
Peachy Parallel Assignments (EduHPC 2019)
Mulya Agung∗, Muhammad Alfian Amrizal∗, Steven Bogaerts†, Ryusuke Egawa∗,

Daniel A. Ellsworth‡, Jorge Fernandez-Fabeiro§, Arturo Gonzalez-Escribano§, Sukhamay Kundu¶,
Alina Lazar‖, Allen Malony∗∗, Hiroyuki Takizawa∗, David P. Bunde††

∗Tohoku Univ. †DePauw Univ.
Sendai, Japan Greencastle, IN, USA

Email: {agung@sc.cc.,alfian@ci.cc.,egawa@,takizawa@}tohoku.ac.jp Email: stevenbogaerts@depauw.edu

‡Colorado College §Univ. Valladolid
Colorado Springs, CO, USA Valladolid, Spain

Email: dellsworth@coloradocollege.edu Email: {jorge,arturo}@infor.uva.es

¶Louisiana State University ‖Youngstown State Univ.
Baton Rouge, LA, USA Youngstown, OH, USA

Email: kundu@csc.lsu.edu Email: alazar@ysu.edu

∗∗Univ. Oregon ††Knox College
Eugene, OR, USA Galesburg, IL, USA

Email: malony@cs.uoregon.edu Email: dbunde@knox.edu

Abstract—Peachy Parallel assignments are high-quality assign-
ments for teaching parallel and distributed computing. They have
been successfully used in class and are selected on the basis of
their suitability for adoption and for being cool and inspirational
for students. Here we present a fire fighting simulation, thread-
to-core mapping on NUMA nodes, introductory cloud computing,
interesting variations on prefix-sum, searching for a lost PIN, and
Big Data analytics.

Index Terms—Parallel computing education, High-
Performance Computing education, Parallel programming,
Cloud Computing, Curriculum Development, Thread Mapping,
Data Analytics, Prefix-sum, OpenMP, MPI, GPGPU, NUMA,
Dask

I. INTRODUCTION

Teaching parallel and distributed computing or high-
performance computing requires assignments that help stu-
dents understand both the potential and the challenges of these
areas. They should illustrate the main techniques and be at
the right difficulty level for the students being taught. Ideally,
the assignments should also be interesting and exciting for
the students to encourage their interest in the field. Creat-
ing assignments with all these characteristics is not easy. It
involves both time and some risk since not every seemingly-
great assignment idea becomes a successful assignment. To
help educators save time and improve the quality of their
assignments, a Peachy Parallel Assignment track was added

This work uses the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) Jetstream at Indiana University and the Texas Advanced
Computing Center, through allocation TG-CIE180012, which is supported by
National Science Foundation grant number ACI-1548562.

to the Edu* series of workshops on Parallel and Distributed
Computed Education. These assignments are presented at
the workshops [18], [3] and also collected on a webpage
(https://tcpp.cs.gsu.edu/curriculum/?q=peachy).

Peachy Parallel Assignments all go through a competitive
selection process based on the following criteria:

• Tested — All Peachy Parallel Assignments have been
successfully used in a class.

• Adoptable — Peachy Parallel Assignments are easy to
adopt. This includes not only the provided materials, but
also the content being covered. Ideally, the assignments
cover widely-taught concepts using common parallel lan-
guages and widely-available hardware, have few prereq-
uisites, and (with variations) are appropriate for different
levels of students.

• Cool and Inspirational — Peachy Assignments are fun
and inspiring for students. They encourage students to
spend time with the relevant concepts. Ideal Peachy
Assignments are those that students want to demonstrate
to their roommate.

This effort is inspired by the SIGCSE conference’s Nifty As-
signment sessions, which focus on assignments for introduc-
tory computing courses. (See http://nifty.stanford.edu for more
details.) We are also particularly interested in assignments that
are suitable for lower-level courses; these would facilitate the
inclusion of parallel and distributed computing topics in those
courses and correct a tendency of the first Peachy Assignments
to focus more on higher-level courses [11].

https://tcpp.cs.gsu.edu/curriculum/?q=peachy
http://nifty.stanford.edu

In this paper, we present the following Peachy Parallel
Assignments:
• A parallel simulation of heat propagation during a fire,

with firefighter teams trying to extinguishing the focal
points.

• Creating a thread-to-core mapping to optimize memory
performance on a simulated NUMA system.

• Assignments and materials for introducing students to
cloud resources (targeted to XSEDE, but adaptable to
other platforms).

• Devising algorithms based on prefix-sum for a variety of
problems.

• Searching for a PIN in parallel to match a hashed value.
• Big Data analytics using the Dask framework.

The Peachy Assignments webpage (https://tcpp.cs.gsu.edu/
curriculum/?q=peachy) has the materials for each of these
assignments (draft handout, given code, etc). It also lists
the Peachy Assignments from previous competitions. Please
come and browse for great assignment ideas. Then, consider
submitting your own assignments to our next competition.

II. AGENT-BASED SIMULATION OF FIRE EXTINGUISHING
(GONZALEZ-ESCRIBANO AND FERNANDEZ-FABEIRO)

We present a new assignment used in a Parallel Computing
course to solve the same problem in different parallel program-
ming models. It targets concepts of shared-memory program-
ming with OpenMP, distributed-memory programming with
MPI, and/or GPU programming with CUDA or OpenCL. This
assignment is based on a simplified agent-based simulation
where teams of firefighters aim to extinguish a set of fire focal
points in a dynamically evolving scenario. The program is
designed to be simple, easy to understand by students, and to
include specific parallelization and optimization opportunities.
Although there is a quite direct parallel solution in the three
programming models, the program has plenty of opportunities
for further improvements. It extends the ideas of a previously
presented assignment, in order to use more interesting data
structures, load balancing techniques, and code optimizations.
It has been successfully used in parallel programming contests
during a real course, using the performance obtained by the
students’ code as a measure of success.

A. Idea and context

Different programming models use different approaches for
the parallelization of application structures. Understanding
these differences is key for students to get into more ad-
vanced techniques, and to create parallel programs for current
heterogeneous platforms. For several years, we have been
teaching a course of Parallel Programming that introduces
the basics of OpenMP, MPI, and CUDA or OpenCL. A
Peachy Assignment was previously presented [3], which was
designed to be parallelized by the students using each of these
programming models during three one-week programming
contests. The students compete to obtain the best performance
on each contest. Although this kind of assignment can be
used to successfully teach a single programming model, it

can also show which concepts and ideas can be reused across
different models, and which cannot, exposing the approach
differences and the conceptual shift between models. For
example, the students learn the differences between controlling
race-conditions in shared-memory vs. using distributed data
structures with explicit communications vs. dealing with tiling
and memory hierarchies in GPU coprocessors.

This new Peachy Assignment maintains a clear focus on
simple but effective code parallelizations and optimizations,
while introducing more opportunities for the advanced students
and more choices to teach a single programming model. This
includes dealing with 2D data structures, a wider range of syn-
chronization issues with different solutions in different models,
and more interesting load-balancing and code optimization
decisions.

Heat-propagation simulation is a classical example that
can be used to teach concepts of parallel programming.
For example, in [18] a Peachy Assignment was presented
that simulates the heat diffusion of a single campfire point,
with the possibility of including isolation surfaces, and with
an interesting online graphical representation that helps the
students to visualize the effect of typical parallelization bugs.

In this assignment, we merge heat propagation with an
agent-based simulation, where agents are fire-extinguishing
teams. This combination is the key to allow the design
of different load-balance situations. In our assignment, two-
dimensional arrays store the heat values in a discretized
representation of the simulation arena. Fire focal points arise
at established places and simulation times, and their heat is
propagated to neighbor cells step by step. Teams of firefighters
are represented by agents that make simple decisions to
advance, one cell at a time, in the direction of the next nearest
focal point to extinguish it. While teams advance, they also
reduce the heat of cells within a given radius. There are
three different team classes with different movement rules
and different heat-reduction radii. The size of the simulation
surface grid, the number and start-frequency of focal points,
and the number and class of the agents, are the main dials to
design a new scenario with different load-balance properties.

As in the previous assignment, the provided material in-
cludes a sequential code, a test-bed of input files, and a
handout explaining the assignment. The students can use
common compilers and PC platforms to develop and test their
codes. An automatic judge tool with an on-line public ranking
is used to provide a fair arena, and to keep the students
engaged during the contests. Other gamification tools are also
included [9].

B. Concepts covered

The stages of each simulation step are: (1) Activate new
focal points according to the simulation clock; (2) Propagate
heat using a stencil operator implementing a Jacobi iterative
solver for the Poisson’s equation; (3) Reduction to obtain the
maximal residual error; (4) Movement decisions for each team;
(5) Execute team actions. To balance the speed of the team
movements with the heat propagation, ten iterative propagation

https://tcpp.cs.gsu.edu/curriculum/?q=peachy
https://tcpp.cs.gsu.edu/curriculum/?q=peachy

Fig. 1. Graphical representation of the output of fire-extinguishing simulation
program at a given step. The numbers and symbols represent the heat at
the different points of the 2D surface. Active focal points are represented
with brackets. The position of firefighter teams are represented with square
brackets.

steps are computed sequentially. The simulation stops after a
given number of steps, or when the residual heat reaches a
stable point with a given threshold. The output of the program
is the number of simulation steps and a list of final heat
values at selected positions. In debug mode, the program also
writes a text-mode graphical representation that can be used
to visualize the simulation at each simulation step; see Figure
1. It represents the heat on the surface, the active focal points,
and the team positions.

The basic concepts covered in OpenMP are parallelization
of loops, reductions, and avoiding race conditions with atomic
operations. In MPI, the students work with array partitions,
halos and neighbor communications, and generic reductions.
For GPU programming, the main ideas are embarrassingly
parallel kernels, minimizing host-device communication op-
erations, thread-block sizes, non-trivial atomic operations, and
simple reductions.

More advanced optimizations can be discovered and ap-
plied. Apart from those presented in [3], this new assignment
introduces opportunities to test different partition policies
for 2D arrays, precompute access patterns during the heat-
reduction applied by the teams, use different load-balancing
techniques in terms of input data features, using loop schedul-
ing clauses in OpenMP, taking decisions about replicated vs.
distributed computing in MPI, fusing kernels, new uses for the
shared memory or non-trivial reductions on GPUs, etc.

C. Variants

The assignment can easily be adapted and modified by
the teacher to include new simulation details, such as wind,
obstacles, heat damage, etc. Instead of focusing only in
parallelization and code optimization, the decision rules of the
agents that simulate the firefighter teams can also be targeted
to be optimized by the students. Better graphical and online

interfaces can be devised to enrich the learning experience (see
for example [18]).

III. THREAD-TO-CORE OPTIMIZATION (AMRIZAL, AGUNG,
EGAWA, TAKIZAWA)

Many interesting performance tuning problems exist in
the field of HPC. However, these problems mostly require
advanced programming skills and deep understanding of the
programming models, system architectures, compilers, and so
forth. Thus, introducing them to undergraduate level students
who generally do not possess such skills is challenging.
Therefore, it is important to introduce these tuning problems
to the students in a more general way, i.e., a programming-
language-free fashion, in order to keep the students interested
and motivated to solve such problems. In this assignment, we
introduce students to one kind of tuning problem called thread-
to-core optimization problem.

This assignment is part of a class called “Experiment D”,
which is a compulsory subject for the fourth-year undergrad-
uate students in the Department of Electrical, Information,
and Physics Engineering of Tohoku University. The class is
also open to graduate students who are interested in HPC.
Three sessions are allocated to introductory experiments using
OpenMP and one session to this assignment. Since HPC
and parallel and distributed computing (PDC) have not been
integrated to the undergraduate level curriculum, the par-
ticipants do not have any kind of experience with parallel
programming prior to this class. Thus, an assignment that
puts more emphasize on algorithmic thinking is introduced
to increase students’ interest in HPC/PDC topics in general.

Given a multi-threaded application and a multi-core non-
uniform memory access (NUMA) system (Figure 2), students
are challenged to determine on which core of the system each
thread should be placed. They need to develop a thread-to-core
placement algorithm that minimizes the total execution time
of the application. In a NUMA system, processor cores are
grouped and a group of processor cores is called a numa node
(or simply a “node”) [10]. A numa node is associated with
a local memory sub-system that consists of caches, memory
controllers, and DRAM, as shown in Figure 2. Thus, the
performance of memory accesses depends on the location of
the threads that access the data of the node [7]. Although
placing highly-communicating threads to the same node might
improve performance due to the improved data access locality,
placing too many of them in the same node could also
decrease performance due to the increased pressure on the
local memory sub-system (cache contention, congestion in
memory controllers, etc.) [1]. The total execution time is
expected to be minimal when a balance between data access
locality and pressure on local memory sub-system is achieved.
Therefore, students need to explore and develop some load
balancing techniques to solve this problem.

Students are presented with two types of communication
matrices extracted from an application. The matrices represent:
1) the total number of communication events and 2) the total
size of communication between every pair of threads. Figure 3

Fig. 2. A modern NUMA system, with two nodes and eight cores per node.

Fig. 3. An example of a communication matrix of a 16-threads application.
Each cell (x,y) of the matrix contains two numbers separated by a comma: (the
total number of communication events, the total size of communication). In
this example, most threads communicate only with their neighbouring threads.

shows an example of one of the communication matrices for
an application that consists of four threads. Using this informa-
tion, students need to create a set of pairs (thread id:core id)
matching each thread with a core. In addition, students are
given a multi-core simulator that simulates a real NUMA
system. The simulator takes the set of (thread id:core id) pairs
as input and gives some outputs such as execution time, L3
cache misses, and DRAM queuing delay. Students can refer to
these numbers to see the effectiveness of their thread-to-core
placement algorithm. Note that students basically only need
these two matrices to solve the thread-to-core optimization
problem and hence this assignment is appropriate even for
students with little to no parallel programming skill.

This assignment covers some important concepts such as:
1) memory organization, 2) load balancing, 3) simulator based
performance tuning, and 4) algorithmic optimizations.

We noted at least two strengths of this assignment: 1)
it is challenging, yet doable, and 2) the students enjoy it
because they can compete with each other to achieve minimal
execution time. As for the weaknesses of this assignment: 1)
it is oriented specifically toward thread-to-core optimization
problem, which is mainly done at the research-level of HPC
(not generally known/used by standard HPC users), and 2) it
requires a high-end multi-core server to speed up the simulator.
Finally, more assignment variations can be made by not only
considering the spatial aspect (data access locality) but also
the temporal aspect (considering threads that communicate
almost at the same time) to reduce pressure on the memory
sub-system.

The material of the assignment, including the assignment
handout, the simulator, and some sample results are available
at https://www.sc.cc.tohoku.ac.jp/∼tacky/index-e.html (user:
sc19, passwd: EduHPC-19).

IV. THE CLOUD FOR ALL LEVELS (BOGAERTS)

Undergraduate projects in parallelism often use a multi-
core processor on a local machine, but many real-world
applications of parallelism use cloud-computing resources.
Thus, this adaptable project is designed to give students a first
experience in parallel computing in the cloud. This project was
applied in an upper-level undergraduate data mining course
that uses Python with pandas and scikit-learn. However, the
provided materials are also appropriate for lower-level courses,
including CS1, and a CS1-level exercise set is included. The
project is also highly adaptable in time spent, being suitable as
a standalone assignment of a couple hours, or as a component
of a much broader project.

While there exist many distinct high-level interfaces for
cloud-computing resources, this project focuses on the more
uniform command-line interface. Introductory exercises guide
students to connect via ssh and scp, manage files, edit code via
Emacs, and run code at the command line. Students then work
through another tutorial on accessing the cloud computing
resource itself – in this case, Jetstream via XSEDE [22],
available for educational use through a simple application
process. The tutorial explains the idea of a virtual machine,
management of a limited computing allocation, setting up
public key infrastructure for the transfer of files, configuring
the virtual machine, and running code. While some technical
details are specific to XSEDE, the concepts are universal. All
of the above materials are suitable for all undergraduate levels.

The remainder of the project depends on the desired time
allocation and the level of the students. For a short assignment
in CS1, students can run the code with different parameters by
following the provided exercises, and report results about run-
ning time according to Amdahl’s Law. For upper-level courses,
instructors can give a short assignment by providing the same
code as in CS1, and instructing students in conducting a full
hyperparameter grid search. In a longer project, students can
develop their own code for not just the grid search itself, but
also data transformation and algorithm implementation, in a
wide range of application domains.

In the data mining course, we use a Kaggle.com dataset
for predicting the selling price of homes given several dozen
attributes. While the dataset is a modest size, the range
of useful experiments and algorithm tuning efforts is quite
extensive. As such, students must use parallelism on a cloud-
computing resource in order to conduct a detailed analysis.

Having established the procedures for accessing cloud com-
puting resources, students are ready to apply these resources to
obtain significant speedup in their data mining projects – start-
ing with serial code either provided by the instructor or devel-
oped themselves. Students quickly learn that simply running
this serial code on a highly-parallel virtual machine does not
give automatic speedup. Rather, their code must be adapted to
make use of the parallel resources. Simple adaptations include
the use of scikit-learn operations with an n_jobs parameter,
by which the programmer can specify the number of parallel
processes to run simultaneously to complete that operation.

https://www.sc.cc.tohoku.ac.jp/~tacky/index-e.html

For example, the function cross_val_score computes a
k-fold cross validation score, while GridSearchCV con-
ducts a grid search for hyperparameter tuning of a chosen
machine learning algorithm. Both of these functions include
an n_jobs parameter. Of course this is only the beginning,
as students are also ready at this point to create parallel
processes via the Python multiprocessing module. Much data
processing work is embarrassingly parallel, and can be sped
up significantly through this module. Through this process,
students also see Amdahl’s Law in action. While they have
access to up to 44 virtual CPUs in a virtual machine on
XSEDE, students can observe how much speedup is actually
possible, based on the proportion of their code that is parallel.

To summarize, a couple hours of background is required
before students are ready for parallel computing in the cloud.
On the one hand, this delays the students’ entry into the fun
of parallel programming. On the other hand, these barriers,
if never surpassed, may prevent students from ever running
parallel code on anything beyond a local multicore machine.
One major contribution of this Peachy Assignment, then, is the
adaptable exercises to get students up to speed quickly in the
prerequisite concepts, with no assumption of prior experience.
The materials submitted here include the introductory tutorials
and exercises, the CS1-level final exercises, and the advice for
upper-level students for effectively using cloud computing re-
sources in their project. While some technical details may vary
(e.g. a different cloud computing resource), these documents
describe primarily universal concepts.

V. APPLICATIONS OF PARALLEL PREFIX SUM (KUNDU)

The parallel prefix-sums algorithm and its variations are
often used as key substeps in more complex parallel computa-
tions. We have successfully introduced the parallel prefix-sum
algorithm and its key ideas in a senior level undergraduate
Computer Science course. To improve their understanding of
these ideas, students were required to solve several problems
using simple variations of the basic prefix-sums algorithm.
They were also required to solve several non-trivial problems,
including their 2-dimensional generalizations. We briefly dis-
cuss here four problems of this second category.

Let x[0..(N − 1)], in short x[] or simply x when no
confusion is likely, be an array of numbers. We call the
sum s[j] =

∑j
i=0 x[i] the jth (inclusive) prefix-sum of x.

The prefix-sums of x = [3, 12,−4, 8, 2] then equal s =
[3, 15, 11, 19, 21]. Many computation problems involve prefix-
sums in some form [4], [5], [6], [23]. For example, if x[j] is
the probability of #(heads) = j in N −1 tosses of a coin, then
s[j] is the probability of #(heads) ≤ j. An optimal sequential
algorithm to compute the prefix-sums is to let s[0] = x[0]
and s[j] = s[j − 1] + x[j] for 1 ≤ j < N . This takes O(N)
time. A parallel algorithm for computing the prefix-sums takes
O(logN) time using O(N) CPU’s or computing agents [4],
[5].

We define prefix-mins of x to be the array m, where m[j]
= min{x[i] : 0 ≤ i ≤ j}. The prefix-maxs of x is defined
similarly, and each of these can be computed in time O(logN)

as well using O(N) agents. In what follows, we use the
convention z[−1] = 0 for any array z[0..(N − 1)].

A. The maximum consecutive sum problem: MCS

For a given x, we want to find a subarray x[i..j] of x with
maximum sum of items s(i, j) =

∑j
k=i x[k] = s[j]− s[i− 1],

where s is the prefix-sums of x. Let MCS(x) be the
”leftmost” subarray x[i..j] having the maximum s(i, j), with
smallest possible j and the largest i ≤ j for that j. Also,
let σMCS(x) be the sum of items in MCS(x). Let m be
the prefix-mins of s and sm[j] = s[j] − m[j − 1], with
sm[0] = s[0] = x[0]. Then, σMCS(x) = max{s(i, j) : i ≤ j}
= max{sm[j] : 0 ≤ j < N}. Thus, σMCS(x) can be
computed in O(logN) time. It is not hard to see that MCS(x)
can also be computed in O(logN) time.

Example 1. Figure 4 shows an x and its associated s, m,
and sm. Here, MCS(x) = x[4..7] = [11, −2, −6, 12] and
σMCS(x) = s[7] −m[6] = 10 − (−5) = 15. Figure 4 also
shows the array items indx[j] = max{i : 0 ≤ i ≤ j and s[i] =
m[j]}. This is needed to find i in x[i..j] = MCS(x). We
compute indx[j]’s as we compute m[j]’s. Note that j in
x[i..j] = MCS(x) equals min{j′ : sm[j′] = σMCS(x)}.
�

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9]

x: −2 1 3 −7 11 −2 −6 12 −3 −1

s: −2 −1 2 −5 6 4 −2 10 7 6

m: −2 −2 −2 −5 −5 −5 −5 −5 −5 −5

sm: −2 1 4 −3 11 9 3 15 12 11

indx: 0 0 0 3 3 3 3 3 3 3

Fig. 4. Illustration of the arrays s, m, sm and indx for a given array x.

B. Largest block of consecutive 1’s: LBO

Assume that each x[i] = 0 or 1, at least one x[i] = 0,
and at least one x[i] = 1, i.e., 0 < s[N − 1] < N , where s
is the prefix-sums of x. We can thus test the above property
by computing s in O(logN) time. We want to find a largest
length subarray x[i..j], i ≤ j, of x consisting of only 1’s.
Let LBO(x) denote the ”leftmost” such a subarray x[i..j],
with j as small as possible and the largest i ≤ j for that j.
Also, let σLBO(x) denote length(LBO(x)) = j− i+1 = the
sum of items in LBO(x). Thus, x = [1, 0, 1, 1, 1, 0, 1, 1, 1]
gives LBO(x) = x[2..4] and σLBO(x) = 3. If we write
x′ for the array obtained by replacing each 0 in x by −N ,
then it is easy to see that MCS(x′) = x′[i..j] if and only
if LBO(x) = x[i..j] and hence σMCS(x′) = σLBO(x).
Using O(N) agents, we can determine x′ from x in O(1)
time and thus we can compute LBO(x) and σLBO(x) in
time O(logN) using O(N) agents.

C. Two dimensional MCS: MCS2

This is a generalization of the MCS-problem in §V-A to 2-
dimensional arrays. For an M×N matrix x, 0 ≤r1≤r2<M ,
and 0 ≤ c1 ≤ c2 < N , let x(r1, r2, c1, c2) be the submatrix
of x consisting of rows r1 to r2 and columns c1 to c2.

We want to find an x(r1, r2, c1, c2) such that its sum of
items s(r1, r2, c1, c2) =

∑r2
i=r1

∑c2
j=c1

x[i, j] is maximum. Let
MCS2(x) denote an optimum submatrix of x and as usual
we want to find an x(r1, r2, c1, c2) = MCS2(x) with the
smallest r2, the largest r1 for that r2, the smallest c2 for that
r1 and r2, etc. Let σMCS2(x) be the sum of items of an
MCS2(x). Without loss of generality, we assume M ≤ N .

Example 2. For the matrix x in Figure 5, each subarray
of column 3 has its sum of items negative if it contains −5.
This implies that MCS2(x) does not contain the item −5
and that means it equals row 0, i.e., x(0, 0, 0, 3), or row
2, i.e., x(2, 2, 0, 3), or all 3 rows and the first 3 columns
of x, i.e., x(0, 2, 0, 2). Thus, MCS2(x) = x(0, 2, 0, 2) and
σMCS2(x) = 13.

We solve the MCS2 problem by reducing it to a set
of 1-dimensional MCS problems by considering groups of
consecutive rows of x and then taking the best solution of
those 1-dimensional MCS problems. For 0 ≤ r1 ≤ r2 < M ,
let xr1,r2 be the 1-dimensional array of column-wise sums of
items in rows r1 to r2, i.e., xr1,r2 [j] =

∑r2
i=r1

x[i, j]. Clearly,
σMCS(xr1,r2) = σMCS2(x) if and only if σMCS(xr1,r2)
= max{σMCS(xr′1,r′2) : 0 ≤ r′1 ≤ r′2 < M}. To compute
MCS2(x), we simply choose smallest r2 and largest r1 ≤ r2
such that σMCS(xr1,r2) = σMCS2(x). We can efficiently
compute all xr1,r2 as follows. Let yc be the column c of x,
i.e., yc[i] = x[i, c] and let sc be the prefix-sums of yc. Also, let
x′ denote the M×N matrix whose columns are y′c = sc and let
x′r be the row r of x′. Thus, x′r[j] =

∑r
i=0 x[i, j] = x0,r[j] and

hence xr1,r2 = x′r2−x
′
r1−1, i.e., xr1,r2 [j] = x′r2 [j]−x

′
r1−1[j],

where x′−1[j] = 0 by convention. See Figure 5.
Using O(MN) agents, we can compute in parallel all

prefix-sums sc, 0 ≤ c < N , and hence the matrix x′ in
O(logM) time. For each fixed r1, we can compute all xr1,r2
in parallel in time O(1) and then compute all the related
MCS(xr1,r2) and σMCS(xr1,r2) in time O(logN) based on
the results in §V-A. This gives a total time O(M logN) time
as we vary r1. Finally, the number of (r1, r2)-combinations is
M(M+1)/2 ≤MN and hence the best of all σMCS(xr1,r2)
and its associated MCS(xr1,r2) can be computed in time
O(log(MN)). This gives the total time O(M logN) for
MCS2(x) and σMCS2(x) using O(MN) agents. �

D. An image processing application of MCS2

Figure 6(i) shows an 8×8 black-and-white image. We want
to find a largest size rectangular black area in such an image.
The rows 3 to 6 and columns 1 to 3 gives a largest black
rectangular area of size 12 in Figure 6(i).

An N×N image can be represented by an N×N matrix x,
where x[i, j] = 1 or 0 according as the pixel (unit square) in
row i and column j is black or white. One way to solve this
problem is by converting it to a 2-dimensional version of LBO
problem. Hence, we can call this problem LBO2. Let x′ be the
matrix obtained by replacing each 0 in x by −N2. Assuming
that at least one pixel in x equals 1, a solution of MCS2(x′)
would not involve a 0-pixel of x. Thus, MCS2(x′) gives a
solution of LBO2(x), i.e., a largest area black rectangle of






1

2

1

0

1

3

2

2

1

1

−5

0











1

3

4

0

1

4

2

4

5

1

−4

−4






(ii) The matrix x′ of prefix-
-sums of columns of x.(i) A matrix x.

r1 r2 xr1, r2
MCS(xr1, r2

) σMCS(xr1, r2
)

0 0 [1, 0, 2, 1] x0, 0[0. . 3] 4 = 1+0+2+1

1 [3, 1, 4, −4] x0, 1[0. . 2] 8 = 3+1+4

2 [4, 4, 5, −4] x0, 2[0. . 2] 13 = 4+4+5

1 1 [2, 1, 2, −5] x1, 1[0. . 2] 5 = 2+1+2

2 [3, 4, 3, −5] x1, 2[0. . 2] 10 = 3+4+3

2 2 [1, 3, 1, 0] x2, 2[0. . 2] 5 = 1+3+1

(iii) σ MCS2(x) = max of σMCS(xr1, r2
)’s = 13 = σ MCS(x0, 2)

and MCS2(x) = x(0, 2, 0, 2) because MCS(x0, 2) = x0, 2[0. . 2].

Fig. 5. Illustration of computation of MCS2(x) and σMCS2(x).

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(i) An 8×8 black-and-white

image x; N = 8.













−64

1

1

1

1

−64

−64

−64

1

1

1

1

1

1

1

1

1

−64

1

1

1

1

1

−64

1

−64

−64

1

1

1

1

1

1

1

1

1

1

−64

1

−64

−64

−64

−64

−64

−64

−64

−64

1

1

−64

−64

−64

−64

−64

1

1

1

1

1

−64

−64

1

1

1













(ii) The matrix x′; black pixels corres-

pond to 1 and balck pixels to −64 = −N
2.

Fig. 6. The matrix x′ of a black-and-white image x; MCS2(x′) equals rows
3 to 6 and columns 1 to 3, giving a largest black rectangular area in x.

x. This takes O(N logN) time using N2 agents based on the
results in §V-C.

E. Conclusion

We have presented here four problems, involving the appli-
cations of the basic prefix-sums computation, that we success-
fully used for introducing parallel computation in a senior-
level undergraduate Computer Science course. The MCS-
problem is the core of these problems, and the students needed
several hints to arrive at its solution. The students could
easily solve the LBO-problem given the hint to convert it
to the MCS-problem by modifying the original input array.
The students could solve the MCS2-problem, which is a 2-
dimensional generalization of the MCS-problem, by applying
MCS to groups of rows of the input matrix. Finally, the image
processing problem is a 2-dimensional generalization of the
LBO problem and the students could easily solve it.

VI. PIN FINDER (ELLSWORTH AND MALONY)

Pin Finder was initially developed as the first parallel
programming lab in a 10-week shared memory parallel pro-
graming course at the University of Oregon in 2015[12], [14].
The course used Intel’s complier technologies and Structured
Parallel Programming[15] as the textbook. Labs in this course

were gamified by placing students in the context of developers
at the Office of Strategic National Alien Planning (OSNAP).
Each lab was 50 minutes and would start with a brief reminder
of a parallel pattern from the textbook, an OSNAP business
problem, and serial code in C that would slowly solve the
problem. Students would spend roughly 45 minutes working
on a solution with a grad student to help with questions.

The Pin Finder assignment was also used at Colorado
College in a Fall 2017 parallel programming course[8] based
on the University of Oregon course. Courses at Colorado
College are 18 days long, meeting for 3 hours of class each
day. During the parallel patterns portion of the course, the last
hour of class was used as a lab. No grad student support was
available and the OSNAP gamification was mostly removed
for this delivery.

A. Sample Lab Prompt

OSNAP security policies demand workers use an 8-digit pin
that may not be written down, cannot be reset, and is changed
daily to access secured resources. Executive management has
requested a pin recovery tool since the pins are frequently for-
gotten. To be compliant with organizational security policies,
no system or person may keep pins in plain text or reversibly
encrypted. A hashed pin has no confidentiality requirements
according to OSNAP policies.

1) User carries the hashed pin
2) User enters the hash when the pin is needed
3) Software hashes all pins
4) Software return a matching pin
Serial code has been provided that supports this procedure,

but it is too slow. How much faster can you make this using
parallelism?

B. Discussion Topics

The lab can be connected to several different individual
or class discussion topics based on instructor and student
interests.

1) Parallelism: The lab is placed early in the course when
the map pattern is being discussed. In my deliveries correctly
using a parallel-for is sufficient to produce a passing lab
solution. For the right pins, even with a naive parallel-for, good
speed-up can be observed on hardware with low core counts.
Placing the parallel-for is relatively easy, but a lack of care in
variable handling results in errors due to race conditions.

2) Performance: Depending on where the pin is located in
the search space, the observed performance improvement of
parallel-for over the serial loop varies since the serial code uses
early loop termination. This provides an opportunity to talk
about the need to be aware of how parallelism is implemented,
overheads, and care in design when deploying parallelism. In
the Spring 2017 delivery at the University of Oregon a leader
board of student submissions was used to encourage students
to optimize their code[17].

More performant solutions comparative to the serial solution
will involve students considering how the search is conducted
and how the threads interact. Students might try a serial loop

around the parallel region, a shared variable to flag to skip
work loop bodies after a solution has been found, changing
how the search space is allocated across threads, or a parallel
pattern other than map.

3) Security: Hashing is one-way but collisions must be
considered. Hashed passwords are better than plaintext but are
not sufficient if the hash is not properly protected. Password
crackers, like the simple one being built in this lab, can recover
a working password from a hash sniffed over the network or
exfiltrated from a database given sufficient resources. Adding
blocks to blockchains, via proof of work, frequently involves
a similar problem to the pin finder.

C. Common Stuck Points

The lack of guidance around construction of the final
solution invites creativity in the problems students encounter.

1) Finding a Parallel Pattern: This assignment has been
used when the map pattern is being discussed and most
students therefore gravitate toward a parallel-for. Students who
are unsure where they might start are encouraged to think
about what the while loop in the serial code is doing (iterating
over a range) and to modify the code to use a for-loop.

2) Test Iteration Time: Using a large PIN space enables
even naive solutions to achieve good observed speedup for
some PINs on low core counts, but using the full search space
makes testing slow. Students who are waiting a long time for
tests should be encouraged to think about whether the whole
search space is needed during testing.

3) Wrong/no PIN Returned: The serial code uses variables
declared outside of the loop. Of specific interest is a character
buffer used in converting pin numbers to corresponding strings
for hashing. Naively adding parallelism results in a race
condition where the wrong pins will be checked, resulting in
no matches, or the returned “matching” pin will be incorrect.
Students might be reminded of race conditions from the
lecture/textbook or asked to consider how the shared memory
model interacts with threads.

VII. DASK PROCESSING AND ANALYTICS FOR LARGE
DATASETS (LAZAR)

This paper describes the assignment titled ”Dask Analytics”
that is used for the assessment of student learning as part of
a graduate data science and data mining course. However, the
assignment could be easily adapted for upper division under-
graduate courses. For this assignment, students are required to
read, process and answer queries using a large dataset that does
not fit in the RAM memory of a commodity laptop. Using the
Python framework Dask, which extends a small set of Pandas’s
operations, students can become familiar with parallel and
distributed processing. In addition, the assignment teaches
students about the basic operations implemented in Dask in
a very interesting and applied way, as well as operations and
algorithms that are harder to parallelize.

Fig. 7. Part of the Dask dashboard shows the processing progress and how the problem is divided in smaller chunks.

A. Motivation

Recently, the Pandas library has become one of the most
popular and favourite data science tools for the Python pro-
gramming language to perform exploratory data analysis. Not
only that, but Pandas is usually used for data preprocessing
and transformation, operations required before using any algo-
rithms part of the Scikit-Learn machine learning library [19].
Pandas and Scikit-Learn work great for tabular datasets that
fit in memory (e.g. the size of the dataset is less than 1 GB),
with no concern about the performance. However, for datasets
between 1 GB and 100 GB that do not completely fit in the
RAM of a commodity computer, other solutions are needed.
Usually, students do not have access to parallel or distributed
computing. This type of problem provides a good appropriate
challenge to stimulate students’ learning.

One possible approach to this problem is to divide the
large dataset into chunks and load the chunks into multiple
Pandas DataFrames. The idea is to load smaller chunks of
data into memory, one at the time, process or analyze it, store
intermediate results to disk, and aggregate the results in the
end. Dividing the data into chunks and coordinating the writing
and re-reading of intermediate results to and from disk are
tedious and error prone tasks. However, existing good quality,
high-level libraries, such as Dask [20] or Ray [16] not only
implement the tasks described above, but their APIs are very
similar to the Pandas API. These libraries make it possible
for students to quickly grasp these concepts and to write short
scripts for processing large files.

For this assignment, we are using Dask, a lightweight
framework that works well on a single machine by using all
the cores to process larger-than-memory datasets. Dask also
scales up resiliently and elastically on clusters with hundreds
of nodes for solving even larger problems. Dask focuses on
parallel analytics, providing Dask-specific modules to be used
in place of Numpy Arrays or Pandas Dataframes to facilitate
parallel execution. The dask.dataframe module implements a
blocked parallel DataFrame object that mimics a large subset
of the Pandas DataFrame. To perform any operation on a Dask
DataFrame, many Pandas operations on the smaller Pandas
DataFrames are executed.

Under the Anconda platform, Dask can be installed with a
single conda install command or using the pip command.

B. Assignment

The goal of this assignment is to use Dask DataFrames
to read, preprocess, aggregate and summarize a large given

dataset that does not fit in the RAM of a commodity laptop.
The dataset we used for this assignment comes from the

Stack Overflow website [2], one of the most popular “question
and answer” sites. Over the years the website has slowly
evolved into a large free repository of knowledge. Currently,
the site receives around 8,000 questions per day, and includes
over 16 million questions, 24 million answers and 66 million
comments all available to download in a data dump collection.
The total size of the dataset in compressed format is just below
45 GB, with the most important file (Posts.xml) containing
mainly the all the questions and answers at around 14 GB.

For the first part of the assignment, students are asked to
read the Posts.xml file, upload it in a Dask DataFrame and
answer the following questions:
• How many rows and columns are in the dataset?
• How many questions are in the dataset?
• How many answers are in the dataset?
• What is the average length of the title and body for all

the questions in the dataset?
• What day of the week has the most questions submitted

on average?
• How many closed versus open questions are there?
• Find how many unanswered questions are in the dataset.
For the second part of the assignment, students are required

to create a smaller subsample (100 MB) of the dataset and save
it in CSV or Apache Parquet format. These files are going to be
used in subsequent assignments as input for machine learning
tasks such as classification and clustering.

Most of this assignment can be solved using Dask
DataFrame operations such as: value counts, row-wise se-
lections, group by aggregations and date time resampling.
Debugging and profiling code that runs in parallel can be
challenging, but Dask has a diagnostic visual dashboard,
partially shown in Figure 7, that provides insights on per-
formance and progress. This dashboard is very useful for
the students. Subsets extracted from the Posts file of Stack
Overflow have been used before [13] to build classification
models for predicting closed questions. Another supervised
problem is to predict a question’s tags [21].

This challenging assignment introduces students to parallel
and distributed computing in an easy, unintimidating way.
Students should be familiar with Pandas DataFrames and
Scikit-Learn by the time in the semester when they have to
solve this assignment. The skills acquired while solving this
assignment will be useful for solving other course assignments
and other student’s projects.

REFERENCES

[1] M. Agung, M.A. Amrizal, K. Komatsu, R. Egawa, and H. Takizawa. A
memory congestion-aware MPI process placement for modern NUMA
systems. In Proc. 2017 IEEE 24th Intern. Conf. High Performance
Computing (HiPC), pages 152–161. IEEE, 2017.

[2] A. Ahmad. A survey on mining stack overflow: question and answering
(Q&A) community. Data Technologies and Applications, 52(2):190–
247, January 2018.

[3] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-
Escribano, J. Gutierrez, D.A. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D.P. Bunde. Peachy Parallel Assignments (EduHPC 2018).
In Proc. IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC), Dallas (TX), USA, 2018. IEEE.

[4] G.E. Blelloch. Scans as primitive parallel operations. IEEE Transactions
on Computers, 38(11):1526–1538, 1989.

[5] G.E. Blelloch. Prefix sums and their applications. Technical Report
CMU-CS-90-190, School of Computer Science, Carnegie Mellon Uni-
versity, 1990.

[6] F. Crow. Summed-area tables for texture mapping. In Proc. of
SIGGRAPH, pages 207–212, 1984.

[7] M. Diener, E.H.M. Cruz, M.A.Z. Alves, P.O.A. Navaux, and I. Koren.
Affinity-based thread and data mapping in shared memory systems. ACM
Computing Surveys (CSUR), 49(4):64, 2017.

[8] D. Ellsworth. Syllabus for cp341: Parallel programming. http://cs.
coloradocollege.edu/∼dellsworth/2017b2/.

[9] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D.R. Llanos. Gamification-Based E-Learning Strategies for Com-
puter Programming Education, chapter 6. Applying Gamification in a
Parallel Programming Course. IGI Global, 2017.

[10] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma,
R. Lachaize, and M. Roth. Challenges of memory management on
modern numa systems. CACM, 58(12):59–66, 2015.

[11] A. Goncharow, A. Boekelheide, M. Mcquaigue, D. Burlinson, E. Saule,
K. Subramanian, and J. Payton. Classifying pedagogical material to
improve adoption of parallel and distributed computing topics. In
Proc. 9th NSF/TCPP workshop on parallel and distributed computing
education (EduPar), 2019.

[12] OU Intel Parallel Computing Center (IPCC). http://ipcc.cs.uoregon.edu/
curriculum.html.

[13] G.E. Lezina and A.M. Kuznetsov. Predict closed questions on Stack-
Overflow.

[14] A.D. Malony. Lab 5: Map. https://classes.cs.uoregon.edu/14S/
cis410parallel/lab5.php.

[15] M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-
ming: Patterns for Efficient Computation. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2012.

[16] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M.I. Jordan, et al. Ray: A distributed
framework for emerging AI applications. In Proc. 13th USENIX Symp.
Operating Systems Design and Implementation (OSDI), pages 561–577,
2018.

[17] B. Norris. Map pattern (aka lab4). https://classes.cs.uoregon.edu/17S/
cis431/lab4.php.

[18] O. Ozturk, B. Glick, J. Mache, and D.P. Bunde. Peachy Parallel
Assignments (EduPar 2019). In Proc. 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
342–346, Rio de Janeiro (Brasil), May 2019. IEEE.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
esnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res.,
12(Oct):2825–2830, 2011.

[20] M. Rocklin. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proc. 14th Python in Science Conf., number 130–
136, 2015.

[21] C. Stanley and M.D. Byrne. Predicting tags for Stackoverflow posts. In
Proceedings of ICCM, 2013.

[22] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkins-Diehr. XSEDE: Accelerating Scientific Discovery.
Computing in Science & Engineering, 16(5):62–74, Sept.-Oct. 2014.

[23] R. Vaidyanathan and J. L. Trahan. Dynamic Reconfiguration: Architec-
tures and Algorithms. Kluwer Academic/Plenum Publishers, 2004.

http://cs.coloradocollege.edu/~dellsworth/2017b2/
http://cs.coloradocollege.edu/~dellsworth/2017b2/
http://ipcc.cs.uoregon.edu/curriculum.html
http://ipcc.cs.uoregon.edu/curriculum.html
https://classes.cs.uoregon.edu/14S/cis410parallel/lab5.php
https://classes.cs.uoregon.edu/14S/cis410parallel/lab5.php
https://classes.cs.uoregon.edu/17S/cis431/lab4.php
https://classes.cs.uoregon.edu/17S/cis431/lab4.php

	Introduction
	Agent-based Simulation of Fire Extinguishing (Gonzalez-Escribano and Fernandez-Fabeiro)
	Idea and context
	Concepts covered
	Variants

	Thread-to-core optimization (Amrizal, Agung, Egawa, Takizawa)
	The Cloud for All Levels (Bogaerts)
	Applications of Parallel Prefix Sum (Kundu)
	The maximum consecutive sum problem: MCS
	Largest block of consecutive 1's: LBO
	Two dimensional MCS: MCS2
	An image processing application of MCS2
	Conclusion

	Pin Finder (Ellsworth and Malony)
	Sample Lab Prompt
	Discussion Topics
	Parallelism
	Performance
	Security

	Common Stuck Points
	Finding a Parallel Pattern
	Test Iteration Time
	Wrong/no PIN Returned

	Dask processing and analytics for large datasets (Lazar)
	Motivation
	Assignment

	References

