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Abstract

A parity walk in an edge-coloring of a graph is a walk traversing
each color an even number of times. We introduce two parameters.
Let p(G) be the least number of colors in a parity edge-coloring of
G (a coloring having no parity path). Let bp(G) be the least number
of colors in a strong parity edge-coloring of G (a coloring having no
open parity walk). Note that bp(G) ≥ p(G) ≥ χ′(G).

The values p(G) and bp(G) may be equal or differ, with equality
conjectured for all bipartite graphs. If G is connected, then p(G) ≥
dlg |V (G)|e, with equality for paths and even cycles (Cn needs one
more color for odd n). The proof that bp(Kn) = 2dlg ne − 1 for all
n will appear later; the conjecture that p(Kn) = bp(Kn) is proved
here for n ≤ 16 and other cases. Also, p(K2,n) = bp(K2,n) = 2 dn/2e.
In general, bp(Km,n) ≤ m′ dn/m′e, where m′ = 2dlg me. We compare
these to other parameters and pose many open questions.

1 Introduction

We began by studying which graphs embed in the hypercube Qk, the graph
with vertex set {0, 1}k in which vertices are adjacent when they differ in
exactly one position. Coloring each edge with the position of the bit where
its endpoints differ satisfies two properties on each subgraph G:

1) every cycle uses each color an even number of times,
2) every path uses some color an odd number of times.
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In somewhat different language, Havel and Movárek [12] proved in 1972
that the existence of such an edge-coloring with k colors characterizes the
connected graphs that are subgraphs of Qk. The problem was studied as
early as 1953 by Shapiro [24].

Parity of the usage of colors along walks suggests two edge-coloring
parameters that have interesting properties and applications. Let the usage
of a color on a walk be the parity of the number of times it appears along
the walk. A parity walk is a walk in which every color has even usage.

Let a parity edge-coloring (pec) be an edge-coloring having no parity
path. Using distinct colors on all edges produces a parity edge-coloring.
Hence we introduce the parity edge-chromatic number p(G) to be the mini-
mum number of colors in a pec of G. Paths of length 2 force p(G) ≥ χ′(G),
where χ′(G) is the edge-chromatic number.

A more restricted notion has better algebraic properties. A strong parity
edge-coloring (spec) is an edge-coloring in which every parity walk is closed.
Using distinct colors again works, so we let the strong parity edge-chromatic
number p̂(G) be the minimum number of colors in a spec. A spec has no
parity path, so every spec is a pec, and always p̂(G) ≥ p(G).

Characterizing subgraphs of Qk using parity edge-coloring yields p(G) ≥
dlg |V (G)|e when G is connected, with equality for a path or even cycle
(throughout, lg denotes log2). When n is odd, p(Cn) = p̂(Cn) = 1 + dlg ne.
Also p(K2,n) = p̂(K2,n) = 2 dn/2e. In these examples, p(G) = p̂(G); we
also give examples where equality fails.

In this paper, we primarily explore the elementary properties of these
parameters. In a subsequent paper [2], we prove that p̂(Kn) = 2dlg ne − 1.
This strengthens a special case of a theorem of Yuzvinsky about sums of
binary vectors (see Section 3).

Among the questions we raise in Section 6 is whether also p(Kn) =
2dlg ne − 1; we prove this for n ≤ 16. The complete bipartite graph Kn,n

behaves like Kn in that p(Kn,n) = p̂(Kn,n) = χ′(Kn,n) = n when n = 2k.
Also, p̂(Kn,n) ≤ p̂(Kn) + 1 for all n; we conjecture that equality holds. We
show that p̂(Km,n) ≤ m′ dn/m′e, where m ≤ n and m′ = 2dlg me.

As a possible tool for exploring conjectured equalities between p and p̂,
we introduce a generalization. A parity r-set edge-coloring assigns r colors
to each edge so that every selection of one color from the set at each edge
yields a parity edge-coloring. Let pr(G) be the minimum number of colors
used. Always pr(G) ≤ rp(G), and we prove equality for paths. Proving
p2(Kn) = 2p(Kn) could be a step toward proving p(Kn) = 2dlg ne − 1.

In Section 5, we distinguish parity edge-coloring from related edge-
coloring problems. Section 6 poses many open questions.
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2 Elementary Properties and Examples

First we formalize elementary observations from the Introduction.

Remark 2.1 For every graph G, p̂(G) ≥ p(G) ≥ χ′(G), and the parame-
ters p̂ and p are monotone under the subgraph relation.

Proof. We have p(G) ≥ χ′(G) by considering paths of length 2, and
p̂(G) ≥ p(G) since closed walks are not paths. For H ⊆ G, a pec or spec
of G restricts to such an edge-coloring on H, since every parity walk in the
restriction to H is a parity walk in the coloring on G.

When G is a forest, every pec is also a spec, so p(G) = p̂(G). Edge-
coloring the hypercube by coordinates shows that p(Qk) ≤ p̂(Qk) ≤ k.
Hence p(G) ≤ k if G ⊆ Qk. For trees, we prove the converse.

Given a k-edge-coloring f and a walk W , we use π(W ) to denote the
parity vector of W , recording the usage of each color as 0 or 1. When walks
W and W ′ are concatenated, the parity vector of the concatenation is the
vector binary sum π(W ) + π(W ′). The weight of a vector is the number of
nonzero positions.

Theorem 2.2 A tree T embeds in the k-dimensional hypercube Qk if and
only if p(T ) ≤ k.

Proof. We have observed necessity. Conversely, let f be a parity k-edge-
coloring of T (there may be unused colors if p(T ) < k). Fix a root vertex
r in T . Define φ : V (T ) → V (Qk) by setting φ(v) = π(W ), where W is the
r, v-path in T .

When uv ∈ E(T ), the r, u-path and r, v-path in T differ in one edge,
so φ(u) and φ(v) are adjacent in Qk. It remains only to check that φ is
injective. The parity vector for the u, v-path P in T is φ(u) + φ(v), since
summing the r, u-path and r, v-path cancels the portion from r to P . Since
f is a parity edge-coloring, φ(P ) is nonzero, and hence φ(u) 6= φ(v).

When k is part of the input, recognizing subgraphs of Qk is NP-complete
[16], and this remains true when the input is restricted to trees [25]. There-
fore, computing p(G) or p̂(G) is NP-hard even when G is a tree. Per-
haps there is a polynomial-time algorithm for trees with bounded degree or
bounded diameter.

The Havel–Movárek characterization of subgraphs of Qk follows easily
from Theorem 2.2 (they also proved statements equivalent to Theorem 2.2
and Corollary 2.5.) Their proof is essentially the same as ours, but our
organization is different in the language of pecs.

3



Corollary 2.3 A graph G is a subgraph of Qk if and only if G has a parity
k-edge-coloring in which every cycle is a parity walk.

Proof. We have observed necessity. For sufficiency, choose a spanning tree
T . Since p(T ) ≤ p(G) ≤ k, Theorem 2.2 implies that T ⊆ Qk. Map T
into Qk using φ as defined in the proof of Theorem 2.2. For each xy ∈
E(G) − E(T ), the cycle formed by adding xy to T is given to be a parity
walk. Hence the x, y-path in T has parity vector with weight 1. This makes
φ(x) and φ(y) adjacent in Qk, as desired.

Mitas and Reuter [20] later gave a lengthy proof motivated by study-
ing subdiagrams of the subset lattice. They also characterized the graphs
occurring as induced subgraphs of Qk as those having a k-edge-coloring
satisfying our properties (1) and (2) and a third property stating essen-
tially that if the parity vector of a walk has weight 1, then its endpoints
are adjacent.

Spanning trees yield a general lower bound on p(G), which holds with
equality for paths, even cycles, and connected spanning subgraphs of Qk.

Corollary 2.4 If G is connected, then p(G) ≥ dlg n(G)e.

Proof. If T is a spanning tree of G, then p(G) ≥ p(T ). Since T embeds in
the hypercube of dimension p(T ), we have n(G) = n(T ) ≤ 2p(T ) ≤ 2p(G).

Corollary 2.5 For all n, p(Pn) = p̂(Pn) = dlg ne. For even n, p(Cn) =
p̂(Cn) = dlg ne.

Proof. The lower bounds follow from Corollary 2.4. The upper bounds
hold because Qk contains cycles of all even lengths up to 2k.

A result equivalent to p(Pn) = p̂(Pn) = dlg ne appears in [12] (without
defining either parameter). When n is odd, p(Cn) = p̂(C)n) = dlg ne + 1.
To prove this, we begin with simple observations about adding an edge.

Lemma 2.6 (a) If e is an edge in a graph G, then p(G) ≤ p(G− e) + 1.
(b) If also G− e is connected, then p̂(G) ≤ p̂(G− e) + 1.

Proof. (a) Put an optimal parity edge-coloring on G − e and add a new
color on e. There is no parity path avoiding e, and any path through e uses
the new color exactly once.

(b) Put an optimal spec on G − e and add a new color on e. Let P
be a u, v-path in G − e, where u and v are the endpoints of e. Suppose
that there is an open parity walk W . Note that W traverses e an even
number of times, since no other edge has the same color as e. Form W ′ by
replacing each traversal of e by P or its reverse, depending on the direction
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of traversal of e. Every edge is used with the same parity in W ′ and W ,
and the endpoints are unchanged, so W ′ is an open parity walk in G − e.
This is a contradiction.

Theorem 2.7 If n is odd, then p(Cn) = p̂(Cn) = dlg ne+ 1.

Proof. Lemma 2.6(b) yields the upper bound, since p̂(Pn) = dlg ne.
For the lower bound, we show first that p̂(Cn) = p(Cn) (this and

Lemma 2.6(a) yield an alternative proof of the upper bound). Let W be an
open walk, and let W ′ be the subgraph formed by the edges with odd usage
in W . The sum of the usage by W of edges incident to a vertex x is odd if
and only if x is an endpoint of W . Hence W ′ has odd degree precisely at
the endpoints of W . Within Cn, this requires W ′ to be a path P joining
the endpoints of W . Under a parity edge-coloring f , some color has odd
usage along P , and this color has odd usage in W . Hence f has no open
parity walk, and every parity edge-coloring is a spec.

It now suffices to show that p̂(Cn) ≥ p(P2n). Given a spec f of Cn, we
form a parity edge-coloring g of P2n with the same number of colors. Let
v1, . . . , vn be the vertices of Cn in order, and let u1, . . . , un, w1, . . . , wn be
the vertices of P2n in order. Define g by letting g(uiui+1) = g(wiwi+1) =
f(vivi+1) for 1 ≤ i ≤ n− 1 and letting g(unw1) = f(vnv1).

Each path in P2n corresponds to an open walk in Cn or to one trip
around the cycle. There is no parity path of the first type, since f is a spec.
There is none of the second type, since Cn has odd length.

The “unrolling” technique of Theorem 2.7 leads to an example G with
p̂(G) > p(G), which easily extends to generate infinite families.

Example 2.8 Form a graph G by identifying a vertex of K3 with an end-
point of P8. Since p(K3) = p(P7) = 3, adding the connecting edge yields
p(G) ≤ 4 (see Lemma 2.6(a)).

We claim that p̂(G) ≥ p(P18) = 5 (this shows also that Lemma 2.6(b)
may fail when G− e is disconnected). We copy a spec f of G onto P18 with
the path edges doubled. Beginning with the vertex of degree 1 in G, walk
down the path, once around the triangle, and back up the path. This walk
has length 17; copy the colors of its edges in order to the edges of P18 in
order to form an edge-coloring g of P18.

Each path in P18 corresponds to an open walk in G or a closed walk
that traverses the triangle once. There is no parity path of the first type,
since f is a spec. There is none of the second type, since such a closed walk
has odd length. This proves the claim.

Since p̂(K3) = p̂(P7) = 3, this graph G also shows that adding an edge
can change p̂ by more than 1 when G is disconnected.
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We know of no bipartite graph G with p̂(G) > p(G). Nevertheless, not
every optimal parity edge-coloring of a bipartite graph is a spec.

Example 2.9 Let G be the graph obtained from C6 by adding two pendant
edges at one vertex. Let W be the spanning walk that starts at one pendant
vertex, traverses the cycle, and ends at the other pendant vertex. Let f be
the 4-edge-coloring that colors the edges of W in order as a, b, a, c, b, d, c, d.
Although f is an optimal parity edge-coloring (∆(G) = 4), it uses each
color twice on the open walk W , so it is not a spec. Changing the edge of
color d on the cycle to color a yields a strong parity 4-edge-coloring.

3 Specs and Canonical Colorings

The monotonicity of p and p̂ guarantees that Kn has the largest value of
both parameters among all n-vertex graphs. Thus determining p(Kn) or
p̂(Kn) solves the corresponding extremal problem for n-vertex graphs.

Here we construct specs of a particularly nice form. They are optimal
for p̂(Kn) (proved in [2]). We conjecture that they are also optimal for
p(Kn), p̂(Kn,n), and p(Kn,n), which is true in some cases.

Definition 3.1 A canonical coloring of a graph is an edge-coloring defined
by assigning binary vectors (of the same length) as vertex labels and giving
each edge the color that is the vector sum of the labels of its endpoints.

Lemma 3.2 For any graph G, every canonical coloring generated using
distinct vertex labels is a spec. If G is bipartite, then every canonical color-
ing generated from vertex labels such that each is used at most once in each
partite set is a spec.

Proof. Suppose that W is an open walk whose endpoints have names
differing in some bit i. The total usage of colors flipping bit i along W must
then be odd, and hence some color has odd usage on W . In the bipartite
case, we may also have open walks whose endpoints have the same names,
but such walks have odd length, which forces odd usage of some color.

Corollary 3.3 If n = 2k, then p̂(Kn) = p(Kn) = χ′(Kn) = n − 1, and
p̂(Kn,n) = p(Kn,n) = χ′(Kn,n) = n. In general, p̂(Kn) ≤ 2dlg ne − 1 and
p̂(Kn,n) ≤ 2dlg ne.

Proof. The canonical coloring of Kn with colors of length dlg ne uses
2dlg ne − 1 colors (color 0 is not used); this equals the trivial lower bound
when n = 2k. The same holds for Kn,n, using color 0 also.

In [2], we prove that always p̂(Kn) = 2dlg ne − 1. The main idea is to
introduce an additional vertex without needing additional colors until a
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power of 2 is reached. At that point, the trivial lower bound implies that
2dlg ne − 1 colors were in use all along. The proof involves studying the
vector space Fk

2 of binary k-tuples under component-wise binary addition.
A corollary of the proof is that every optimal spec of Kn, for every n, is a
canonical coloring generated by vectors of length dlg ne.

Theorem 3.4 ([2]) p̂(Kn) = 2dlg ne − 1.

To put this result in perspective and to motivate the conjectures that
remain about Kn and Kn,n, we briefly describe Yuzvinsky’s Theorem.
Yuzvinsky proved that for subsets A and B of Fk

2 with fixed sizes r and s,
the number of vectors that can be obtained as the sum of a vector in A and
a vector in B is at least a certain quantity r ◦ s called the “Hopf–Stiefel
function” of r and s. (In non-algebraic language, r ◦ s has an equivalent
definition as the least n such that

(
n
k

)
is even for each k with n−s < k < r.

The condition is vacuous if n ≥ r + s− 1, so trivially r ◦ s ≤ r + s− 1.)
Later, Plagne computed a nice formula for this function, and Károlyi

gave a short proof of that result. We combine these results into a single
statement relevant to our context.

Theorem 3.5 (Yuzvinsky [26], Plagne [23], Károlyi [14]) For A,B ⊆ Fk
2 ,

let C = {a + b : a ∈ A, b ∈ B}. If |A| = r and |B| = s, then |C| ≥ r ◦ s,
where

r ◦ s = min
k∈N

{
2k

(⌈ r

2k

⌉
+

⌈ s

2k

⌉
− 1

)}
.

When A = B, with size r, the minimization yields r◦r = 2dlg re. Yuzvin-
sky’s Theorem for this case says that every canonical coloring of Kr uses at
least 2dlg re − 1 colors. Our result strengthens this by showing that in the
more general family of strong parity edge-colorings, it remains true that at
least 2dlg re − 1 colors are needed.

The bound in Yuzvinsky’s Theorem is always tight (see [5]); that is, for
r, s ≤ 2k there exist A,B ⊆ Fk

2 with |A| = r, |B| = s, and |C| = r ◦ s. By
Lemma 3.2, p̂(Kr,s) ≤ r ◦ s. We conjecture that equality holds. A direct
proof determining p̂(Kr,s) in the graph-theoretic setting would strengthen
all cases of Yuzvinsky’s Theorem.

Conjecture 3.6 p̂(Kr,s) = r ◦ s.

Yuzvinsky’s Theorem as stated describes a bipartite situation, with the
application to complete graphs as a special case. This relationship extends
to specs, which means that proving the special case of Conjecture 3.6 for
r = s = n also implies the result of [2] on Kn. That implication uses the
following proposition.
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Proposition 3.7 p̂(Kn) ≥ p̂(Kn,n)− 1.

Proof. Let f be a spec of Kn with vertex set u1, . . . , un. Given Kn,n with
partite sets v1, . . . , vn and w1, . . . , wn, let f ′(viwj) = f(uiuj) when i 6= j,
and give a single new color to all viwi with 1 ≤ i ≤ n. A parity walk
W ′ under f ′ starts and ends in the same partite set. Let W be the walk
obtained by mapping it back to Kn, which collapses vi and wi into ui, for
each i. The edges that had the new color disappear; this number of edges
is even, since W ′ was a parity walk. Hence W is a parity walk under f .

Since f is a spec, W is a closed walk in Kn. Hence W ′ starts and ends
at vertices in the same partite set that have the same index. Since Kn,n

has only one vertex with each index in each partite set, W ′ is closed. Hence
f ′ is a spec of Kn,n.

We have observed that canonical colorings yield p̂(Kn,n) ≤ 2dlg ne for all
n. Toward the conjecture that equality holds, we offer the following.

Proposition 3.8 If some optimal spec of Kn,n uses a color on at least
n − 1 edges, then p̂(Kn,n) = p̂(Kn) + 1 = 2dlg ne. If a color is used n − r
times, then p̂(Kn,n) ≥ 2dlg ne −

(
r
2

)
.

Proof. We prove the general statement. Let f be an optimal spec with
such a color c. Let U be one part, with U = u1, . . . , un. Whenever ui or uj

is incident to color c, let Pi,j be a ui, uj-path of length 2 in which one edge
has color c under f . Choose these so that Pj,i is the reverse of Pi,j . When
c appears at neither ui nor uj , leave Pi,j undefined.

Let G be the graph obtained from Kn with vertex set v1, . . . , vn by
deleting the edges vivj with Pi,j undefined; there are

(
r
2

)
such edges. Define

a coloring f ′ on G by letting f(vivj) be the color other than c on Pi,j .
We claim that f ′ is a spec. Given a parity walk W ′ under f ′, define

a walk W in Kn,n as follows. For each edge vivj in W ′, follow Pi,j . By
construction, each color other than c has even usage in W . Hence also c
has even usage. Hence W is a parity walk under f and therefore is closed.
Since W starts and ends at the same vertex ui ∈ U , also W ′ starts and
ends at the same vertex vi.

We have proved that every parity walk under f ′ is closed, so f ′ is a
spec. Hence f ′ has at least p̂(G) colors, and f has at least one more. By
Lemma 2.6(b) and Theorem 3.4, p̂(G) ≥ 2dlg ne − 1−

(
r
2

)
, which completes

the proof of the lower bound.
For the upper bound, Corollary 3.3 shows that 2dlg ne colors suffice.

Corollary 3.9 p̂(Kn,n) ≥ maxr min{2dlg ne −
(
r
2

)
, n2

n−r−1}.
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Proof. If E(Kn,n) has a spec with s colors, where s < 2dlg ne −
(
r
2

)
, then

by Proposition 3.8 no color can be used at least n − r times, and hence
n2/s ≤ n− r − 1. Thus p̂(Kn,n) ≥ min{2dlg ne −

(
r
2

)
, n2/(n− r − 1)}.

With r = 1, we conclude that p̂(Kn,n) ≥ 2k when n > 2k−3−4/(n−2),
since then n2/(n − 2) > 2k − 1. Thus p̂(K5,5) = 8, and p̂(Kn,n) = 16 for
13 ≤ n ≤ 16. Using r = 2, we obtain 14 ≤ p̂(K9,9) ≤ 16.

Corollary 3.3 shows that when n is a power of 2, the lower bound of
∆(G) is optimal for strong parity edge-coloring of Kn,n. We next enlarge
the class of complete bipartite graphs where this bound is optimal.

Theorem 3.10 If m = 2k and m divides n, then p(Km,n) = p̂(Km,n) =
∆(Km,n) = n.

Proof. Let r = n/m and [r] = {1, . . . , r}. Label the vertices in the small
part with Fk

2 . Label those in the large part with Fk
2 × [r]. Color the edges

with color set Fk
2 × [r] by setting f(uv) = (u + v′, j), where v = (v′, j). In

other words, we use r edge-disjoint copies of the bicanonical coloring on r
edge-disjoint copies of Km,m.

We have used n colors, so it suffices to show that f is a spec. Let W be
a parity walk under f . Erasing the second coordinate maps W onto a walk
W ′ in Km,m. Furthermore, W ′ is a parity walk, because all edges in W
whose color has the form (z, j) for any j are mapped onto edges with color
z under the bicanonical coloring of Km,m, and there are an even number
of these for each j. Hence W ′ is closed.

Hence W starts and ends at vertices labeled with the same element u
of Fk

2 , and they are in the same part since W has even length. If these
vertices are different copies of u in the large partite set, then those copies
of Km,m have contributed an odd number of edges to W , so for each of
them some color confined to it has odd usage in W . This contradicts that
W is a parity walk. Hence W is closed, and f is a spec.

Corollary 3.11 If m ≤ n and m′ = 2dlg me, then p̂(Km,n) ≤ m′ dn/m′e.

Proof. Km,n ⊆ Km′,m′dn/m′e.

Corollary 3.11 provides examples of complete bipartite graphs where the
maximum degree bound is optimal even though the size of neither partite
set is a power of 2. For example, p̂(K3,12) = 12. We use Corollary 3.11
next to compute the exact values when m = 2. We will apply the result for
K2,3 in Theorem 4.2.

Corollary 3.12 p̂(K2,n) = p(K2,n) = 2 dn/2e.
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Proof. The upper bound is immediate from Corollary 3.11 with m′ = 2.
For the lower bound, since ∆(K2,n) = n for n ≥ 2, it suffices to show

that n must be even when f is a parity edge-coloring of K2,n with n colors.
Let {x, x′} be the partite set of size 2. Each color appears at both x and
x′. If color a appears on xy and x′y′, then f(xy′) = f(x′y), since otherwise
the colors a and f(xy′) form a parity path of length 4.

Hence y and y′ have the same pair of incident colors. Making this
argument for each color partitions the vertices in the partite set of size n
into pairs. Hence n is even.

The upper bound in Corollary 3.12 can also be proved using an aug-
mentation lemma. If f is a spec of a connected graph G, and G′ is formed
from G by adding new vertices x and y with common neighbors u and v
in G (and no other new edges), then the coloring f ′ obtained from f by
adding two new colors a and b alternating on the new 4-cycle is a spec of
G′. This yields p̂(G′) ≤ p̂(G) + 2. Like Lemma 2.6(b), this statement fails
for disconnected graphs. Since we presently have no further applications
for this lemma, we omit the proof.

4 Parity Edge-Coloring of Complete Graphs

Theorem 3.4 states that p̂(Kn) = 2dlg ne − 1, and Conjecture 3.6 asserts
that p̂(Kn,n) = 2dlg ne. When n is not a power of 2, these values for Kn and
Kn,n exceed the maximum degree, which is the trivial lower bound. Hence
it is conceivable that in the more general family of parity edge-colorings
(not necessarily specs), there is an edge-coloring that uses fewer colors. We
conjecture that this is not the case, and that indeed p(Kn) = p̂(Kn) =
2dlg ne − 1, and similarly for complete bipartite graphs.

To prove that p(Kn) = 2dlg ne − 1 for all n, it suffices to prove it when
n has the form 2k + 1. Below we prove it for K5 and K9 by case analysis
involving counting arguments. This proves the conjecture for Kn whenever
n ≤ 16. Canonical colorings provide the constructions; we only need the
lower bounds.

Proposition 4.1 p(K5) = 7.

Proof. Suppose that K5 has a parity edge-coloring f using at most six
colors. Each color class is a matching and hence has size at most 2. Since
K5 has 10 edges, using at most six colors requires at least four classes of
size 2. Any two colors used twice must not form a parity path of length 4,
so any two colors used twice form an alternating 4-cycle. Hence the colors
used twice are all restricted to the same four vertices. However, there are
only three disjoint matchings of size 2 in K4. Thus f cannot exist.

10



Theorem 4.2 p(K9) = 15.

Proof. Let f be a parity edge-coloring using at most 14 colors; we obtain
a contradiction. Let Ci be the set of edges in the ith color class, and let
Gi,j be the spanning subgraph with edge set Ci ∪ Cj . By Lemma 2.4,
a connected subgraph using any k colors has at most 2k vertices. Hence
each Gi,j has at least three components. If |Ci ∪ Cj | ≥ 7, then Gi,j has at
most three components, since the only non-tree components are 4-cycles,
allowing the edges to be ordered so that the first six edges reduce the
number of components when added.

If each Gi,j has at least four components, then |Ci ∪ Cj | ≤ 6. If some
class has size 4, then the others have size at most two. Since K9 has 36
edges, and 4+2·13 = 30 < 36, always |Ci| ≤ 3. However,, 7·3+7·2 < 36, so
least eight classes have size 3; let Ci be one of them. If also |Cj | = 3, then
Gi,j has a 4-cycle, since otherwise six edges reduce Gi,j to three components.
The three edges of Ci form at most six 4-cycles with other colors, but seven
other classes have size 3. The contradiction eliminates this case.

Hence we may assume that G1,2 has three components A1, A2, A3 with
vertex sets V1, V2, V3 and |V1| ≤ |V2| ≤ |V3| ≤ 4. Note that |V2| ≥ 3. We
show that for i < j, at least four colors join Vi to Vj . If |Vj | = 4, then
the edges from Vj to a vertex of Vi have distinct colors. If |Vj | < 4, then
|Vj | = 3 and |Vi| ≥ 2. The edges joining two vertices of Vi to Vj form K2,3.
By Corollary 3.12, p(K2,3) = 4.

No color class j outside {1, 2} connects one of {V1, V2, V3} to the other
two, since that would yield a connected 9-vertex graph in the three colors
{1, 2, j}, contradicting Corollary 2.4. With three disjoint sets of four colors
joining the pairs of components of G1,2, we now have 14 colors in f . To avoid
using another color, the remaining edges joining vertices within components
of G1,2 must have colors used joining those components.

Since |V2| ≥ 3, we may choose u, v, w ∈ V2 such that uv ∈ C1, vw ∈ C2,
and uw ∈ C3. Let e be an edge of C3 joining Vi and Vj with i 6= j. Suppose
first that e is incident to V2. If |V2| = 4, then wx ∈ C1 or ux ∈ C2, and
appending e to one end of vu, uw,wx or vw, wu, ux yields a parity path. If
|V2| = 3, then |V1| ≥ 2, and the end of e other than v is incident to an edge
e′ in C1 or C2. Now e′, e, vu, uw or e′, e, vw,wu is a parity path.

Hence e joins V1 and V3. Let z be the endpoint in V3. If |V3| = 4, then
each of the four colors joining V2 to V3 appears at each vertex of V2. Thus
the color on uz is also on some edge wy, and e, zu, uw, wy is a parity path.

Hence |V1| = |V2| = |V3| = 3. Since the nine edges joining V2 and V3

use only four colors, some color is used on three of the edges. Call it C4,
with edges uu′, vv′, ww′ joining V2 and V3. Avoiding a parity path using
C4 with C1 or C2 forces u′v′ ∈ C1 and v′w′ ∈ C2. If z ∈ {u′, w′}, then
e, zu, uw, ww′ or e, zw,wu, uu′ is a parity path. Hence z must be v′, and
so C3 appears only once on the copy of K3,3 joining V2 and V3.
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However, K3,3 has no parity 4-edge-coloring with a color used only once.
The other three colors would have multiplicities 3, 3, 2. Two matchings of
size 3 in K3,3 form a 6-cycle, which would contain a parity path.

It may be possible to generalize these arguments, but the case analysis
seems likely to grow. Instead, we suggest another approach that could help
to prove p(Kn) ≥ 2dlg ne − 1.

Definition 4.3 A parity r-set edge-coloring of a graph G assigns an r-set
of colors to each edge of G so that selecting any color from the set on each
edge yields a parity edge-coloring of G. Let pr(G) be the minimum size of
the union of the color sets in a parity r-set edge-coloring of G.

Parity r-set edge-coloring is related to parity edge-coloring as r-set col-
oring is to ordinary proper coloring. An r-set coloring of a graph assigns
r-sets to the vertices so that the sets on adjacent vertices are disjoint, with
χr(G) being the least size of the union of the sets. The r-set edge-chromatic
number χ′

r(G) is defined by χ′
r(G) = χr(L(G)). Thus pr(G) ≥ χ′

r(G).
Using r copies of an optimal parity edge-coloring with disjoint color sets

shows that pr(G) ≤ rp(G). We have no examples yet where equality fails.
Proving equality could help determine p(Kn) by using the following result.

Proposition 4.4 If Kn has an optimal parity edge-coloring in which some
color class has size bn/2c, then p(Kn) ≥ 1 + p2(Kdn/2e).

Proof. Let f be an optimal parity edge-coloring with c used bn/2c times.
Let u1v1, . . . , ubn/2cvbn/2c be the edges with color c, and let udn/2e be the
vertex missed by c if n is odd. Contracting these edges yields Kdn/2e, with
uivi contracting to wi for i ≤ bn/2c, and wdn/2e = udn/2e when n is odd.

For each edge wiwj in Kdn/2e, with i < j ≤ dn/2e, define f ′(wiwj) =
{f(uiuj), f(viuj)}. Since f ′ does not use c, to prove p2(Kdn/2e) ≤ p(Kn)−1
it suffices to show that f ′ is a parity 2-set edge-coloring.

If f ′ is not a parity 2-set edge-coloring, then some selection of edge
colors from f ′ forms a parity path P ′. Form a path P in Kn as follows.
When P ′ follows the edge wiwj with chosen color a, P moves along the
edge uivi of color c (if necessary) to reach an endpoint in {ui, vi} of an
edge with color a under f whose other endpoint is in {uj , vj}, and then
it follows that edge. This path has the same usage as P ′ for every color
other than c. Since c misses only one vertex of Kn, at least one end of P ′

is a contracted vertex, and an edge of color c can be added or deleted at
that end of P to make the usage of c even if it had been odd. If P ′ is a
wi, wj-path, then P starts in {ui, vi} and ends in {uj , vj} (one of the sets
may degenerate to {udn/2e}). Now P is a parity path under f , which is a
contradiction.
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If n = 2k +1, then dn/2e = 2k−1+1. If there is always an optimal parity
edge-coloring of Kn with a near-perfect matching, then proving p2(Kn) =
2p(Kn) would inductively prove that p(Kn) = 2dlg ne − 1. Although we do
not know whether p2(G) = 2p(G) in general, we provide support for the
various conjectures by proving this when G is a path.

Theorem 4.5 pr(Pn) = rp(Pn).

Proof. We prove the stronger statement that for every parity r-set edge-
coloring f of Pn, some set of p(Pn) edges has pairwise disjoint color sets.

Let e1, . . . , en−1 be the edge set of Pn in order. We say that a subset
{ei1 , . . . , eiq

} of E(Pn) with i1 < · · · < iq is linked by f if f(eij
)∩f(eij+1) 6=

∅ for 1 ≤ j ≤ q − 1.
Suppose that E(Pn) decomposes into linked sets S1, . . . , St under f . We

show that setting f ′(e) = i when e ∈ Si yields a parity t-edge-coloring f ′

of Pn. If not, then let Q be a parity path under f ′. Since Q has even
usage of color i, we can pair successive edges among those having color i
(first with second, third with fourth, etc.). Since Si is linked, the two sets
assigned to a pair have a common color. Picking this for each pair and each
color under f ′ selects colors from the sets assigned to Q under f that form a
parity path. This contradicts the choice of f as a parity r-set edge-coloring.
Thus every partition of E(Pn) into linked sets needs at least p(Pn) parts.

To obtain edges with disjoint color sets from such a partition, first con-
struct a bipartite graph H with partite sets v1, . . . , vn−1 and w1, . . . , wn−1

by letting viwj be an edge if and only if i < j and f(ei) ∩ f(ej) 6= ∅. If
E(Pn) has a partition into t linked sets, then H has a matching of size
n − 1 − t, obtained by using the edge viwj when ei and ej are successive
elements in one part of the partition.

The construction of a matching from a partition is reversible. As edges
are added to the matching, starting from the empty matching and the
partition into singletons, the structural property is maintained that for the
edges in a part, only the first edge ej has wj unmatched, and only the
last edge ei has vi unmatched. Hence when an edge viwj is added to the
matching, it links the end of one part to the beginning of another part,
reduces the number of parts, and maintains the structural property.

Thus E(Pn) has a partition into t linked sets under f if and only if
H has a matching of size n − 1 − t. When t is minimized, the König–
Egerváry Theorem yields a vertex cover of H with size n−t−1. Because the
complement of a vertex cover is an independent set, H has an independent
set T of size n + t − 1. Since V (H) consists of n − 1 pairs of the form
{vi, wi}, at least t such pairs are contained in T . If {vi, wi}, {vj , wj} ⊆ T ,
then f(ei) and f(ej) are disjoint. Therefore there is a set of t edges whose
color sets are pairwise disjoint.

We conclude that pr(Pn) ≥ rt ≥ rp(Pn).
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5 Other Related Edge-Coloring Parameters

In this section we describe other parameters defined by looser or more
restricted versions of parity edge-coloring, and we give examples to show
that p(G) is a different parameter.

A nonrepetitive edge-coloring is an edge-coloring in which no pattern
repeats immediately on a path. That is, no path may have colors c1, . . . , ck

followed immediately by c1, . . . , ck in order, for any k. The notion was
introduced for graphs in [1]. Every parity edge-coloring is nonrepetitive,
and every nonrepetitive edge-coloring is proper, so the minimum number of
colors in a non-repetitive edge-coloring of G lies between p(G) and χ′(G).
The resulting parameter is called the Thue chromatic number in honor of the
famous theorem of Thue constructing non-repetitive sequences (generalized
to graphs in [1]). The concept is surveyed in [7].

More restricted versions of parity edge-colorings have also been studied.
A conflict-free coloring is an edge-coloring in which every path uses some
color exactly once. An edge-ranking is an edge-coloring in which on every
path, the highest-indexed color appears exactly once. Letting c(G) and
t(G) denote the minimum numbers of colors in a conflict-free coloring and
an edge-ranking, respectively, we have t(G) ≥ c(G) ≥ p(G).

Conflict-free coloring has been studied primarily in geometric settings;
see [6, 8, 22]. Edge-rankings were introduced in [13]. It is known that
t(Kn) ∈ Ω(n2) [3]; since p(Kn) ≤ 2n − 3, the gap here can be large.
Equality can hold: t(Pn) = c(Pn) = p(Pn) = dlg ne. Although computing
p(G) or p̂(G) is NP-hard when G is restricted to trees, there is a algorithm
to compute t(G) that runs in linear time when G is a tree [18] (at least
four slower polynomial-time algorithms were published earlier). Computing
t(G) is NP-hard on general graphs [17], as is finding a spanning tree T with
minimal t(T ) [19].

In this string of inequalities, c(G) and p(G) are neighboring parameters.
In this section, we present examples to show that they may differ. In fact,
in all these examples c(G) > p̂(G).

Corollary 5.1 c(K2k) > p̂(K2k) = p(K2k) when k ≥ 4.

Proof. We have observed that the proof of Theorem 3.4 in [2] implies
that every optimal spec f of K2k is canonical. The spanning subgraph of
K2k formed by the color classes whose names are vectors of weight 1 is
isomorphic to the hypercube Qk, and the colors on it correspond to the
coordinate directions. If there is a path in Qk that crosses each coordinate
direction more than once, then f is not conflict-free and c(K2k) > p̂(K2k).
In fact, it is easy to find such paths when k ≥ 4.

Example 5.2 As noted in Corollary 2.5, p̂(C8) = 3. Suppose that C8 has
a conflict-free 3-edge-coloring. If a color is used only once, then the other
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two colors alternate on paths of length 4 avoiding it, thus forming parity
paths of length 4. Hence the sizes of the three color classes must be (4, 2, 2)
or (3, 3, 2). Now deleting a edge from a largest color class yields a spanning
path on which no color appears only once.

By induction on the length, every path has an optimal parity edge-
coloring that is conflict-free (use a color only on a middle edge and apply the
induction hypothesis to each component obtained by deleting that edge).
This statement does not hold for trees.

Definition 5.3 A broom is a tree formed by identifying an endpoint of a
path with a vertex of a star. Let Tk be the broom formed using P2k−2k+2

and a leaf of a star with k edges. The parity of a vertex in Qk is the parity
of the weight of the k-tuple naming it.

We prove that Tk embeds in Qk but needs more than k colors for a
conflict-free edge-coloring (for k ≥ 4). W. Kinnersley (private communica-
tion) showed this initially for k = 5. We must first show that Tk indeed
embeds in Qk. This follows from the result of [15] that “double-star-like”
tree with 2k−1 vertices in each partite set embed as spanning trees of Qk,
since adding k − 2 leaf neighbors to the 2-valent neighbor of the k-valent
vertex in Tk yields such a tree. Their proof is lengthy; we give a short direct
proof for this special case.

Lemma 5.4 If x and y are distinct vertices of Qk having the same parity,
then there is a path of length 2k − 3 in Qk that starts at x and avoids y.

Proof. It is well known that Qk has a spanning cycle when k ≥ 2. Since
Qk is edge-transitive, there is a spanning path from each vertex to any
adjacent vertex (for k ≥ 1).

The desired path exists by inspection when k = 2. For larger k, we
proceed inductively. Vertices x and y differ in an even number of bits; by
symmetry, we may assume that they differ in the first two bits. Let Q′ and
Q′′ be the (k − 1)-dimensional subcubes induced by the vertices with first
bit 0 and first bit 1, respectively. We may assume that x ∈ V (Q′). There
is a spanning x, u-path P ′ of Q′, where u is the neighbor of x obtained by
changing the third bit. Note that P ′ has length 2k−1 − 1.

Let v be the neighbor of u in Q′′. Since v has the same parity as y,
and v 6= y, the induction hypothesis yields a path P ′′ of length 2k−1 − 3 in
Q′′ that starts at v and avoids y. Together, P ′, uv, and P ′′ complete the
desired path in Qk.

Lemma 5.5 For k ≥ 2, the broom Tk embeds in Qk, and hence p̂(Tk) =
p(Tk) = k.
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Proof. Note that Tk = P4 ⊆ Qk when k = 2; we proceed inductively. For
k > 2, the tree Tk contains Tk−1, obtained by deleting one leaf incident
to the vertex v of degree k and 2k−1 − 2 vertices from the other end.
With Q′ and Q′′ defined in Lemma 5.4, by the induction hypothesis Tk−1

embeds in Q′. The distance in Tk−1 from v to its leaf nonneighbor u is
2k−1 − 2(k − 1) + 2. This is even, so u and v have the same parity. Let
x and y be the neighbors of u and v in Q′′, respectively; also x and y
have the same parity. By Lemma 5.4, Q′′ contains a path P of length
2k−1 − 3 starting from x and avoiding y. Now adding vy, ux, and P to the
embedding of Tk−1 yields the desired embedding of Tk in Qk.

Theorem 5.6 If k ≥ 4, then c(Tk) = k + 1 = p̂(Tk) + 1.

Proof. For k = 4, a somewhat lengthy case analysis is needed to show
c(T4) > 4; we omit this. Let x be the vertex of degree k in Tk.

For k ≥ 5, we decompose Tk into several pieces. At one end is a star S
with k− 1 leaves and center x. Let P be the path of length 2k−2 beginning
with x. Let R be the path of length 2k−1 beginning at the other end of P .
Since k ≥ 5, we have 2k−2 + 2k−1 ≤ 2k − 2k + 2, so P and R fit along the
handle of the broom. Ignore the rest of Tk after the end of R.

Consider a conflict-free k-edge-coloring of S∪P∪R. Since R has 2k−1+1
vertices, at least k colors appear on E(R). Since P has 2k−2 +1 vertices, at
least k−1 colors appear on E(P ). Hence on P ∪R there are k−1 colors that
appear at least twice, and only one color c appears exactly once. Since x
has degree k, all k colors appear incident to x, including c. Hence c appears
on some edge of S, and adding this edge to P ∪ R yields a path on which
every color appears at least twice.

For k ≥ 2, we obtain a conflict-free (k + 1)-edge-coloring using color
k + 1 only on the edge e of P at x. Deleting e leaves the star S and a path
P ′ with 2k − 2k + 2 vertices. Since S has k − 1 edges and the length of P ′

is less than 2k, each has a conflict-free edge-coloring using colors 1 through
k. Paths from V (S) to V (P ′) use color k + 1 exactly once.

It remains unknown how large c(G) can be when p̂(G) = k or p(G) = k,
either in general or when G is restricted to be a tree.

6 Open Problems

Many interesting questions remain about parity edge-coloring and strong
parity edge-coloring. We have already mentioned several and collect them
here with additional questions.

In Section 4, we proved the first conjecture for n ≤ 16. In Section 3, we
proved various special cases of the second conjecture, which yield further
special cases of the first.
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Conjecture 6.1 p(Kn) = 2dlg ne − 1 for all n.

Conjecture 6.2 p(Kn,n) = p̂(Kn,n) = 2dlg ne for all n.

For complete bipartite graphs in general, the full story would be given
by proving Conjecture 3.6, which we restate here for completeness.

Conjecture 6.3 p̂(Kr,s) = r ◦ s for all r and s.

We have exhibited families of graphs G such that p̂(G) > p(G) (see
Example 2.8), but the difference is only 1, and the graphs we obtained all
contain odd cycles.

Question 6.4 What is the maximum of p̂(G) when p(G) = k?

Conjecture 6.5 p(G) = p̂(G) for every bipartite graph G.

If Conjecture 6.5 holds, than Conjecture 6.3 also determines p(Kr,s). If
the conjectures are not both true, then it would still be interesting to know
how p(Kk,n) and p̂(Kk,n) grow with k for fixed n. In particular, when do
they reach 2dlg ne? Theorem 3.10 may shed some light. Does equality hold
in Corollary 3.11?

Several questions about parity edge-coloring of trees are related to which
trees with 2k vertices embed as spanning trees of Qk. Havel [9] proposed
studying that question, and many papers followed; Havel [10] presents a
survey. Such a tree must have partite sets of equal size and must have
maximum degree at most k, but these conditions are not sufficient. Later
results on sufficient conditions include [4, 11, 15, 21].

Question 6.6 What is the maximum of p(T ) among n-vertex trees T with
∆(T ) = D?

We observed from Theorem 2.2 that testing p(T ) ≤ k is NP-hard. This
suggests complexity questions for more restricted problems.

Question 6.7 Do polynomial-time algorithms exist for computing p(T ) on
trees with maximum degree D or on trees with bounded diameter?

The algebraic arguments in [2] yield that recognition of specs is in P.
However, we do not know whether the same holds for parity edge-coloring.
(It does hold for edge-colorings of trees using the labeling procedure of
Theorem 2.2.)

Question 6.8 What is the complexity of testing whether an edge-coloring
is a pec?
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Paths and complete graphs show that p(G) is unbounded for fixed max-
imum degree or diameter. However, bounding both parameters limits the
number of vertices. Hence the next question makes sense.

Question 6.9 What is the maximum of p(G) among graphs (or trees) with
∆(G) ≤ k and diam (G) ≤ d?

It is a classical question to determine the maximum number of edges
in an n-vertex subgraph of Qk, where n ≤ 2k. Does the resulting graph
have the maximum number of edges in an n-vertex graph with parity edge-
chromatic number k? More generally,

Question 6.10 What is the minimum of p(G) among all n-vertex graphs
having m edges?

The lower bound in Corollary 2.4 naturally leads us to ask which graphs
achieve equality. Every spanning subgraph of a hypercube satisfies p(G) =
lg n(G); is the converse true?

Question 6.11 For which connected graphs G is it true that p(G) =
dlg n(G)e? Which satisfy p̂(G) = dlg n(G)e?

Motivated by the uniqueness of the optimal spec of K2k , Dhruv Mubayi
suggested studying the “stability” of the result.

Question 6.12 Does there exist an parity edge-coloring of K2k with (1 +
o(1))2k colors that is “far” from the canonical coloring?

In Section 5, we showed that paths satisfy all three properties below.
Are there other such graphs?

Question 6.13 For which graphs G do the following (successively stronger)
properties hold? (a) p2(G) = 2p(G)?
(b) pr(G) = rp(G) for all r?
(c) every parity r-set edge-coloring of G contains a set of p(G) edges whose
color sets are pairwise disjoint?

Lemma 2.6(a) states that deleting an edge reduces the parity edge-
chromatic number by at most 1. Ordinary coloring has the same property.
Thus we are motivated to call a graph G critical if p(G − e) < p(G) for
all e ∈ E(G). We say that G is doubly-critical if p(G − e − e′) = p(G) − 2
for all e, e′ ∈ E(G). Our results on paths and cycles imply that for all
n ≥ 1, P2n+1 is critical and C2n+1 is doubly-critical. Naturally, any star is
doubly-critical.
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Question 6.14 Which graphs are critical? Which graphs are doubly-
critical?

Since the factors can be treated independently in constructing a spec,
p̂ is subadditive under Cartesian product. Note that p̂(P2�P2) = 2 =
p̂(P2) + p̂(P2).

Question 6.15 For what graphs G and H does equality hold in p̂(G�H) ≤
p̂(G)+ p̂(H)? What can be said about p(G�H) in terms of p(G) and p(H)?

It may be interesting to compare p(G) with related parameters such
as conflict-free edge-chromatic number on special classes of graphs. We
suggest two specific questions.

Question 6.16 What is the maximum of c(T ) such that T is a tree with
p(T ) = k? What is the maximum among all graphs with parity edge-
chromatic number k?

Finally, the definitions of parity edge-coloring and spec extend naturally
to directed graphs: the parity condition is the same but is required only for
directed paths or walks. Hence p(D) ≤ p(G) and p̂(D) ≤ p̂(G) when D is
an orientation of G.

For a directed path ~Pm, the constraints are the same as for an undirected
path. More generally, if D is an acyclic digraph, and m is the maximum
number of vertices in a path in D, then p(D) = p̂(D) = dlg me. The lower
bound is from any longest path.

For the upper bound, give each vertex x a label l(x) that is the maximum
number of vertices in a path ending at x (sources have label 0). Write each
label as a binary dlg me-tuple. By construction, l(v) > l(u) whenever uv is
an edge. To form a spec of D, use a color ci on edge uv if the ith bit is
the first bit where l(u) and l(v) differ. All walks are paths. Any x, y-path
has odd usage of ci, where the ith is the first bit where l(x) and l(y) differ,
since no edge along the path can change an earlier bit.

Thus the parameters equal dlg ne for the n-vertex transitive tournament,
which contains ~Pn. This suggests our final question.

Question 6.17 What is the maximum of p(T ) or p̂(T ) when T is an n-
vertex tournament?
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[22] J. Pach and G. Tóth, Conflict-free colorings. In Discrete and computational
geometry, Algorithms Combin. 25 (Springer, 2003), 665–671.

[23] A. Plagne, Additive number theory sheds extra light on the Hopf–Stiefel ◦
function. L’Enseignement Math. 49 (2003) 109-116.

[24] H. Shapiro, The embedding of graphs in cubes and the design of sequential
relay circuits, Bell Telephone Laboratories Memorandum, July 1953.

[25] A. Wagner and D. G. Corneil, Embedding trees in a hypercube is NP-
complete. SIAM J. Computing 19 (1990), 570–590.

[26] S. Yuzvinsky, Orthogonal pairings of Euclidean spaces. Michigan Math. J.
28 (1981), 109-119.

21


