
Peachy Parallel Assignments (EduPar 2019)
Ozcan Ozturk

Bilkent University
Ankara, Turkey

ozturk@cs.bilkent.edu.tr

Ben Glick
Lewis & Clark College

Portland, OR, USA
glick@lclark.edu

Jens Mache
Lewis & Clark College

Portland, OR, USA
jmache@lclark.edu

David P. Bunde
Knox College

Galesburg, IL, USA
dbunde@knox.edu

Abstract—Peachy Parallel Assignments are a resource for
instructors teaching parallel and distributed programming. These
are high-quality assignments, previously tested in class, that are
readily adoptable. This collection of assignments includes face
recognition, finding the electrical potential of a square wire, and
heat diffusion. All of these come with sample assignment sheets
and the necessary starter code.

Index Terms—Parallel computing education, High-
Performance Computing education, Parallel programming,
OpenMP, Java Executor framework, Local binary patterns,
Poisson’s equation, Numerical differential equations

I. INTRODUCTION

An important part of teaching a course on parallel and
distributed computing is creating engaging programming as-
signments. Students generally spend more time working on
homework than engaging with other aspects of the course,
making assignments integral both to student learning and
student perceptions of the subject matter. That said, creat-
ing great assignments is a large time commitment and is
not guaranteed to succeed; sometimes even seemingly-great
assignment ideas turn out to have flaws when implemented
and given to students. To help overcome these issues, we are
presenting Peachy Parallel Assignments at the Edu* series of
workshops, most recently EduHPC 2018 [1].

Peachy Parallel Assignments all go through a competitive
review process based on the following criteria:

• Tested — All Peachy Parallel Assignments have been
successfully used in a class.

• Adoptable — Peachy Parallel Assignments are easy to
adopt. This includes not only the provided materials, but
also the content being covered. Ideally, the assignments
cover widely-taught concepts using common parallel lan-
guages and widely-available hardware, have few prereq-
uisites, and (with variations) are appropriate for different
levels of students.

• Cool and Inspirational — Peachy Assignments are fun
and inspiring for students. They encourage students to
spend time with the relevant concepts. Ideal Peachy
Assignments are those that students want to demonstrate
to their roommate.

This effort is inspired by the SIGCSE conference’s Nifty
Assignment sessions, which focus on assignments for intro-
ductory computing courses. (See http://nifty.stanford.edu for
more details.)

In this paper, we present the following Peachy Parallel
Assignments:

• Face recognition using Local Binary Patterns (LBPs),
• Computing the electric potential of a square wire, and
• Animating heat diffusion

See the Peachy Parallel Assignments webpage (https://grid.
cs.gsu.edu/~tcpp/curriculum/?q=peachy) for the materials (e.g.
assignment handouts and starter code) for these assignments.
The website also lists Peachy Parallel Assignments presented
previously. We hope that you find these assignments useful
and encourage you to consider submitting your own great
assignments for future presentation!

II. FACE RECOGNITION — OZTURK

Our first assignment requires students to use OpenMP to
implement a parallel face recognition algorithm using the idea
of Local Binary Patterns (LBP) [2]. Local Binary Patterns is
a simple but effective idea in texture analysis, which is also
used for face recognition and gesture recognition applications.
To apply this technique to an image in the dataset, it compares
the brightness of each pixel in the image to its 8 neighbors.
Through these comparisons, the pixel is converted into an 8-bit
number, where each bit indicates the result of the comparison
(“0” if greater, “1” otherwise). The algorithm then computes
a histogram of these numbers, which is used as a 256-
dimensional feature vector for comparing images.

We used this application to create an assignment based on
OpenMP for students with no previous exposure to parallel
programming topics. It has been used in multiple offerings
of an elective course named “Parallel Computing” at Bilkent
University, Turkey [3]. The students were expected to know
general programming at least at the level of CS1/CS2 and
those who are proficient in C/C++ programming benefit from
this assignment the most. In order to understand the LBP
implementation, it is also necessary for students to have some
Calculus background. Based on these prerequisites, we believe
this assignment could be used at the sophomore level or above.

A. Assignment

In class, students are first briefly introduced to shared mem-
ory architectures and then to the basic concepts of OpenMP
programming with examples. For the assignment itself, the
LBP-based algorithm is explained so students can understand
its logic and they are provided with a detailed description
of it. They are asked to write a serial implementation of it,

http://nifty.stanford.edu
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=peachy
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=peachy


profile this implementation to determine which parts do most
of the work, and then parallelize their implementation using
OpenMP.

Students are also provided with image data sets to test their
implementations. Each of these is split into two parts based
on a parameter k, with the first k images being the training set
while the others are used for testing. Most students obtained
the expected results. Figure 1 shows accuracy results collected
by two separate students. As can be seen in this figure, the
accuracy of the implementation varies with k, ranging from
0.96 (for k = 1) to 1 (for k = 10 and beyond). From both
sets of results, it is clear that 100% accuracy is achieved with
k = 10.

Students were referred to online sources of information for
studying the topic, especially the tutorials and study guides
provided by OpenMP Architecture Review Boards (ARB) [4].

Details of the assignment and necessary files can be found
at http://cs.bilkent.edu.tr/~ozturk/OpenMP_assignment.html.

B. Strengths and Weaknesses

We believe that a key strength of this assignment is student
enthusiasm for face recognition. This is a cool problem and,
with its use in many cell phones, is also perceived as practical.
Students provided anonymous feedback through the standard
Bilkent University course evaluation surveys given at the
end of every semester. Students’ written responses reflected
considerable enthusiasm for this project: “Provided real world
context with the emerging parallel applications”, “Helped me
understand how OpenMP works”, and “I discovered a new
career path”. In addition to the anonymous course evaluation
surveys, the course was discussed with students in an informal
environment after the semester had finished. This discussion
showed that students are very keen to learn more about parallel
architectures, programming, and OpenMP development. The
majority of them suggested that it would be a good idea to
introduce OpenMP earlier and integrate it as a part of the
computer engineering undergraduate curriculum.

In addition, we believe that this assignment is suitable for
integration into a variety of courses at the sophomore level or
higher. This is mainly due to the fact that OpenMP pragmas
can easily be understood and the given assignment is not too
sophisticated despite being interesting.

The main weakness we see in the assignment is that it gives
limited scope for student creativity. In most cases, students
parallelize their application simply by adding a few pragmas
to different loop nests. While students need to understand
and test different configurations, available options are limited
since students have only introductory knowledge of OpenMP.
Therefore, if the student wants to learn deeper optimizations,
she will be on her own.

C. Variations

In the assignment’s current form, students are given clear
step by step instructions. A possible variation is to let students
develop their own implementations without such detailed
guidelines. A different variation is to eliminate the profiling

step. Specifically, students can figure out the complexity of the
computation tasks in the application and select the loops for
parallelization themselves. This may improve the assignment
in terms of creativity. Finally, different sets of images could
be selected to port the assignment to a different domain.

III. FINDING THE ELECTRIC POTENTIAL OF A SQUARE
WIRE — GLICK, MACHE

Our second assignment explores the following situation: A
wire is bent in the shape of a square of length 1 m and placed
in the X1 − X2 plane, inside a conducting square of length
2m. The conducting square is connected to the ground so that
its potential is 0, as shown in Figure 2. The wire carries a
constant linear charge density of ρ = 1 in some appropriate
units. This means that there is a fixed amount of charge which
is distributed along the square wire. Because the square wire
is mounted onto a conducting plate, the charge will dissipate
along the conducting plate over time. Eventually, the plate
will reach an equilibrium state with some final distribution of
charge over the plate. In order to find the steady-state potential
at any point (x1, x2) in the plane, one needs to solve Poisson’s
equation:

∇2V (x1, x2) = −ρ(x1, x2) (1)

where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2

.
Poisson’s equation is closely related to the heat equation,

which is a second-order differential equation that describes the
distribution of heat in a given region over time. The difference
is that in Poisson’s equation, the amount of “heat” (in this
case, charge is an analogue for heat) is constant in time,
where with the heat equation, the total amount of heat is often
some decreasing function of time. Both Poisson’s equation and
the heat equation model situations in which some quantity
(represented by a scalar field) becomes diffused over time. In
this assignment, that scalar field is charge, which is initially
distributed in the square wire on the conducting plate. In this
assignment, we would like to model and visualize the steady-
state solution to this differential equation.

When there are no boundary conditions, the solution of
Poisson’s equation can be found in a closed form. Steady state
solutions to Poisson’s equation with boundary conditions can-
not be solved analytically, and simulations like this assignment
are the best way to investigate them. In this case, the boundary
conditions are the Dirichlet boundary conditions. This means
that the potential (voltage) at the edge of the conducting plate
is set to be 0 at all times. There are a number of methods
which can be used to perform these simulations, but the one
encouraged in this assignment is the Gauss-Seidel method. An
example of a solution is shown in Figure 3.

The Gauss-Seidel method is an iterative method of solv-
ing this system of differential equations. We build a matrix
representing the initial distribution of charge. Though the
physical scenario is a continuous distribution of charge, we
must discretize it so that we can compute on it. We can trade
finer resolution for longer execution time. This is a balance
that often has to be struck in the “real world”.

http://cs.bilkent.edu.tr/~ozturk/OpenMP_assignment.html


Fig. 1: Experimental results collected by two different students with the provided dataset.

Each element in the matrix represents the charge at one
point in space. We distribute the charge initially according to
the problem’s setup. Because of the boundary conditions, we
manually set the charge around the edge of the plate to be
0. After that, we iterate by building a new matrix based on
the old one, with the value of each point in the new matrix
being the average value of that point’s four neighbors in the
old matrix. We do this “double buffering” so that any iteration
depends only on the iteration before it, and not itself. It can
be shown that the simulation error is bound by how much
the distribution changes from pass to pass. We can therefore
choose a maximum acceptable error and simply keep iterating
until the difference per pass is smaller than our specified error.

Each iteration can be computed in parallel, because the
charge at each point depends only on what the charge at
its neighbors was in the previous iteration, not on what
it is in the current iteration. Because the solution involves
building a matrix which represents the distribution of charge,
the visualization is extremely easy. Students can simply use
Python’s MatPlotLib to create a density plot of the solution
matrix and it should “just work”, coloring in the more charge-
dense areas brighter and the less charge-dense areas darker.
They can even make an animation by just saving the state of
the matrix at multiple time values.

Each copy of the assignment was run on a single worker
node of Lewis & Clark’s small HPC system. Each worker
node has 48 CPU cores and 500 GB of main memory. To run
the fully parallelized version on that system took between 30
seconds and a minute.

A. Concepts & Content

This assignment introduces the concept of physical sim-
ulations to students as an application of parallel and high-
performance computing. It introduces numerical solutions to
differential equations as well. The assignment encourages use
of the Gauss-Seidel method of approximating a solution by
building a matrix which represents charge at a discretized set
of points on the conducting plate and iteratively solving the
equation. The matrix has some internal dependence, requiring
students to be clever about what they parallelize. Each point on
the matrix is dependent on its four nearest neighbors, which
means students need to think about how to divide up work

Fig. 2: Set-up. Origin is in the middle.

before they can parallelize their code. It also forces students
to think about the physical scenario in which their code is
relevant in addition to teaching about concepts intrinsic to par-
allel programming. Concepts taught in this assignment include
python multiprocessing, stencil operators, and MapReduce.
It introduces the concept of needing to hit a specific error
target and has realistic terminating conditions (the program
keeps running until the simulation is accurate enough). The
assignment also encourages students to think about the trade-
offs which need to be made when carrying out HPC work,
including the required level of accuracy. This is a common
worry that many computational scientists face every day.

B. Educational Advantages & Disadvantages

The assignment has several advantages. First, many students
are visual learners and this assignment produces images to
help students develop an intuition about parallel programming.
Second, whereas some parallel programming assignments are
somewhat abstract, this assignment is particularly good at
providing students with an understanding of how parallel
programming is necessary for real-world applications. Third,
it also does a good job of showing students the power of
parallel programming. A serial implementation of the program,
even with a very high error tolerance, will take many hours to



Fig. 3: Output of successful solution.

complete processing, but it parallelizes efficiently. The parallel
version will run in a couple minutes.

A potential weakness of this assignment is that it re-
quires some understanding of physics and math, which not
all students in many CS courses may have. However, this
example is relatively simple to understand, because it is about
how charge distributes itself across a conducting material,
which is likely something that most students will have some
intuitive understanding of. Experience with partial differential
equations is only required to understand the subtleties of the
assignment.

C. Use in Courses

Two versions of this assignment have been used in two very
different courses. The first course was a computational physics
course for physics majors who had completed the introductory
sequence and had studied partial differential equations. The
second was a parallel computing course which required only
the CS introductory sequence.

The physics version of the assignment focused more heavily
on solving the math problem and setting up the physical
situation. The parallelism component centered around using
stencil operators to break up work. The computer science
version of the assignment gave the expression of the math-
ematics involved to help set up, but required students to use
MapReduce within each block of work generated by stencil
operators. It focused more on parallelizing both spatially
(solving at multiple points at once) as well as parallelizing
the method of arriving at those solutions.

When this assignment was tested in the Parallel and High-
Performance computing course for undergraduate students, at
Lewis & Clark College in Spring of 2019, 17 students were
asked for feedback. Feedback included “the assignment made
sense”, from one student. Another student added “It was nice
to learn Python multiprocessing and use Jupyter notebooks”.
Some more responses included “This assignment demonstrates

Fig. 4: Screenshot of heat diffusion program (from [7])

the power of parallelism very well”, and “I like the example. It
was more applicable to the real world”. When asked “What are
suggestions for improvement?”, a student responded “It was
interesting and useful. Just reduce the number of examples and
move a bit more slowly”.

D. Link to Full Assignment

Assignment files are available in a live Jupyter notebook
[5], [6] format at jupyter.datasci.watzek.cloud. Please use the
username ’edupar19’ and the password ’reviewMe!’ to log in
when prompted.

IV. GRAPHICAL HEAT DIFFUSION — BUNDE

The application used in our third assignment is heat diffu-
sion, which is similar to the second assignment, but the idea
is packaged quite differently. Heat diffusion is presented as
seeing how heat from a campfire distributes on a cold night.
The region being simulated is represented by a 2D matrix, with
each cell holding the temperature for a point. The simulation’s
initial conditions are set by the user with an interface similar
to a drawing program, shown in Figure 4. The following three
“colors” can be drawn:

• heater, which maintains a constant warm temperature (the
fire in the campfire example),

• hot spot, which starts warm but does not generate heat to
replace that which dissipates, and

• insulator, which neither absorbs nor generates heat.
Once the user has drawn these features as desired, they hit the
“Run” button, which causes the simulation to advance by a
fixed number of time steps, each of which updates the tempera-
ture of each cell with a weighted average of its temperature and
the temperature of neighboring cells. Thus, although similar
math occurs as in the electric potential problem, this version of
the problem has more flexible initial conditions and inherently
creates an animation, while not proceeding all the way to a
steady-state solution or raising issues of accuracy.

The target audience for this assignment is CS 2 students.
To make this possible, the students are given a working serial
program and just asked to parallelize it. The given code
is written in Java, the instruction language for our CS 2

https://jupyter.datasci.watzek.cloud


course. In different iterations of the assignment in CS 2 and
in higher-level courses, students have been asked to perform
the parallelization using Java threads and/or a wrapper for
Java’s Executor framework. This wrapper, described with
this assignment by Graf and Bunde [7], was designed to hide
some details and simplify the framework for use by novices.

A. Evaluation

The assignment’s graphical nature is a particular strength
and one that extends beyond the fun of watching an animation
rather than waiting for a program’s elapsed time to print. A
parallel version of the heat diffusion program runs noticeably
faster than the original serial version. In addition, many of
the bugs that students encounter cause visible artifacts in the
animation. The most common bug has been having multiple
threads update overlapping regions of the temperature matrix,
which causes blooms of heat to appear rather than a smooth
dissipation. Another issue is leaving a gap between the regions
assigned to each thread, which causes an unchanging stripe to
appear in the animation.

Other aspects of the assignment are more of a mixed
bag. Being in Java allows for portable graphics and makes
it possible to use the assignment early in the curriculum at
institutions like ours which start in Java. At the same time,
Java programs do not perform as well as those written in C,
making the assignment somewhat awkward to justify while
explaining the shift to parallelism on performance grounds.
The assignment also works best at relatively low levels of
parallelism since drawing the graphics is a serial task that will
prevent the program from achieving high levels of speedup.

B. Variations

One extension of this assignment is to follow it up on exams
with written (i.e. non-programming) questions about concepts
related to parallelism and concurrency. These rely on student
familiarity with the heat diffusion code. For example, we have
asked students what is wrong with parallelizing the loop over
time steps (assigning different time steps to each thread) rather
than assigning each thread a disjoint region of the matrix.
Another question was why it was bad to join each thread
immediately after it was started.

REFERENCES

[1] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-
Escribano, J. Gutierrez, D. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D. Bunde, “Peachy parallel assignments (EduHPC 2018),”
in Proc. Workshop on Education for High-Performance Computing
(EduHPC), 2018.

[2] “Local binary patterns,” https://en.wikipedia.org/wiki/Local_binary_
patterns.

[3] “CS 426 - parallel computing course,” http://www.cs.bilkent.edu.tr/
~ozturk/cs426/.

[4] “Openmp architecture review board,” https://www.openmp.org/about/
about-us/.

[5] B. Glick and J. Mache, “Jupyter notebooks and user-friendly HPC access,”
in Proc. 2018 IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC), 2018.

[6] ——, “Using Jupyter notebooks to learn high-performance computing,”
J. Comput. Sci. Coll., vol. 34, no. 1, pp. 180–188, Oct. 2018. [Online].
Available: http://dl.acm.org/citation.cfm?id=3280489.3280518

[7] M. Graf and D. Bunde, “Using wrappers to simplify task parallel
programming,” in Proc. 21st Annual Consortium for Computing Science
in Colleges Midwestern conference, 2014, pp. 73–79.

https://en.wikipedia.org/wiki/Local_binary_patterns
https://en.wikipedia.org/wiki/Local_binary_patterns
http://www.cs.bilkent.edu.tr/~ozturk/cs426/
http://www.cs.bilkent.edu.tr/~ozturk/cs426/
https://www.openmp.org/about/about-us/
https://www.openmp.org/about/about-us/
http://dl.acm.org/citation.cfm?id=3280489.3280518

	Introduction
	Face Recognition — Ozturk
	Assignment
	Strengths and Weaknesses
	Variations

	Finding the Electric potential of a Square Wire — Glick, Mache
	Concepts & Content
	Educational Advantages & Disadvantages
	Use in Courses
	Link to Full Assignment

	Graphical Heat Diffusion — Bunde
	Evaluation
	Variations

	References

