloring of Kn.

Lemma 1.2 For A ⊆ Fk
2, the canonical coloring of K(A) is a spec. Consequently, if n = 2k,

then p̂(Kn) = p(Kn) = χ′(Kn) = n− 1.

Proof. If W is an open walk, then its endpoints differ in some bit i. Thus in the canonical

coloring the total usage of colors flipping bit i along W is odd, and hence some color has odd

usage on W . The canonical coloring of K(Fk
2) uses 2k − 1 colors (the color 0k is not used).

The lower bound follows from p̂(G) ≥ p(G) ≥ χ′(G) ≥ ∆(G).

Since every complete graph is a subgraph of the next larger complete graph, we obtain

p̂(Kn) ≤ 2dlg ne − 1. In Section 2, we prove that this upper bound is exact. Our proof is

expressed using linear subspaces of binary vector spaces.

Parity edge-coloring relates to a less restrictive problem. A walk of length 2k is repetitive

if the ith and (k + i)th edges have the same color, for 1 ≤ i ≤ k. A Thue coloring is an

edge-coloring with no repetitive path, and the Thue number t(G) is the minimum number of

colors in a Thue coloring of G. Every parity edge-coloring is a Thue coloring, so t(G) ≤ p(G).

Alon, Grytczuk, Ha luszczak, and Riordan [2] observed that the canonical coloring yields

t(Kn) ≤ 2dlg ne − 1. It seems no good lower bounds on t(Kn) are known. By our result, a

Thue coloring of Kn better than the canonical coloring must contain an open parity walk.

To further motivate our focus on complete graphs, we show that our main result strength-

ens a special case of Yuzvinsky’s Theorem on sums of binary vectors. To state it, we need

the Hopf–Stiefel function from the theory of quadratic forms.
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Definition 1.3 (Hopf [9], Stiefel [14]) For positive integers r and s, define r ◦ s to be the

least integer n such that (x + y)n is in the ideal of F2[x, y] generated by xr and ys.

In non-algebraic language, the definition has the following equivalent phrasing: r ◦ s is

the least n such that
(

n
k

)
is even for each k with n − s < k < r. The condition becomes

vacuous if n ≥ r + s− 1, so trivially r ◦ s ≤ r + s− 1.

Theorem 1.4 (Yuzvinsky [15]) For A, B ⊆ Fk
2, let C = {a + b : a ∈ A, b ∈ B}. If |A| = r

and |B| = s, then |C| ≥ r ◦ s.

Generalizations and alternative proofs of Yuzvinsky’s Theorem appear in [1], [4], [6]. The

theorem is related to our results via a simple formula for the Hopf–Stiefel function recently

proved by Plagne [12]. Subsequently, Károlyi [10] gave a short inductive proof. See [7] for a

thorough survey of alternative formulas, related results, and generalizations.

Theorem 1.5 (Plagne [12], Károlyi [10]) r ◦ s = mink∈N
{

2k
(⌈

r
2k

⌉
+

⌈
s
2k

⌉
− 1

)}
.

When A = B and both have size r, the minimization yields r ◦ r = 2dlg re. Yuzvinsky’s

Theorem for this case says that every canonical coloring of Kr uses at least 2dlg re− 1 colors.

Our result shows that in the more general family of strong parity edge-colorings, it remains

true that at least 2dlg re − 1 colors are needed.

The canonical coloring extends to complete bipartite graphs in a natural way: if A, B ⊆
Fk

2 and K(A, B) is the complete bipartite graph with partite sets A and B, then the edge-

coloring defined by f(ab) = a + b is a spec. The bound in Yuzvinsky’s Theorem is always

tight (see [6]); that is, for r, s ≤ 2k there exist A, B ⊆ Fk
2 with |A| = r, |B| = s, and

|C| = r ◦ s. Consequently, p̂(Kr,s) ≤ r ◦ s. We conjecture that equality holds. A direct proof

in the graph-theoretic setting would strengthen all cases of Yuzvinsky’s Theorem.

Conjecture 1.6 p̂(Kr,s) = r ◦ s.

2 The Lower Bound

In this section, we use the closure of linear spaces under addition to prove that p̂(Kn) ≥
2dlg ne − 1. The main idea is to introduce an additional vertex without needing additional

colors until a power of 2 is reached. We begin by proving that every optimal spec of Kn is

a canonical coloring when n is a power of 2.

Definition 2.1 An edge-coloring f of a graph G satisfies the 4-constraint if whenever

f(uv) = f(xy) and vx ∈ E(G), also uy ∈ E(G) and f(uy) = f(vx).

Lemma 2.2 If f is a parity edge-coloring in which every color class is a perfect matching,

then f satisfies the 4-constraint.
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Proof. Otherwise, given f(uv) = f(xy), the edge of color f(vx) incident to u forms a parity

path of length 4 with uv, vx, and xy.

Theorem 2.3 If f is a parity edge-coloring of Kn in which every color class is a perfect

matching, then f is a canonical coloring and n is a power of 2.

Proof. Every edge is a canonically colored K2. Let R be a largest vertex set such that |R|
is a power of 2 and f restricts to a canonical coloring on R. Define j by |R| = 2j−1. Let φ

be a bijection from R to Fj−1
2 under which f is the canonical coloring. We prove the claim

by showing that if |R| < n, then f canonically colors a subgraph twice as big.

Since f is canonical on R, every color used within R by f is used on a perfect matching

of R. The vertices of R have other neighbors in Kn, so there is a color c not used within

R. Since c is used on a perfect matching, c matches R to some set U . Let R′ = R ∪ U .

Define φ′ : R′ → Fj
2 as follows: for x ∈ R, obtain φ′(x) by appending 0 to φ(x); for x ∈ U

obtain φ′(x) by appending 1 to φ(x′), where x′ is the neighbor of x in color c. Within R′, we

henceforth refer to the vertices by their names under φ′.

By Lemma 2.2, the 4-constraint holds for f . The 4-constraint copies the coloring from

the edges within R to the edges within U . That is, consider x′, y′ ∈ U arising from x, y ∈ R,

with f(xx′) = f(yy′) = c. Now f(x′y′) = f(xy) = x + y = x′ + y′, using the 4-constraint,

the fact that f is canonical on R, and the definition of φ′. Hence f is canonical within U .

Finally, let u be the name of the color on the edge 0ju, for u ∈ U . For any v ∈ R,

let w = u + v; note that w ∈ U . Both 0jv and uw have color v, since f is canonical

within R and within U . By applying the 4-constraint to {v0j, 0jw, wu}, we conclude that

f(uv) = f(0jw) = w. Since w = u + v, this completes the proof that f is canonical on R′.

For a proper edge-coloring of Kn, the 4-constraint is equivalent to the property that the

six edges on any four vertices receive three colors or six colors. Independently of our proof,

Keevash and Sudakov [11] proved that if that property holds for a proper edge-coloring with

n−1 colors (one where every color class is a perfect matching), then n is a power of 2. They

also observed that the canonical coloring has this property. Their proof appears also in [3].

In connection with the uniqueness result, Mubayi asked whether a stability property

holds. That is, when n is a power of 2, does there exist a parity edge-coloring or a spec of

Kn that has only (1 + o(1))n colors but is “far” from the canonical coloring?

The main result needs several algebraic observations. Relative to any k-edge-coloring f ,

the parity vector π(W ) of a walk W is the binary k-tuple whose ith bit agrees in parity with

the usage of color i along W . Let the parity space Lf be the set of parity vectors of closed

walks. We note that Lf is a linear subspace of Fk
2.

Lemma 2.4 If f is an edge-coloring of a connected graph G, then Lf is a binary vector

space.
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Proof. Since Lf ⊆ Fk
2, it suffices to show that L is closed under addition. Given a u, u-

walk W and a v, v-walk W ′, let P be a u, v-path in G, and let P be its reverse. Following

W, P, W ′, P in succession yields a u, u-walk with parity vector π(W ) + π(W ′).

For a vector space L, let w(L) be the least number of nonzero coordinates of a nonzero

vector in L (set w(L) = ∞ if L = {0}). For an edge-coloring f of Kn, w(Lf ) determines

whether f is a spec. Let the weight of a vector in Fk
2 be the number of nonzero entries.

Lemma 2.5 If an edge-coloring f of a graph G is a spec, then w(Lf ) ≥ 2. The converse

holds when G = Kn.

Proof. If the parity vector of a closed walk W has weight 1, then one color has odd usage

in W (say on edge e). Now W − e is an open parity walk, and f is not a spec.

If f is not a spec, then π(W ′) = 0 for some open walk W ′. In Kn, the ends of W ′ are

adjacent, and adding that edge yields a closed walk whose parity vector has weight 1.

Lemma 2.6 For any colors a and b in an optimal spec f of Kn, there is some closed walk

W on which the colors having odd usage are a, b, and one other.

Proof. We use Lemma 2.5 repeatedly. Since f is optimal, merging the colors a and b into a

single color a′ yields an edge-coloring f ′ that is not a spec. Hence under f ′ there is a closed

walk W on which f ′ has odd usage for only one color c. Also c 6= a′, since otherwise f has

odd usage on W for only a or b. With c 6= a′ and the fact that f has odd usage for at least

two colors on W , both a and b also have odd usage on W , and W is the desired walk.

The same idea as in Lemma 2.6 shows that w(Lf ) ≥ 3 when f is an optimal spec of Kn,

but we do not need this observation. We note, however, that the condition w(Lf ) ≥ 3 is

the condition for Lf to be the set of codewords for a 1-error-correcting code. Indeed, when

n = 2k and f is the canonical coloring, Lf is a perfect 1-error-correcting code of length n−1.

A dominating vertex in a graph is a vertex adjacent to all others. We use dH(v) and

NH(v) to denote the degree and neighborhood of a vertex v in a graph H.

Lemma 2.7 If f is an edge-coloring of a graph G with a dominating vertex v, then Lf is

the span of the parity vectors of triangles containing v.

Proof. By definition, the span is contained in Lf . Conversely, consider any π(W ) ∈ Lf .

Let S be the set of edges with odd usage in W , and let H be the spanning subgraph of G

with edge set S. Since the total usage at each vertex of W is even, H is an even subgraph

of G. Hence H decomposes into cycles, which are closed walks, and π(W ) is the sum of the

parity vectors of these cycles.

It therefore suffices to show that S is the set of edges that appear in an odd number of

the triangles formed by v with edges of H− v. Each edge of H− v is in one such triangle, so
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we need consider only edges involving v. An edge vw lies in an odd number of these triangles

if and only if dH−v(w) is odd, which occurs if and only if w ∈ NH(v), since dH(w) is even.

By definition, vw ∈ E(H) if and only if vw has odd usage in W and hence lies in S.

Lemma 2.8 If f is an optimal spec of Kn that uses some color fewer than n/2 times, then

f extends to a spec of Kn+1 using the same colors.

Proof. View Kn+1 as arising from Kn by adding a vertex u. Let a be a color used fewer

than n/2 times by f , and let v be a vertex of Kn at which a does not appear.

We use f to define f ′ on E(Kn+1). Let f ′ agree with f on E(Kn), and let f ′(uv) = a. To

define f ′ on each remaining edge uw, first let b = f(vw). By Lemma 2.6, there is a closed

walk W with odd usage precisely for a and b and some third color c under f . Let f ′(uw) = c.

Note that f ′ uses the same colors as f . It remains only to show that f ′ is a spec. To do

this we prove that w(Lf ′) ≥ 2, by showing that Lf ′ ⊆ Lf . By Lemma 2.7, it suffices to show

that π(T ) ∈ Lf when T is a triangle in Kn+1 containing v.

Triangles not containing u lie in the original graph and have parity vectors in Lf . Hence

we consider the triangle T formed by {u, v, w}. Now π(T ) = π(W ) ∈ Lf , where W is the

walk used to specify f ′(uw).

Theorem 2.9 p̂(Kn) = 2dlg ne − 1.

Proof. If some color class in an optimal spec is not a perfect matching, then p̂(Kn) =

p̂(Kn+1), by Lemma 2.8. This vertex absorption cannot stop before the number of vertices

reaches a power of 2, because when every color class is a perfect matching the coloring is

canonical, by Theorem 2.3. It cannot continue past 2dlg ne vertices, since the maximum degree

is a lower bound on χ′ and p̂. Hence p̂(Kn) = p̂(K2dlg ne) = 2dlg ne − 1.

Corollary 2.10 If f is an optimal spec of Kn, then f is obtained by deleting vertices from

the canonical coloring of K2dlg ne.

Proof. By Lemma 2.8, we may extend f to an optimal spec f ′ of K2dlg ne ; by Theorem 2.3,

f ′ is the canonical coloring.

One may ask whether every edge-coloring of Kn that satisfies the 4-constraint is a spec

or a parity edge-coloring. Examples that show the answer is no. Similarly, not every parity

edge-coloring of Kn is a spec. Nevertheless, it may be that every optimal parity edge-coloring

is a spec. We offer the following conjecture, which in [5] we proved for n ≤ 16.

Conjecture 2.11 p(Kn) = p̂(Kn) for every positive integer n.
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