
Peachy Parallel Assignments (EduHPC 2018)
Eduard Ayguadé

Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Barcelona, Spain
eduard.ayguade@bsc.es

Lluc Alvarez
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
Barcelona, Spain

lluc.alvarez@bsc.es

Fabio Banchelli
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
Barcelona, Spain

fabio.banchelli@bsc.es

Martin Burtscher
Texas State University
San Marcos, TX, USA
burtscher@txstate.edu

Arturo Gonzalez-Escribano
Universidad de Valladolid

Valladolid, Spain
arturo@infor.uva.es

Julian Gutierrez
Northeastern University

Boston, MA, USA
jgutierrez@ece.neu.edu

David A. Joiner
Kean University

Union, NJ, USA
djoiner@kean.edu

David Kaeli
Northeastern University

Boston, MA, USA
kaeli@ece.neu.edu

Fritz Previlon
Northeastern University

Boston, MA, USA
previlon.f@husky.neu.edu

Eduardo Rodriguez-Gutiez
Universidad de Valladolid

Valladolid, Spain
eduardo@infor.uva.es

David P. Bunde
Knox College

Galesburg, IL, USA
dbunde@knox.edu

Abstract—Peachy Parallel Assignments are a resource for
instructors teaching parallel and distributed programming. These
are high-quality assignments, previously tested in class, that
are readily adoptable. This collection of assignments includes
implementing a subset of OpenMP using pthreads, creating an
animated fractal, image processing using histogram equalization,
simulating a storm of high-energy particles, and solving the wave
equation in a variety of settings. All of these come with sample
assignment sheets and the necessary starter code.

Index Terms—Parallel computing education, High-
Performance Computing education, Parallel programming,
OpenMP, Pthreads, CUDA, Compiler and runtime systems,
Fractals, Image processing, Particle simulation, Wave equation,
Peachy Assignments

I. INTRODUCTION

A key part of teaching a course on parallel and distributed
computing or computational science is creating great program-
ming assignments. Students likely spend more time working
on these assignments than engaging with other aspects of the
course, making the assignments integral both to student learn-
ing and student perceptions of the subject matter. That said,
creating great assignments is a large time commitment and is
not guaranteed to succeed; sometimes even seemingly-great
assignment ideas turn out to have flaws when implemented
and given to students. To help overcome these issues, we are
presenting Peachy Parallel Assignments at the Edu* series of
workshops. These assignments all go through a competitive
review process based on the following criteria:

• Tested — All Peachy Parallel Assignments have been
successfully used in a class.

This work is partially supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science
and Technology (contracts TIN2015-65316-P and FJCI-2016-30985), and by
the Generalitat de Catalunya (contract 2017-SGR-1414).

• Adoptable — Peachy Parallel Assignments are easy to
adopt. This includes not only the provided materials, but
also the content being covered. Ideally, the assignments
cover widely-taught concepts using common parallel lan-
guages and widely-available hardware, have few prereq-
uisites, and (with variations) are appropriate for different
levels of students.

• Cool and Inspirational — Peachy Assignments are fun
and inspiring for students. They encourage students to
spend time with the relevant concepts. Ideal Peachy
Assignments are those that students want to demonstrate
to their roommate.

This effort is inspired by the SIGCSE conference’s Nifty
Assignment sessions, which focus on assignments for intro-
ductory computing courses. (See http://nifty.stanford.edu for
more details.)

In this paper, we present the following Peachy Parallel
Assignments:

• Implement a subset of OpenMP in pthreads to gain a
deeper understanding of both libraries.

• Create a movie that zooms into a fractal. Appropriate for
MPI, pthreads, OpenMP, or CUDA.

• Implement histograph equalization to sharpen images
using CUDA.

• Simulate a storm of high-energy particles using OpenMP,
MPI, CUDA, or OpenCL.

• Implement and parallelize code to solve the wave equa-
tion in multiple contexts (serial, OpenMP, MPI, and
CUDA) to illustrate principles of performance optimiza-
tion.

See the Peachy Parallel Assignments webpage (https://grid.
cs.gsu.edu/∼tcpp/curriculum/?q=peachy) for the materials (e.g.
assignment handouts and starter code) for these assignments.



The website also lists Peachy Parallel Assignments presented
previously. We hope that you find these assignments useful
and encourage you to consider submitting your own great
assignments for future presentation!

II. MINI-OPENMP — AYGUADÉ, ALVAREZ, BANCHELLI

This section presents the “Implementing a minimal OpenMP
runtime using Pthreads” assignment that is offered to students
of Parallel Programming and Architectures (PAP), a third-year
elective subject in the Bachelor Degree in Informatics Engi-
neering at the Barcelona School of Informatics (FIB) of the
Universitat Politècnica de Catalunya (UPC) — BarcelonaTech.
In this assignment, students open the black box behind the
compilation and execution of OpenMP programs, exploring
different alternatives for implementing a minimal OpenMP-
compliant runtime library, providing support for both work-
sharing and tasking models. In addition, the assignment allows
the students to learn the basics of Pthreads in a very interesting
and applied way, as well as the low-level atomic mechanisms
provided by the architecture to support the required thread and
task synchronisations.

A. Motivation

OpenMP is the de-facto standard API for programming
shared-memory parallel applications in C/C++ and Fortran.
From the programmers’ perspective, OpenMP consists of a set
of compiler directives, runtime routines and environment vari-
ables. This programming model is ideally suited for multicore
and shared-memory multi-socket architectures, as it allows
programmers to easily specify opportunities for parallel execu-
tion in regular (e.g. loop-based) and irregular (e.g. recursively
traversing dynamically created data structures) applications.

The two components that support the execution of OpenMP
programs are the compiler and the runtime system. The
OpenMP compiler transforms code with OpenMP directives
into explicitly multithreaded code with calls to the OpenMP
runtime library. The OpenMP runtime system provides rou-
tines that support thread and task management, work dispatch,
thread and task synchronisation, and intrinsic OpenMP func-
tions. Most OpenMP runtimes are implemented using Pthreads
(also named POSIX threads), the threads programming inter-
face specified by the IEEE POSIX 1003.1c standard.

B. The miniomp Assignment

The assignment is to build a minimal OpenMP runtime
system. This simplified runtime system has to support the
code generated by the GNU gcc compiler and to correctly
work as an alternative to the libgomp runtime system that
is distributed as part of gcc. Figure 1 shows a flowchart
with the main components involved in the assignment. The
gcc compiler is used unmodified and students analyse how
the compiler translates the different directives to invocations
of services in the runtime system. The libgomp library
is replaced by the minimal runtime library (libminiomp)
using the LD_PRELOAD mechanism, making use of the library
constructor and destructor mechanisms to setup the OpenMP

environment necessary to execute the OpenMP programs. The
implementation of the simplified runtime is based on the
POSIX Pthreads standard library, which provides the basic
support for thread creation and synchronisation on top of
which the work-sharing and tasking models can be built. So, in
addition to the internal organization of OpenMP runtime sys-
tems, the students also learn the main features of the Pthreads
library and they put into practice the use of dynamically linked
shared libraries.

OpenMP
compiler

OpenMP
runtme library

Annotated 
source 
code

Executable 
binary

gcc –fopenmp,
unmodifed

libgomp.so in LD_LIBRARY_PATH,
replaced with the libminiomp.so
implemented in the assignment

Pthreads

OpenMP 
Executon

Fig. 1. The OpenMP compilation and execution flow.

In this scenario, our students usually ask the same questions:
“Why do we want to study how an OpenMP program is
actually executed on our parallel machine? Is it not enough
to be able to write correct OpenMP programs?, ...”. We
believe that this assignment helps students understand program
performance and possible sources of overhead so they can
write more efficient code. It also teaches the basics of devel-
oping a parallel runtime system on top of low-level threading
offered by the OS, targeting new programming models and/or
multicore architectures.

C. Two Versions
We propose two versions of the assignment that ask students

to implement different functionality of the OpenMP runtime:
• Version 1 — Basic implementation for the work-

sharing model: parallel regions, work distributors
(single and for) and synchronisations (barrier and
critical, both unnamed and named).

• Version 2 — Basic implementation of the tasking
model: unified parallel-single region, task (with
no support for nesting), taskloop and synchronizations
(critical and taskwait).

Both versions are developed in an incremental way, so
students can always generate a working runtime library with
the functionality implemented so far. For example, for version
1 students first implement parallel and intrinsic func-
tions omp_get_thread_num, omp_get_num_threads
and omp_set_num_threads, learning how to access to
environment variables such as OMP_NUM_THREADS; second
they implement barrier and critical (both named and
unnamed) and take a look at how the compiler implements
atomic; then they implement the single work-sharing
construct, paying attention to the fact that there may be
multiple instances of single active at the same time; and
finally they implement the for work-sharing construct.



Fig. 2. Directory structure for the miniomp assignment.

Once the selected version is implemented, students are
encouraged to implement some optional functionality. For
example, in both versions the support for nested parallel
regions, implementation of a thread pool (i.e. threads not
created and finished in each parallel region) or thread binding
policies are not initially considered. Also, students are allowed
to initially use the synchronisation constructs provided in
Pthreads (locks, barriers, ...). As part of their work, and based
on their own skills, interests and time, students decide to relax
some of these constraints, make use of atomic instructions to
implement synchronisation primitives and/or consider some
additional OpenMP features initially not considered in the
specification of the assignment.

A number of simple test cases are provided with the aim
of testing the functionality as it is incrementally implemented.
For functional validation, students can always switch back to
the original libgomp library to know the output that each
test case should produce. We encourage students to extend
the basis test suite to improve coverage and better validate
the functionality implemented. Students are also motivated to
compare, in terms of performance, their implementation with
the original libgomp library; although unfair, since the orig-
inal libgomp library supports much more functionality, this
gives them an idea of what performance should be expected
and motivates them to improve their own implementation.

D. Resources and Duration

The proposed assignment can be done in any system booted
with Linux, preferably multicore. Although students could use
their own laptops, we strongly suggest they use a departa-
mental cluster composed of several nodes, each with a certain
number of cores. One of the nodes is used as login node,
in which students can edit and compile their code, as well
as do some functional tests. The rest of nodes are accessible
through execution queues and can be used for performance
evaluation/comparison purposes.

In order to give an idea of the number of files that need
to be modified, Figure 2 shows the directory tree and files
initially provided to students; dummy implementations for all
runtime functions that need to be implemented are provided.
In terms of duration, the assignment is designed to be done in
6 laboratory sessions (one per week), each taking 2 hours; in

addition, students usually spend between 2 and 4 additional
hours at home per week. So the total load is estimated
between 24 and 36 hours, depending on how far students
go with optional parts, functional validation and performance
evaluation and comparison against the original libgomp.

The assignment has been tested (and evolved) in the past 3
academic years, making it readily adoptable by other educa-
tors.

III. FRACTAL MOVIE — BURTSCHER

This project is to parallelize a provided serial program that
computes multiple images of a fractal, each at a higher zoom
level. The resulting images can be viewed individually or
combined into a movie, e.g., with the free convert tool.

The part of the code that needs to be parallelized is short and
relatively simple. It consists of three nested loops. The outer
loop iterates over the images and the inner two loops iterate
over the x and y coordinates. The fractal code that computes
a pixel’s gray-scale value comprises only six statements but
is complex, which is why I explain it in class before handing
out the project.

A. Target Audience and Context

I have used this assignment for many semesters in a senior-
level undergraduate course on parallel programming as well
as in a masters-level graduate course on parallel processing.
In both courses, the fractal is part of multiple bi-weekly
programming projects. Each project focuses on a different par-
allelization approach (MPI, Pthreads, OpenMP, and CUDA). In
addition, I typically include at least one variation per project.

B. Interesting Variations

In the most basic version, only the outer image-loop is
parallelized. However, the project can be made more chal-
lenging by including some of the following additions: 1) If
the zoom factor is computed iteratively (rather than using
a closed-form function), there is a loop-carried dependency
that the students must eliminate. 2) If the loop does not
execute enough iterations to yield sufficient parallelism (e.g.,
for GPUs), multiple loops must be combined and parallelized
together. 3) If the order of the inner two loops does not match
the memory layout of the image, the loops must be swapped
to improve locality and enable coalescing. 4) Depending on
the selected fractal, there may be substantial load imbalance,
which can be alleviated by modifying the schedule.

C. Prerequisites

At a minimum, the students must have been taught basic
loop-parallelization strategies. If the above-mentioned varia-
tions are used, knowledge about dependency elimination, loop
fusion, loop interchange, and scheduling techniques is also
required.



Fig. 3. A frame of the fractal movie

D. Covered Concepts

The covered concepts include basic loop parallelization
and load imbalance. Optionally, they include which loop to
parallelize (to avoid dependencies or to lower overhead), loop
interchange (to enhance locality), loop fusion (to increase par-
allelism), dependency elimination, and scheduling (to reduce
imbalance).

E. Strengths

I have had great success with this assignment because of the
following benefits: 1) Most students enjoy creating the fractal
image/movie. 2) The code is quite short but not trivial, and the
part that needs to be parallelized easily fits on a single screen.
Not counting writing out the BMP, there are only about 40
statements, including timing code and code for checking the
command-line parameters. 3) The program requires no input
files, just the size of the image and the number of images
to compute. 4) The output can be viewed image-by-image
or converted into a movie, the latter of which is great for
demonstrating the result to other people. 5) The images are
not only visually pleasing but also useful for debugging, e.g.,
they typically expose which thread or process is off. 6) The
fractal can easily be changed from one semester to the next
to modify the runtime and the load imbalance.

Probably the most distinctive feature of this assignment is
that the brightness of each pixel is determined by the amount
of computation performed. Hence, the fractal is a visualization
of the workload and thus enables the students to see the load
imbalance. For example, when generating Figure 3 with two
threads, there will be substantial load imbalance if one thread
computes the less work intensive, brighter top half of the
image and the other thread the more work intensive, darker
bottom half.

F. Weaknesses

The main downsides of this project are that the computa-
tion is not particularly useful, that it is hard to understand
(though asking students to parallelize code they do not grasp

completely may still be useful as this situation does occur in
practice), that the provided BMP-writing code is not pretty
because of various quirks of the BMP format (which are
hidden in a header file), and that a third-party viewer or movie
maker is required.

G. Final Comment

Most students, including underrepresented students, like the
fractal very much. For example, some of my students have
used it as background for talk slides, web pages, and even
personalized credit cards. One student liked it so much that
she gave me a jigsaw puzzle of the fractal as a thank-you gift.

IV. IMAGE PROCESSING — GUTIERREZ, PREVILON,
KAELI

Many textbooks rely on classical linear algebra examples to
illustrate best practices in parallel programming (e.g., matrix
multiplication and vector add). Despite their common use in
class, these examples lack the sophistication of a complete
application. We have found that students seem to be more
motivated to work with imaging processing algorithms, where
the student can view the before and after image, visually
inspecting the results of their processing.

This assignment focuses on improving the performance of
the histogram equalization algorithm applied to an image. His-
togram equalization is a popular image processing algorithm
used to increase the contrast of an image to better highlight
its features. It is a common algorithm used in many scientific
applications such as x-ray imaging, thermal imaging, and as a
pre-processing task for multiple computer vision/deep learning
algorithms.

The following guidelines are used for this assignment:
• All students work on the same project.
• The project can be developed in groups of (at most) 3

students.
• The students need to study the application to understand

how the algorithm works.
• They develop an optimized GPU implementation using

CUDA, providing the same functionality (but faster) of
the histogram equalization found in the OpenCV package.

• Students are encouraged to explore their own unique
algorithm if the output result is comparable to that of
the OpenCV library (+- 5% difference allowed).

• Students obtain all the points if they have successfully
completed the assignment.

• Extra points (or rewards) are given to those who achieved
the best-performing implementation.

Students are given a baseline code that works with a CPU-
based OpenCV interface, and a simple CUDA kernel which
reads the input image and provides the necessary structure to
modify the image. This structure allows the students to focus
on the algorithm implementation and performance, without
having to develop the initial program structure. Additionally,
evaluating the final code from students becomes easier if they
all follow the same coding structure. A key factor in the
effectiveness of this assignment is dedicating a class session



Fig. 4. Example input image and output for the histogram equalization
algorithm.

discussing their implementations, sharing the different ways of
optimizing their resulting CUDA code with their classmates.

Concepts covered within this assignment include: 1) CUDA
programming in C, 2) performance tuning with profiling tools
(nvprof and nvvp), and 3) algorithmic optimizations spe-
cific for image processing algorithms (including memory per-
formance improvement through coalescing reads and shared
memory, and efficient reduction schemes for histograms).

The assignment is appropriate for students at all academic
levels, as long as they have a passing knowledge of CUDA
as part of their past coursework (with most CUDA and
GPU architecture concepts covered before the assignment).
This assignment has been used as a final project for a free
GPU programming class offer to undergraduates and graduate
students at Northeastern for the past 5 years. A GPU was
awarded to the best performing project. Additionally, multiple
image processing algorithms can be used as variations for this
assignment, such as the Sobel filter.

The strengths of this assignment include:
• Motivational (we received positive feedback from stu-

dents).
• Challenging, yet doable.
• Encompasses multiple GPU programming optimization

concepts.
The weaknesses of this assignment include:
• Oriented specifically toward the CUDA programming

language (although the assignment can be adapted to
other parallel programming languages).

• Requires CUDA-enabled hardware.

V. STORMS OF HIGH-ENERGY PARTICLES —
GONZALEZ-ESCRIBANO, RODRIGUEZ-GUTIEZ

We present an assignment used in a Parallel Computing
course to teach the approaches to the same problem in dif-
ferent parallel programming models. It targets basic concepts
of shared-memory programming with OpenMP, distributed-
memory programming with MPI, and GPU programming
with CUDA or OpenCL. This assignment is based on a
highly simplified simulation of the impact of high-energy
particle storms in an exposed surface. The idea is inspired by
simulations to test the robustness of material used in space
vessels. The program is designed from scratch to be easy
to understand by students, and to include specific parallel
structures and optimization opportunities. A simple paralleliza-
tion in the three models considered is quite direct. But the

Fig. 5. Graphical representation of the effect of particles impact in a
discretized 1-dimensional space

program has plenty of opportunities for further improvements,
optimizations, and the usage of more sophisticated techniques.
It has been successfully used in parallel programming contests
during our course, using the performance obtained by the
students’ code as a measure of success.

A. Idea and Context

Different programming models use different approaches for
the parallelization of basic application structures. Understand-
ing these differences is key for students to get into more
advanced techniques, and to face parallel programming on
current heterogeneous platforms. We have designed a course
on parallel programming that introduces the basic concepts and
techniques for programming with OpenMP, MPI, and CUDA
or OpenCL.

We use the same simple but inspirational application as
an assignment for each programming model. The provided
material includes a sequential code, a test-bed of input files,
and a handout explaining the assignment. After the lectures
and laboratory sessions dedicated to teach the basic concepts
and tools for each programming model, we start a program-
ming contest lasting one week. During that week, the students
parallelize the code with the target programming model, and
compete to obtain the best performance. The students can
use common compilers and PC platforms to develop and test
their codes. An automatic judging tool with an on-line public
ranking is used to provide a fair arena, and to keep the students
engaged during the contest. Other gamification tools are also
included [1].

B. Concepts Covered

For simplicity, the program simulates the effect of par-
ticles impacting on a cross section of the surface. It uses
1-dimensional arrays to represent the discretized space (see
Fig. 5). Each storm is represented as an unordered collection
of pairs of numbers. Each pair indicates the impact position
and the energy value of a particle. For each storm, the program
applies three stages: (1) Update the array cells depending on
particle energy and distance to the impact point; (2) Com-
pute a relaxation using a stencil operator; and (3) Compute
a reduction to obtain the maximum energy value and its
position in the array. The output of the program is the list



of maximum values and positions after each storm. In debug
mode, the program also writes the final energy values in all
array positions in a graphical plain text representation. More
sophisticated representations of the evolution of the energy
after each storm can also be obtained with simple tools such
as gnuplot.

The basic concepts covered in OpenMP are paralleliza-
tion of loops, targeting the outer/inner loop to avoid race
conditions, and non-trivial reductions. Loop reordering can
also be applied. In the case of MPI, the students need to
understand how to compute the limits of a distributed array
in terms of the process index, using halos and neighbor
communications for the stencil part, and generic reductions.
For GPU programming, the students work with the concepts
of memory management in the co-processor, reducing host-
to-device and device-to-host communication, embarrassingly-
parallel kernels, choosing proper thread block sizes, and
simple reductions.

Plenty of further code optimizations can be discovered and
applied, such as pointer swap to avoid array copies, reverse
threshold calculations to narrow loop limits, using wider halos
to reduce synchronization stages in MPI, using shared memory
in GPUs to implement faster reductions, etc.

VI. WAVE EQUATION – JOINER

Topics for use in a classroom setting for high performance
computing suffer from competing challenges of (1) showing
reproducible speedup and scalability, (2) having authenticity,
and (3) being able to present and complete in a standard
classroom period. In CPS 5965 High Performance Computing
at Kean University, we use the numerical solution of the
wave equation as a motivating example. The problem is used
in multiple contexts across different course meetings, and
provides an example giving continuity across 4 key topics in
my course (performance programming, threaded parallelism,
accelerated parallelism, and distributed parallelism).

A. Initial Use, Performance Computing

The problem posed to students is to solve for a solution of
the equation

∂2

∂t2
A = ∇2A

given fixed boundary conditions at the extremes and an
initial perturbed (typically Gaussian) configuration between
the extremes. Students are provided with an algorithm and
pseudocode for solving the problem using a Leapfrog method.
They are asked to implement the pseudocode, which includes
initial conditions and sample output, in their language of
choice. This allows us to begin one of the first key discussions
in the course, choice of language. Most students entering
in the course have backgrounds in languages other than
C, C++, or Fortran, and will typically write their code in
Java, Python, or MATLAB. The student implementations are
compared to each other, as well as solved examples in those
languages plus C, C++, Fortran, JavaScript, C#, and PERL.
For languages with an available optimizing compiler, a range

of optimization options are used. We also use commercial
compilers if available. The wall time of the solutions are sorted
by language given a simple student-created benchmark of
available languages for HPC use. Results can vary by platform
and installation, but generally students will see significant
performance differences between interpreted languages and
compiled languages, as well as a significant performance
difference between architecture-specific optimizing compil-
ers and platform-independent non-optimizing compilers (e.g.
PERL, Python, MATLAB typically perform slower than C#,
Java, and JavaScript, which in turn typically perform slower
than C, C++, and Fortran). This helps to motivate the use
of C/C++ as the language in which my course is taught,
and leads into subsequent discussions of performance tuning,
particularly the importance of optimizing for sequential ac-
cess through contiguous memory. Other elements that can be
worked into this activity is the use and meaning of the Unix
time command, as the timing of each version of the code
is shown to the students in class. Students are not given the
C solution at this time, but rather shown it in demonstration.
The next lesson that follows is a primer in the C language,
as typically the students in the class have not previously had
experience with it. As a homework assignment, students are
required to write their own version of the wave code in C.

B. Reprise of Activity, Parallelization

We return to the wave equation throughout the class when
discussing different types of parallelism. Our first parallel
unit covers threaded parallelism in OpenMP. After an initial
lecture where students are shown typical demonstrations of
OpenMP (e.g. trapezoidal rule parallelization from Pacheco),
students are asked to use OpenMP in their C version of the
wave equation code. In class, students discuss different options
for choices of loops to parallelize, and scheduling options
to be used. The implementation is done as a lab activity in
class, and students who do not complete it in the alloted time
are assigned it as homework. Students are asked to compare
speedups for increasingly higher resolutions of their wave, and
to determine how large their wave array needs to be before
any performance improvement is seen. Students typically will
quickly see that the size of the array required to show speedup
for the 1D solution is substantially greater than needed for an
accurate solution to the given problem, and also that by making
the problem higher resolution than needed, the wall time for
the parallel implementation is greater than the simpler, serial
approach that they started from. The follow-up activity is the
students being given starter code for a 3D version of the same
problem, which they are required to parallelize and profile.
They typically will determine that the greater amount of work
required to solve the 3D version of the problem make this
version more suitable for a parallel solution.

For the MPI unit, the wave equation is used as an example
of a domain decomposition, as block scheduling of the work in
updating the arrays requires that each rank be updated with a
ghost cell of the data from a nearby rank, in order to calculate
∇2A. Best practices in determining block scheduling in MPI



Fig. 6. Paraview visualization of a time step in the 3D wave solution.

are discussed in class, and code for computing ranges of blocks
that are as evenly spaced as possible is provided in an earlier
activity. Students then are asked to implement block sceduling
with ghost cells in MPI. Solved code, including the Block-
Range structure provided to students, is available to instructors
by request to djoiner@kean.edu. Additionally, during the MPI
unit the benefit of structuring multi-dimensional arrays as
single flat arrays with stride determined during array access
(e.g. x[i*ny+j] instead of x[i][j]) is discussed, and starter code
for the students includes a rewrite of the wave3d code with
flattened arrays.

The wave code is also used as a lab activity for CUDA
parallelization.

C. Visualization of Results

Throughout the semester, in discussions of this and other
activities, code examples are often used to showcase best
practices in other areas of high performance computing other
than parallel programming. Visualization, in particular, gets
discussed in class, including different programs for graphing
results and for creating graphics during a run for rapid visu-
alization and debugging. 1D solved examples in C provided
with this paper include simple line graphing using GD, 2D
solved examples in C include a heatmap in GD, and 3D solved
examples include output in CSV and NetCDF formats that can
be viewed post-run using visualization tools such as ParaView
(shown in Figure 6).

REFERENCES

[1] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D.R. Llanos. Gamification-Based E-Learning Strategies for Computer
Programming Education, chapter 6. Applying Gamification in a Parallel
Programming Course. IGI Global, 2017.

APPENDIX: REPRODUCIBILITY

It is certainly our hope that others will use these assignments
and reproduce the success we have had with them. The main
materials needed for this are the assignments and support-
ing materials available on the Peachy Parallel Assignments
webpage, https://grid.cs.gsu.edu/∼tcpp/curriculum/?q=peachy.
The bulk of the resources and context for each assignment is
presented in the section on that assignment. Where the authors

thought that additional information on the resources or staging
of an assignment would be useful, it is presented below.

A. Storms of High-Energy Particles

The particle storm assignment has been used in the context
of a Parallel Computing course, in the third year of the
Computing Engineering grade at the University of Valladolid
(Spain).

The material of the assigment, including a handout, the
starting sequential code, and some input data sets to be used
as examples are publicly available (https://trasgo.infor.uva.es/
peachy-assignments/).

The on-line judge program used in the programming con-
tests is named Tablon, and it was developed by the Trasgo
research group at the University of Valladolid (https://trasgo.
infor.uva.es/tablon/). The contest software uses the Slurm
queue management software to interact with the machines in
the cluster of our research group. During the course we used
Slurm 17.02.7.

The machine of the cluster used for the OpenMP and
CUDA/OpenCL contests is named hydra. It is a server with
two Intel Xeon E5-2609v3 @1.9 GHz CPUs, with 12 physical
cores, and 64 GB of RAM. It is equipped with 4 NVIDIA’s
GPUs (CUDA 3.5), GTX Titan Black, 2880 cores @980 MHz,
and 6 GB of RAM.

During the MPI contest we use hydra in combination with
two other servers to create a heterogeneous cluster. The other
two machines are: thunderbird, with an Intel i5-3330 @2.4
GHz CPU and 8 GB of RAM; and phoenix, with and Intel
QCore @2.4 Ghz CPU with 6 GB of RAM.

All machines are managed by a CentOS 7 operating system.
The compilers and system software used have been GCC v6.2,
and CUDA v9.0.

The assignment provides the sequential code and the input
files of the test-beds for the students. Other test-beds used by
the on-line judge during the contest are also provided.

The results of the contests are publicly available until the
start of the next semester at http://frontendv.infor.uva.es.

B. Wave Equation

The wave examples shown are used in CPS 5965 at Kean,
which is a semester long course on high performance comput-
ing. Classes run in a double period format over 2.75 hours with
a 15 minute break, over the course of 16 weeks. The class is set
up with roughly half of the time devoted to a combination of
lecture and interactive demonstrations, for which the students
are expected to follow along on their own laptops, and half
for lab-based time where students work independently and
with each other while the instructor is available to assist.
Examples are run on one of two machines available to the
students. Having the students create the code in their language
of choice is implemented as one lab activity. The comparison
between languages is done during the lecture portion of the
following class, along with a primer in C for students with
prior programming knowledge. The lab activity following the
C primer is for the students to translate their code into C. Each



of the other uses of the example are done as lab activities
during the OpenMP, CUDA, and MPI units in the course. The
serial codes as well as OpenMP and MPI versions of codes
are run on a 130-node cluster housed on campus, available
to students throughout the run of the course, however all of
the examples can be configured to run in different amounts
of time by either changing the resolution or end time of the
simulation, and thus can run on a variety of hardware options.
Serial codes for benchmarking are run on a single core of a
single node, each of which has 8 2.6GHz CPU cores available,
with 16 GB RAM and 300 GB storage per node, connected
via Gigabit ethernet. For C/C++ and Fortran, students have
both Gnu and Intel compilers available. Scheduling is done
using Torque/Maui for all serial, OpenMP, and MPI examples.
Students run OpenMP examples with dedicated use of all
cores on a single node, and students can request all available
nodes for MPI examples, with a subset of nodes set aside
for short classroom jobs. For CUDA-based examples, students
have access to a shared server with 2 K20c Tesla GPGPUs.


