
Peachy Parallel Assignments (EduHPC 2022)
Rocı́o Carratalá-Sáez∗, Arturo González-Escribano∗, Alexandros-Stavros Iliopoulos†, Charles E. Leiserson†,

Charlotte Park†, Isabel Rosa†, Tao B. Schardl†, Yuri Torres∗, David P. Bunde‡
∗Departamento de Informática

Universidad de Valladolid
Valladolid, Spain

{rocio,arturo,yuri.torres}@infor.uva.es

†Department of Electrical Engineering and Computer Science &
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA, USA

{ailiop,cel,cispark,neboat}@mit.edu, isrosa12300@gmail.com

‡Department of Computer Science
Knox College

Galesburg, IL, USA
dbunde@knox.edu

Abstract—Peachy Parallel Assignments are model assignments
for teaching parallel computing concepts. They are competitively
selected for being adoptable by other instructors and “cool and
inspirational” for students. Thus, they allow instructors to easily
add high-quality assignments that will engage students to their
classes.

This group of Peachy assignments features two new assign-
ments. The first has students speed up a graphical n-body simula-
tion by identifying performance bottlenecks, making algorithmic
improvements, and parallelizing the program using OpenCilk.
The second has them parallelize a Monte Carlo hill climbing
algorithm using one or more of OpenMP, MPI, and CUDA or
OpenCL.

Index Terms—Peachy Parallel Assignments, parallel comput-
ing education, High-Performance Computing education, perfor-
mance engineering, n-body simulation, ray tracing, Monte Carlo
simulation, hill climbing

I. INTRODUCTION

In a perfect world, every course would feature high-quality
assignments, ones that force students to apply the course
material and master it, ideally while exciting the students
so they are drawn into the assignments and provide word-
of-mouth advertising for the course and computing more
generally. Creating an assignment with all these properties is
not easy, however, because it requires a spark of inspiration
as well as the standard work of developing starter code, an
assignment description, etc. In addition, as with any new
assignment, there is a risk of misjudging its difficulty, not
providing sufficiently clear instructions, or otherwise failing
to deliver on the idea.

Peachy Parallel Assignments aim to address this issue by
recognizing high-quality assignments in parallel computing to
encourage their reuse and to incentivize the development of
new ones. Proposed Peachy Parallel Assignments are submit-

ted to the EduHPC and EduPar workshops. Submissions are
evaluated according to the following criteria:

• Tested: All assignments must have been successfully used
in a class with real students.

• Adoptable: The assignments should include the materials
needed for other instructors to adopt them, such as starter
code and handouts. Ideally, they should also be suitable
for a range of classes, covering commonly-taught topics
with commonly-used technologies and offering a variety
of customization options to make them appropriate for a
wide variety of institutions and instructor goals.

• Cool and inspirational: The assignments should excite
students through interesting applications of the material,
appealing graphics, etc. Ideally, students should be ex-
cited to work on the assignment and want to tell friends
and family about it.

The best assignments are published in the workshop proceed-
ings (e.g. [1], [2]) and then (with all the materials required
to adopt them) archived at the Peachy Parallel Assignments
website (https://tcpp.cs.gsu.edu/curriculum/?q=peachy).

This paper presents two new Peachy Parallel Assignments
which were presented at EduHPC 2022. Section II presents an
assignment to improve the performance of an n-body simula-
tion and its ray tracing rendering engine. This assignment gives
the students practice with modern performance measurement
tools and creates colorful graphical output. It is intended
for use on a multicore system using OpenCilk. Section III
describes an assignment to parallelize a Monte Carlo hill
climbing algorithm. The problem is easy to understand but
provides interesting optimization opportunities through its
structure and use of (pseudo-)randomness. A nice aspect of
this assignment is that versions are provided for OpenMP,



MPI, and GPU programming (CUDA). Instructors can adopt
one of these as a single assignment or have students parallelize
the program using more than one paradigm to illustrate the
differences between them.

II. SIMULATION AND RENDERING OF COLLIDING SPHERES

Our first assignment provides students with hands-on ex-
perience with engineering software for performance. Students
are tasked with optimizing a graphical n-body simulation to
run fast on a modern shared-memory multicore system using
serial and parallel program optimizations. This open-ended
assignment invites students to develop and test optimizations
to make the program run as fast as possible while still
producing the same results. Students learn how to diagnose
performance bottlenecks, develop serial and parallel program
optimizations, and evaluate the correctness and performance
of their changes. We found that students in 6.172, MIT’s
undergraduate course on performance engineering of software
systems, are excited by this project, especially seeing their
optimizations improve the visual smoothness of the simulation
and enable it to handle larger problem sizes within fixed
time constraints. The materials for the assignment are publicly
available at https://doi.org/10.5281/zenodo.7114642.

A. Assignment overview

This assignment teaches students about parallel computing
and software performance engineering — writing code that
runs fast and uses computing resources efficiently — through
a project to optimize a graphical n-body simulation. Students
are given a fully functional 400-line serial program in C
that performs two tasks: (1) a physical simulation of massive
spheres interacting via gravity and elastic collisions, and (2)
a graphical rendering of the simulation using ray tracing
without reflections. Figure 1 shows a screenshot of such a
simulation’s rendering. Students are tasked with speeding up
this reference implementation for a modern shared-memory
multicore computer that is widely available via the cloud. The
assignment is open-ended, inviting students to think creatively
and explore their own ideas to make the program run as fast
as possible. This assignment gives students hands-on experi-
ence with many aspects of software performance engineering,
from identifying and evaluating performance bottlenecks using
modern tools, to experimenting with optimization techniques,
including algorithmic improvements, serial program optimiza-
tions, and task parallelism using OpenCilk [3], [4].

Student implementations are evaluated with a collection
of 80 input sets called tiers. Each tier increases the size of
the problem, i.e., the number of spheres and the rendering
resolution. An implementation passes a tier if it reaches a
target frame rate and its output matches that of the reference
implementation exactly. Students are not expected to clear
all available tiers. Students can run and visualize simulations
locally on their computers and are also given remote access
to a pool of remote multicore computers on which their
submissions are evaluated. The assignment materials include
utilities for testing the correctness and performance of an

Fig. 1. Screenshot from a simulation with 250 spheres with different volumes,
masses, and colors.

implementation on a range of tiers and for visualizing errors
in rendered scenes.

Although the reference code base is simple and presents a
few easy optimization opportunities, there are several chal-
lenges to achieving high performance. The simulation and
rendering components of the reference implementation take
comparable amounts of time. Students must optimize both
components, as improvements in one can cause the other to
become the bottleneck. In addition, efficient implementations
must balance parallelization against algorithmic optimizations
that reduce work complexity. The assignment handout dis-
cusses several optimizations to reduce the work of the ini-
tial serial computation, such as exploiting the symmetry of
gravitational forces and pruning redundant ray-tracing com-
putations via projections of sphere bounding boxes. There
are also several opportunities to use parallelism to optimize
both simulation and rendering. For instance, gravitational
forces could be computed independently as parallel reductions
among all spheres, and rendering rays may be traced in
parallel across pixels. But some algorithmic optimizations
make parallelization more challenging. For example, naively
parallelizing a triangular loop iteration for symmetric pairwise
force calculation introduces races. Similarly, one can reduce
ray-sphere intersection calculations by processing spheres in
order of distance from the rendering viewpoint, but doing so
limits the amount of available parallelism. In general, high-
performance student implementations should introduce suffi-
cient parallelism without compromising the work-efficiency
and locality of serial optimizations.

The assignment uses the Cilk language extensions to C and
the OpenCilk task-parallel platform for parallelization [3]–[5].
Students are also encouraged to use two productivity tools in
OpenCilk to check for determinacy races [6] and to measure
the work, span, and scalability of their parallel computa-
tions [7], [8]. This choice of parallel programming platform
simplifies the students’ work to schedule and load-balance
the parallel computation and enables them to explore parallel
algorithmic improvements with relative ease. In addition, the
OpenCilk determinacy-race detector allows students to verify
that their parallel code is deterministic, as the assignment
requires.



The assignment is designed for students to tackle in teams
of two over a period of three weeks. There are deadlines
for two submissions of implementations and write-ups: a beta
and a final submission. The beta phase lasts two weeks and
students are instructed to focus on algorithmic and serial
optimizations before parallelizing their implementations. After
the beta deadline, the code and corresponding tiers for each
submission is made public to all students, who are free to
peruse but not directly copy code. The final phase lasts one
week. Students are given explicit tier-to-grade thresholds for
the beta but not the final submission, whose performance
targets are left open-ended. Performance targets for both
submissions are determined with optimized implementations
by the course staff. Students do not compete with each other.

B. Key concepts

The assignment covers various concepts of shared-memory
parallel programming and software performance engineering.
Parallel programming concepts include task-parallel algo-
rithms, races, reductions, work/span analysis, and coarsening
to reduce scheduling overhead. Performance-engineering con-
cepts include profiling to identify performance bottlenecks, the
importance of making algorithmic improvements and serial
optimizations before adding parallelism, memory locality, and
basics of floating-point operations and non-associativity.

C. Context and requirements

This assignment was first used in the Fall of 2021 as part of
the MIT course 6.172 Performance Engineering of Software
Systems.1 Between 130 and 160 students take the course each
year, the majority of whom are junior or senior undergraduates.
Course prerequisites include undergraduate algorithms, under-
graduate computer architecture, and software engineering, but
not parallel programming. During the course, students learn
and apply performance-engineering skills including serial and
parallel performance analysis, bit tricks and vectorization,
assembly language and compiler optimizations, task-parallel
programming, races and synchronization, and cache-oblivious
algorithms.

The course, which has been taught and developed over 14
years, is structured around four multiweek team projects. For
each project, students are given a working C program and
are tasked with accelerating it. This assignment is the second
project in the course, but the first where students experiment
with parallel programming.

The median achieved speedup for this assignment among
students in the Fall of 2021 was roughly 80×. The top-
performing teams achieved over 130×.

D. Strengths and variants

A key strength of the assignment is that it is realistic and
engaging. Students exercise a variety of techniques for per-
formance engineering, including parallelization, to optimize
a program with several interacting components. The easy-to-
master initial code base enables students to start implementing

1MIT course 6.172 was renumbered to 6.106 in 2022.

optimizations quickly. Performance improvements have direct
impact visually as smoother simulations and quantitatively
as cleared tiers. Together with the open-ended design of the
project, these features encourage students to exercise their
creativity and look for ways to further improve performance.
Moreover, students find the graphical element of the assign-
ment exciting. For example, one student posted the following
on MIT Confessions, a Facebook page where MIT students
submit anonymous notes [9]:

This 6.172 project is so cool, I can’t believe we’re
really out here optimizing a ray tracing engine. It’s
projects like this that make me really think about
how lucky I am to be going to this school to face
interesting challenges.

Plus the renderings are the prettiest thing ever, so
thankful to all the work that went into making this
project for this year!!

Several elements of the assignment’s design facilitate its
adoption. Multicore machines are practically ubiquitous and
widely available via the cloud. C is a commonly used program-
ming language, especially for applications where performance
is important. The tiers system for performance evaluation
makes it easy to grade submissions and can be tweaked to set
different performance expectations. Although we contend that
using OpenCilk for parallelization has multiple benefits, espe-
cially for students with no experience in parallel programming,
it is possible to use other parallel platforms like OpenMP [10]
or Intel oneAPI Threading Building Blocks [11].

It is possible to narrow or widen the scope of the assignment
with relatively small modifications. Shorter projects, for exam-
ple, might focus on optimizing only the simulation or render-
ing component. Different choices for correctness testing can
also affect the assignment scope. We require the program to be
deterministic and to produce identical results to the reference
implementation, which precludes some optimization strategies
such as using approximate computation methods. We chose
this approach to make it easy to verify correctness and to tailor
the assignment to our target audience of undergraduates who
are new to performance engineering and parallel programming.
Relaxing these requirements opens up new possibilities for
performance improvements.

III. HILL CLIMBING WITH MONTE CARLO

For our second Peachy assignment, we present the fifth
example in a series of assignments used in a Parallel Comput-
ing course at the Universidad de Valladolid. In each of these
assignments, students parallelize a program using different
parallel programming models. The assignment targets concepts
of shared-memory programming with OpenMP, distributed-
memory programming with MPI, and/or GPU programming
with CUDA or OpenCL. This assignment is based on a Monte
Carlo probabilistic approach for a Hill Climbing algorithm in
order to locate the maximum values of a two dimensional
function. The program is designed to be simple, easy to
understand by students, and to include specific parallelization
and optimization opportunities. Although there is a quite



direct parallel solution in the three programming models, the
program has plenty of opportunities for further improvements.
It maintains the same core concepts used in the four previously
presented assignments, with a different design approach. It
focuses on dealing with non-determinism during execution, the
impact of randomization on load-balance, and new relevant
optimization challenges with high performance impact. This
assignment has been successfully used in parallel program-
ming contests during an optional Parallel Programming course
in the third year of Computer Engineering degree.

A. Idea and context

a) Idea: Different programming models use different
approaches for the parallelization of application structures.
Understanding these differences is key for students to get into
more advanced techniques, and to face parallel programming
in current heterogeneous platforms. For several years, we
have been teaching an optional course of Parallel Program-
ming in the Computer Engineering degree at Universidad
de Valladolid. The course introduces the basics of OpenMP,
MPI, and CUDA or OpenCL. Four previous peachy parallel
assignments have been presented in this series [2], [12]–
[14]. The assignment material for all the five assignments can
be found at https:// trasgo.infor.uva.es/peachy-assignments/ .
All of them are designed to be parallelized by the students
during three one-week programming contests, using a single
programming model on each one. During the contest they work
to obtain the best performance with a mixed competitive and
collaborative strategy [15]. Although this kind of assignment
can be used to teach a single programming model, using it with
different models also shows which concepts and techniques
can be reused across the models and which cannot, exposing
the differences between models. For example, the students
learn the differences between controlling race conditions in
shared-memory vs. using distributed data structures with ex-
plicit communications, or dealing with tiling and memory
hierarchies in GPU coprocessors.

b) Contents: The codes of previous assignments were
based on synchronized iterations, with a mix of stencil compu-
tations and/or multiagent systems that execute one simulation
step in each iteration. Instead, this new assignment is based
on the flow of multiple parallel searches with continuous
interactions across them without global synchronization points.
It can be optimized in many different ways depending on the
parallelization and detail level. The assignment also shows
the effect of randomization on load-balance, and introduces
different possibilities to deal with non-trivial race conditions
and cache effects. It maintains a clear focus on simple but
effective code parallelizations and optimizations, while intro-
ducing more opportunities for advanced students and new and
different choices in the three programming models considered.

c) The assignment code: Multi-dimensional functions
are used to model a variety of physical systems such as heat
transfer, pressure flow, structural vibrations, etc. Finding the
values and locations of local and global maximums of such
functions is important for the design and safety of many tools

and physical structures used in normal day life. Analytical
solutions can be really hard to find so numerical approaches
are used in many situations.

The program provided to the students is based on a classic
probabilistic approach to find the maximum values of a two
dimensional function on a rectangular area: A Monte Carlo
method with a Hill-Climbing algorithm. The function being
optimized is predefined at compile time. It is selected to have
multiple local maximums and other interesting features in the
search area. The search area is discretized in a lattice with
a number of 2D control points. The hill-climbing approach
is based on selecting a random starting point and iteratively
moving the selected point to one of its four neighbors, the
one with the highest function value. When the selected point
has a value greater than or equal to the values at neighboring
locations, a local maximum has been reached and the search
stops.

The program uses a probabilistic approach to find the
global maximum. It starts a parametric number of hill-climbing
searches. Each search can be executed in parallel. To avoid
recomputing the costly function, a memoization strategy is
used; a matrix is initialized to non-valid values, and a cell is
updated with the corresponding function value when a searcher
checks that point. Also, when a searcher moves to a cell
already visited by a previous searcher, the search can stop.
Ancillary structures are used to store which searcher visits
each cell for the first time, and which searcher follows the
trail of another searcher. After all the searches have finished,
the program computes the number of trail steps leading to each
local maximum, the total number of travelled points, and the
heights of each local maximum found.

Although parallel searches evolve in a non-deterministic
way in a shared-memory model, the program results (travelled
cells, computed heights, and final statistics) are fully deter-
mined by the initialization arguments, which include random
seeds to make the results reproducible. The arguments can be
chosen to generate specific situations with different numbers of
local maximums, main travelling directions across the lattice,
numbers of times when searches collide at lattice positions,
etc.

B. Using the assignment

a) Contest tools: As in the previous assignments of this
series, the provided material includes a sequential code, a
test-bed of input arguments, and a handout explaining the
assignment. The students can use common compilers and PC
platforms to develop and test their codes. The students can
use the output of the sequential code to check the results
of their parallelized versions. An automatic judge tool with
an on-line public ranking is used to provide a fair arena,
and to keep the students engaged during the contests with
competitive and collaborative rewards [15], [16]. This judge
tool has been used since the first assignment in this series, and
it has been improved course after course. The judge configu-
ration is done by simply providing tuples of input arguments
(representing the scenarios chosen by the teacher), and the



Fig. 2. Graphical representation of the resulting search trails. Each number
corresponds to the searcher id that first travelled a cell.

expected output results. The students do not have access to
these secret scenarios. The tool executes the programs on a
real parallel system. In order to rank the students the judge
tool measures the total number of tests passed before a fail,
and the program performance. Depending on which test fails,
the students receive a hint on typical problems that can cause
failures on that specific test case. The sections of the sequential
code that should be parallelized and optimized by the students
are clearly marked to avoid parts involved in arguments
processing, scenario initialization, OpenMP/MPI/CUDA setup,
time measurement, and results output. The original codes can
be directly compiled and run by the students, or even submitted
to the judge tool before starting to parallelize them.

b) Test cluster: The most appropriate machines from our
laboratory cluster are used for each programming contest. For
OpenMP, we use a server with 64 cores that can easily show
interesting effects related to the use of its 4 NUMA nodes. For
MPI, we use two similar interconnected servers with 12 and
32 physical threads respectively. Although these servers have
highly different processor performance, we do not discuss this
with the students; we consider proportional load distribution
in heterogeneous clusters an advanced topic and do not cover
it in our course. During the CUDA/OpenCL contest, we use
the same servers as in the MPI contest. They are equipped
with several NVIDIA GPUs (CUDA 3.5 architecture).

c) Teaching context: The students in our course have al-
ready studied concepts of operating systems and concurrency,
and they have used the C programming language in a couple
of previous courses. There were 44 students enrolled. The
degree of participation was high and they made more than
8,100 requests for program execution, including both tests
and judgment requests. The assignments are worth 60% of
the course grade. For each programming model, along with
their final code, the students submit a short video. They also
answer live questions from the course staff for 15 minutes.
Their position in the leaderboard is also taken into account
for the assignment grade.

d) Student’s satisfaction: We conducted a survey at the
end of the course. For the question “Are you satisfied with
the overall experience of the course, activity types, evaluation
method, etc.?”, the students gave an average rating of 4.12
on a Likert scale from 1 to 5. The students also agreed that
the assignment illustrates the main concepts of the course
and provides opportunities to deepen their knowledge of the
subject. For example, some students optimized their CUDA
codes to obtain results 2.3 times faster than the baseline
parallel version.

C. Concepts covered

This assignment covers an important class of parallel pro-
grams, those based on probabilistic methods and parallel
searches with non-trivial interactions. It also presents an inter-
esting real case based on classical algorithm concepts taught
in previous courses.

a) Program structure: The program has three main
stages: (1) Parallel search, (2) Computing the accumulated
trail steps of all searchers reaching each local maximum, and
(3) Computing other statistical data using different types of
reductions. If desired, the program can also print a text-mode
graphical representation of the search with two parts. The first
one is a visualization of the trails followed by the searchers
(see Fig. 2). This shows the non-deterministic behaviour of
each parallel execution in shared-memory models, as the result
depends on which searchers arrive at each cell first. The second
one is a deterministic result, showing a map with the computed
heights. A full example of the output is in the handout provided
to the students.

b) Concepts: The basic concepts covered in the OpenMP
version of the assignment are loop parallelization, reductions,
and elimination of non-trivial race conditions. Some of these
can be eliminated by a combination of atomic operations and
code restructuring, others by adding or eliminating ancillary
structures.

In MPI, the students work with array partitions, reductions,
asynchronous operations and communicators. They also dis-
cover how to eliminate non-determinism in the searches and
how to deal with an unknown number of communication steps
and variable size communications.

For GPU programming, the main ideas are embarrassingly
parallel kernels, thread-block geometries and sizes, the elimi-
nation of non-trivial race conditions, and the usage of simple
reductions. The program also shows how randomization may
lead to load balance, and the use of fixed-point arithmetic to
avoid precision and concurrency problems in many situations,
except when floating point mathematical functions are used in
GPUs.

Several advanced optimizations can be discovered and ap-
plied. For example, changes in the main data structures can re-
sult in a large improvement in cache performance for OpenMP
and MPI and better coalescencing in CUDA/OpenCL. Students
can also use aggressive code reorderings to allow easier
parallelization, kernel fusing, and shared memory or non-
trivial reductions on GPUs.



D. Variants

Many different scenarios with different behaviours and
results can be chosen by the instructor through proper se-
lection of input arguments. For example, different locations
and zoom values can be used to select areas with only one
maximum or many different local ones, slopes with different
gradients in one or more directions, etc. This leads to different
combinations of workload, frequency of race conditions in
shared memory, or communication combinations and volume
in distributed memory. This flexibility is used to choose
different test cases for the judge tool to run on each contest.
The hard-wired function can also be changed, leading to very
different situations.

For simpler assignments, a much shorter and easier version
can be devised by simply eliminating the second stage of the
program. For a more complex assignment, a hybrid approach
using more than one programming model at a time is also
possible. Finally, better graphical and online interfaces could
be devised to enrich the learning experience. For example,
the output text showing the computed heights can be easily
transformed in a graphical heat map using external tools.

REFERENCES

[1] H. Bücker, H. Casanova, R. F. da Silva, A. Lasserre, D. Luyen,
R. Namyst, J. Schoder, and P.-A. Wacrenier, “Peachy parallel assign-
ments (EduPar 2022),” in Proc. 12th NSF/TCPP workshop on parallel
and distributed computing education (EduPar), 2022.

[2] H. Casanova, R. F. da Silva, A. Gonzalez-Escribano, H. Li, Y. Torres,
and D. P. Bunde, “Peachy parallel assignments (EduHPC 2021),” in
IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2021). St. Louis (MO), USA: IEEE, 2021.

[3] OpenCilk. [Online]. Available: https://www.opencilk.org/
[4] T. B. Schardl, I.-T. A. Lee, and C. E. Leiserson, “Brief Announcement:

Open Cilk,” in SPAA, 2018, pp. 351–353.
[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
JPDC, vol. 37, no. 1, pp. 55–69, 1996.

[6] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races
in Cilk programs,” TCS, vol. 32, no. 3, pp. 301–326, 1999.

[7] Y. He, C. E. Leiserson, and W. M. Leiserson, “The Cilkview scalability
analyzer,” in SPAA, 2010, pp. 145–156.

[8] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson, and
C. E. Leiserson, “The Cilkprof scalability profiler,” in SPAA, 2015, pp.
89–100.

[9] MIT Confessions - Post #49891. [Online]. Available: https://bit.ly/
3e13dz6

[10] OpenMP. [Online]. Available: https://www.openmp.org/
[11] Intel oneAPI Threading Building Blocks. [Online]. Available: https:

//www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
[12] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-

Escribano, J. Gutierrez, D. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D. Bunde, “Peachy parallel assignments (EduHPC 2018),”
in IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2018). Dallas (TX), USA: IEEE, 2018.

[13] M. Agung, M. A. Amrizal, S. Bogaerts, R. Egawa, D. A. Ellsworth,
J. Fernandez-Fabeiro, A. Gonzalez-Escribano, S. Kundu, A. Lazar,
A. Malony, H. Takizawa, and D. P. Bunde, “Peachy parallel assignments
(EduHPC 2019),” in IEEE/ACM Workshop on Education for High-
Performance Computing (EduHPC 2019). Denver (CO), USA: IEEE,
2019.

[14] H. Casanova, R. F. da Silva, A. Gonzalez-Escribano, W. Koch, Y. Torres,
and D. P. Bunde, “Peachy parallel assignments (EduHPC 2020),” in
IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2020). Atlanta (GE), USA: IEEE, 2020.

[15] A. Gonzalez-Escribano, V. Lara-Mongil, E. Rodriguez-Gutiez, and
Y. Torres, “Toward improving collaborative behaviour during competi-
tive programming assignments,” in IEEE/ACM Workshop on Education
for High-Performance Computing (EduHPC 2019). Denver (CO), USA:
IEEE, 2019.

[16] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D. Llanos, Gamification-Based E-Learning Strategies for Computer
Programming Education. IGI Global, 2017, ch. 6. Applying Gamifi-
cation in a Parallel Programming Course.

APPENDIX: REPRODUCIBILITY

This appendix gives details relevant to reproducibility for
each assignment.

E. Simulation and Rendering of Colliding Spheres

The materials for the sphere simulation and rendering
assignment, as used in the MIT course 6.172 in Fall 2021,
are archived with Zenodo and available at the following
URL: https://doi.org/10.5281/zenodo.7114642. The archived
materials include the reference software, utility programs, and
handout document that were provided to students.

Students did their development work on local virtual ma-
chines with an image of Ubuntu 18.04 that included relevant
software for the course. The course staff distributed the
virtual machine as a VMWare virtual disk image. The virtual
machines included OpenCilk 1.0 for compilation, scalability
analysis, and determinacy-race detection,2 and the OpenGL
Utility Toolkit (freeglut3-dev) for visualizing rendered
scenes.

The student handout refers to a collection of repos on MIT’s
GitHub (github.mit.edu) which are not publicly accessible.
They were created for each team of students, who used them
for developing their projects. The initial contents of each
student repo were the same as the archive materials for this
assignment (sans the Peachy Parallel Assignment overview
document).

For performance measurements, students ran their programs
on a cluster of c4.2xlarge instances on Amazon Web Services
(AWS). The AWS instances were managed by the course
staff and were configured to disable simultaneous multithread-
ing (or “hyperthreading”) and reduce performance variability.
Students submitted jobs through custom scripts that operate
similarly to the SLURM srun utility but specifically target
the AWS queue managed by the course staff. These scripts
(awsrun and awsrun8) are mentioned in the student hand-
out but are not publicly accessible. The performance-testing
system can be replaced with any cluster of quiesced machines
and corresponding job submission manager.

F. Hill Climbing with Monte Carlo

The hill climbing assignment has been used in the context
of a Parallel Computing course, in the third year of the
Computing Engineering grade at the University of Valladolid
(Spain).

2Precompiled binaries for OpenCilk 1.0 can be downloaded at
https://github.com/OpenCilk/opencilk-project/releases/tag/opencilk/v1.0.
Installation instructions and the latest version of OpenCilk can be found at
https://www.opencilk.org.



The material of the assignment, including a handout, the
starting sequential code, and some example input data sets
will be made publicly available through the CDER courseware
repository. They can also be found at our Peachy Assignments
web page: https://trasgo.infor.uva.es/peachy-assignments/.

The on-line judge used in the programming contests is
named Tablon, developed by the Trasgo research group at the
University of Valladolid (https://trasgo.infor.uva.es/tablon/). It
uses the Slurm queue management software to interact with
the machines in the cluster of our research group. During the
course we used the Slurm 18.08.3 release.

The machine in the cluster used for the OpenMP contest is
named heracles. It is a server with four AMD Opteron 6376
@ 2.3Ghz CPUs with a total of 64 cores and 128 GB of RAM.

The machines used for the CUDA/OpenCL contests are
named hydra and medusa. Hydra is a server with two Intel
Xeon E5-2609v3 @1.9 GHz CPUs, with 12 physical cores,
and 64 GB of RAM. It is equipped with 2 NVIDIA’s GPUs
GTX Titan Black, 2880 cores @980 MHz, and 6 GB of RAM

and 2 NVIDIA’s GPUs GTX K40c, 2880 cores @745 Mhz.
Medusa is a server with two Intel Xeon Silver 4208 CPU
@ 2.10GHz, with a total of 16 cores con hyperthreading (32
threads) @ 1.4Ghz. It is equipped with 3 NVIDIA’s GPUs
GTX Titan Black 2880 cores @980 Mhz, and 1 NVIDIA’s
GPU GTX Titan X 3072 cores @1000 Mhz.

During the MPI contest, we used medusa and hydra in
combination. They are interconnected by a 40Gb Ethernet
network fabric.

All machines are managed by a CentOS 7 operating system.
The compilers and system software used are GCC v10.2, and
CUDA v11.3.

The assignment provides the sequential code and program
arguments to be used as test-beds for the students. Other test-
beds used by the on-line judge during the contest are also
provided.

The results of the contests and other statistical data for the
five Peachy assignments in this series are publicly available at
http://frontendv.infor.uva.es.


