
Peachy Parallel Assignments (EduPar 2022)
H. Martin Bücker∗, Henri Casanova†, Rafael Ferreira da Silva‡,

Alice Lasserre§, Derrick Luyen†, Raymond Namyst§,
Johannes Schoder∗, Pierre-André Wacrenier§, David P. Bunde¶

∗Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany
{martin.buecker, johannes.schoder}@uni-jena.de

†Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
{henric,dluyen}@hawaii.edu

‡National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
silvarf@ornl.gov

§Computer Science Department, University of Bordeaux, Inria Bordeaux Sud-Ouest, Talence, France
alice.lasserre@etu.u-bordeaux.fr, {raymond.namyst,pierre-andre.wacrenier}@u-bordeaux.fr

¶Computer Science Department, Knox College, Galesburg, IL, USA
dbunde@knox.edu

Abstract—The presentation of Peachy Parallel Assign-
ments in several workshops on parallel and distributed
computing education aims to promote the reuse of high-
quality assignments, both saving precious faculty time and
improving the quality of course assignments. Presented
assignments are selected competitively— they must have
been successfully used in a real classroom, be easy for
other instructors to adopt, and be “cool and inspirational”
to encourage students to spend time on them and talk about
them with others. Winning assignments are also archived on
the Peachy Parallel Assignments website.

In this installment of Peachy Parallel Assignments, we
present three new assignments. The first assignment is to
simulate an Abelian Sandpile, with grains of sand moving
from tall piles to shorter ones. This is a discrete simula-
tion that creates colorful and intricate images. The second
assignment is a Big Data problem in which students use
the MapReduce paradigm to recreate “Warming Stripes”, a
visualization of climate data that highlights climate change.
The third assignment introduces climate-oriented optimiza-
tion by asking students to schedule distributed workflows
to minimize their carbon footprint.

Index Terms—Peachy Parallel Assignments, Parallel com-
puting education, High-Performance Computing education,
Parallel programming, Curriculum Development, Abelian
Sandpile, Parallel Simulation, MapReduce, Big Data, Warm-
ing Stripes, Distributed Workflow Scheduling, Carbon Foot-
print

This work is partially funded by NSF contract #1923621. The research
used the Ara cluster at Friedrich Schiller University Jena, which is
supported by DFG grants INST 275/334–1 FUGG and INST 275/363–1
FUGG, and resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

I. INTRODUCTION

One aspect of teaching is to assign the homework and
laboratory exercises that students use to learn the mate-
rial and demonstrate their mastery of it. Creating high-
quality assignments can be time-consuming, requiring
both a good idea and developing the necessary materials
(assignment description, given code, etc). It can also be
risky since even an assignment that seems good initially
may have hidden prerequisite knowledge or simply be
harder than the instructor intended.

Peachy Parallel Assignments aim to address this chal-
lenge by encouraging the reuse of high-quality assign-
ments. They are selected competitively based on the
following criteria:

• Tested: All assignments must have been successfully
used with real students

• Adoptable: The assignments must be useful to other
instructors, with clear descriptions and the resources
needed for adoption by others (handouts, given
code, references for more information, etc). Ideally,
they focus on core PDC topics using widely-used
languages and toolsets, with suggested customiza-
tions that can make them suitable for students at a
variety of levels.

• Cool and inspirational: The assignments must moti-
vate students through the artifacts they create (e.g.
images) or the concepts taught. Ideally, students
should want to talk about the assignment with
friends and show it off to others.

Assignments selected as Peachy Parallel Assignments



join a series published at EduPar and EduHPC work-
shops, e.g. [2], [4], [5], [13]. The assignments are also
archived at the Peachy Parallel Assignments webpage
(https://tcpp.cs.gsu.edu/curriculum/?q=peachy), along
with all the materials needed to adopt them. The as-
signments are meant to be used as-is or adapted to fit
the context of the reader’s class. They can also serve as
inspiration for the reader’s own assignment creation.

This paper describes three new Peachy Parallel As-
signments selected for presentation at EduPar 2022. Sec-
tion II describes an assignment to simulate an Abelian
Sandpile, with grains of sand moving from tall piles
to shorter ones. The assignment creates colorful and
intricate images. Section III describes an assignment in
which students use the MapReduce paradigm to recreate
“Warming Stripes”, a visualization of climate data that
highlights climate change. It is topical in both subject
matter (climate change) and technique (Big Data) in
addition to generating an powerful visualization. Section
IV also describes an assignment about climate change,
this time focusing on mitigation. It asks students to
schedule a distributed workflow between systems with
varying carbon efficiency to minimize the workflow’s
carbon footprint. This assignment has the additional
advantage of being entirely browser-based, eliminating
software installation and maintenance issues.

II. ABELIAN SANDPILE SIMULATION

The Abelian Sandpile assignment was originally pro-
posed in the context of the Parallel Programming course
of the CS Masters curriculum at the University of Bor-
deaux. In this course, students are introduced to high
performance computing by studying advanced topics
related to multicore, GPU and cluster programming.
They progressively get familiar with various algorith-
mic techniques such as cache-conscious algorithms and
scheduling strategies for regular and irregular computa-
tions. Student evaluation is based on a capstone assign-
ment in which they progressively parallelize a 2D stencil
code using OpenMP, OpenCL, and MPI. The Bak-Tang-
Wiesenfeld Abelian Sandpile Model [3] is a good candidate
for such a “putting it all together” activity because it starts
with simple sequential code, offers numerous optimiza-
tion opportunities, and can be easily ported to a GPU
or distributed over a cluster of machines. Moreover, the
visualization of the simulation leads to attractive fractal
animations (see Fig. 1).

During the lab session, we use the EASYPAP [11]
framework, an easy-to-use C programming environment
designed to help students to learn HPC. EASYPAP’s
main philosophy is to let students focus on computation
kernels while hiding most of the implementation details
related to program initialization, code instrumentation,
and interactive display. Moreover, EASYPAP features
performance graph plot tools, real-time monitoring facil-
ities, and off-line trace exploration utilities that provide

(a) Starting with 25.000
grains in a center cell.

(b) Starting with 4 grains in
each cell.

Figure 1: Two stable configurations reached over 128 ×
128 sand-piles. Black pixels correspond to cells with 0
grains, green to 1, blue to 2, and red to 3.

new ways of visualizing tasks together with their asso-
ciated data. EASYPAP relies on the SDL library [1]. It is
available on both Linux and Mac OS X systems and can
be downloaded from [12].

A. The abelian sandpile model

In the Abelian Sandpile Model [3], the sandpile is a
N × M 4-connected cellular automaton such that the
border cells are connected to a special cell called sink. The
state of a cell is an integer corresponding to the number
of sand grains it contains. By definition, a regular cell is
said to be stable whenever it contains 3 or fewer grains
and unstable otherwise. The rule of the automaton is the
following: except for the sink, an unstable cell gives its
surplus grains to its 4 neighbors by distributing them
equitably. For example, if a cell contains 11 grains, then
it will give 2 to each neighbor and keep the remaining
3 grains. Starting from an initial unstable configuration,
the simulation of a sandpile consists of iteratively ap-
plying the automaton rule until a stable configuration
is reached (i.e. all cells are stable). Dhar [9] proved that
a unique final stable configuration is reached regardless
of the computation order, allowing great flexibility with
respect to parallelization.

B. The assignment

The goal of the assignment is to efficiently compute the
final stable configuration. Student are provided with two
codes (Fig. 2): a synchronous variant where all cells are
treated simultaneously using an auxiliary array, and an
asynchronous variant where sand slides are computed
“in place” and impact their neighboring cells immedi-
ately.

The organization of this project is the following: the
project is carried out by pairs of students and is divided
into four assignments. For each assignment, students
have to provide their source code, as well as a scientific
report in which they justify their approach with the help
of performance plots and execution traces.



1 inline int sync_compute_new_state (int y, int x)
2 {
3 next_sandpile(y,x) = sandpile (y, x) % 4
4 + sandpile (y, x - 1) / 4
5 + sandpile (y, x + 1) / 4
6 + sandpile (y - 1, x) / 4
7 + sandpile (y + 1, x) / 4;
8

9 return next_sandpile(y,x) != sandpile (y, x);
10 }
11

12 inline int async_compute_new_state (int y, int x)
13 {
14 if (sandpile (y, x) < 4) return 0;
15 unsigned long int div4 = sandpile (y, x) / 4;
16 sandpile (y, x - 1) += div4;
17 sandpile (y, x + 1) += div4;
18 sandpile (y - 1, x) += div4;
19 sandpile (y + 1, x) += div4;
20 sandpile (y, x) %= 4;
21 return 1;
22 }

Figure 2: Synchronous and asynchronous variants of
kernel sandpile.

The first assignment is centered around the basic
OpenMP parallelization of the 2D stencil. Students are
expected to implement some simple optimizations to
avoid false sharing and unnecessary synchronizations.
They are also asked to experimentally determine the
most suitable OpenMP loop scheduling policy.

During the second assignment, students progressively
explore the benefits of tiling with respect to cache reuse
and observe the influence of code simplification on
compiler auto-vectorization. Since every pixel is read
multiple times in each iteration, students are invited to
implement a tiled parallel version to maximize cache
reuse. In addition, they have to develop a lazy evaluation
algorithm that avoids computing tiles whose neighbor-
hood was in a steady state at the previous iteration. Once
they have an effective OpenMP lazy variant, students
can look at the EASYPAP tiling window to make sure
that “areas where nothing changes” are not computed
(Fig. 4). To address the challenge of mitigating the load
imbalance introduced by sparse configurations, students
have to experiment with various scheduling policies and
various tile sizes (Fig. 3).

The third assignment focuses on SIMD vectorization
and GPU programming. Outer tiles need special atten-
tion, because they contain border cells which should not
be computed (sink). This poses alignment issues when
trying to efficiently vectorize the code. By observing that
such issues only happen with outer tiles, students are
invited to implement a separate variant for inner tiles to
enable aggressive compiler optimizations.

The last assignment is devoted to combining two dif-
ferent programming paradigms to address hybrid or het-
erogeneous architectures (e.g., MPI + OpenMP, OpenMP
+ OpenCL). It implements the well-known Ghost Cell
Pattern [10]: in every iteration, each pair of neighboring
processes exchange a copy of their borders. However, the

Figure 3: Comparison of two execution traces of the
asandPile kernel over a 2048× 2048 sparse configura-
tion. The traces display tasks executed during the same
500th iteration performed by a lazy OpenMP variant.
The top trace features 32× 32 tiles, against 64× 64 tiles
for the bottom one.

communication overheads are such that students have to
develop a solution that trades redundant computation
for less-frequent communication. Finally, the CPU+GPU
assignment is an opportunity for students to implement
dynamic load balancing strategies between CPUs and
GPUs.

Figure 4: Distribution of tiles during the execution of
a hybrid OpenMP-OpenCL variant. On the CPU side,
the color of a tile indicates the target core. Black areas
represent stable tiles.

C. Comments

The rationale behind the decomposition of this project
into four assignments is to provide students with fre-
quent feedback about their scientific writing skills and
their performance evaluation methodology. However,
various other strategies are possible. For instance, the
first three assignments can be merged together and
may even be used in the context of undergraduate
courses. Other alternatives are reducing the range of
programming paradigms covered, or narrowing down
the project to the (a)synchronous variant only. Indeed,
both asynchronous and synchronous variants cover a



wide range of difficulties and have their own pedagog-
ical advantages.

The synchronous variant is a mere illustration of grid-
based computational simulations. It can be easily paral-
lelized, vectorized, and implemented on GPUs. Student
can thus focus on performance analysis and parameter
tuning.

The asynchronous variant is more difficult to paral-
lelize because of potential race conditions. Therefore,
student must either use synchronization primitives or
work around the problem and use multi-wave task
scheduling policies. Nevertheless, this variant allows
plenty of algorithmic and code optimizations.

D. Feedback
This project was given in 2020 and we were very satis-

fied with the results. Most students were very involved,
and using EASYPAP has increased their productivity and
motivation (Fig.5), mostly because interactive display
and monitoring were helpful, and because they found
that the learning curve was gentle.

For the first report, we found that half of the students
had submitted at least one buggy version. Thanks to the
detailed feedback they got, they greatly improved the
quality of their contributions. Some students had clearly
gone beyond our expectations: some had designed a
lazy GPU implementation and others had implemented
a smart dynamic algorithm to load balance between
CPUs and GPUs. In terms of their scientific writing
and performance evaluation methodology, we found that
students became more rigorous from their second report
onwards.

At the end of the project, we conducted a survey
(Fig.5) to figure out how students evaluated the ped-
agogical impact of EASYPAP. Open-ended comments
from students were positive and included the following:
“It is very easy to add and try a new code variant. We just add a few
lines of code, we compile and it is ready for command line testing.
It makes the platform really nice to use. We really focus on the code,
it’s great!”; “EasyPaP is a tool that makes the difference by allowing
us to get straight to the point: parallelism!”.

Figure 5: Summary of a survey about EASYPAP.

III. WARMING STRIPES: A COOL START TO BIG DATA
PROCESSING

Processing massive amounts of data is increasingly be-
coming an important topic in the development of mod-
ern computing curricula. Therefore, our next assignment
introduces the MapReduce programming paradigm. The

assignment illustrates aspects of distributed computing
and, at the same time, it is designed around the analysis
of climate data, motivating students to explore one of
the defining crises of our times.

An important competence for today’s graduates in
a wide range of scientific disciplines is the capability
to handle compute- and data-intensive tasks analyzing
large-scale data sets. Though somewhat dated, Apache
Hadoop and the MapReduce programming model [8]
still provide the methodological basis of many contem-
porary big data frameworks. In this section, we intro-
duce a beginner’s programming assignment that teaches
students the basics of MapReduce and guides them
through the essential phases of a typical data science
project while simultaneously aiming to raise awareness
of the climate crisis.

The task of the programming assignment is to rebuild
the warming stripes, made popular by British climatol-
ogist Ed Hawkins. The original warming stripes show
clearly and vividly the trend in global average temper-
atures over the past decades. In the programming as-
signment, we calculate the annual average temperatures
for a time span in a specific geographical region and
yields the single, stunning image given in Fig. 6. This
image visualizes the long-term rise in annual average
temperature for Germany in the period from 1881 to
2019. The annual temperature ranges from a low around
7 ◦C to a high around 10 ◦C. The range of temperature
values used in the colorbar are manually specified by
first computing the average temperature of the whole
time span and then adding and subtracting 1.5 ◦C to
set the maximum and minimum temperature values,
respectively.

Figure 6: Annual average temperature rise for Germany
ranging from 1881 (left) to 2019 (right); inspired by https:
//showyourstripes.info.

A. Beginner’s Programming Assignment

The assignment was originally conceived in 2020 as
part of the “Public Climate School.” This nationwide
series of annual week-long events is initiated by “Stu-
dents for Future” and motivates lecturers at German
universities to integrate novel educational elements into
their courses in an attempt to increase awareness of
the progressive heating of the Earth. The assignment is



available in a public git repository [14]. The repository
contains a Jupyter notebook that specifies the assignment
in the form of a template to be completed by the students
to obtain the solution.

1) Intended Audience and Necessary Prerequisites: The
assignment is designed within a course on big data
processing at Friedrich Schiller University Jena. This
course is relevant not only for different computer science
degree programs but also for students enrolled in the
master’s program “Computational and Data Science”.
The latter is an interdisciplinary degree program that is
open to students with a bachelor’s degree in a wide va-
riety of scientific areas, including computer science and
mathematics as well as natural and engineering sciences.
In general, the overall course is designed to be accessible
to students with diverse scientific backgrounds and lit-
tle programming experience. However, for this specific
assignment, moderate programming skills in Python, a
basic understanding of MapReduce, and experiences in
using the Apache Hadoop Streaming API are required.

2) Problem Formulation and Main Concepts: As a first
step, the assignment asks the students to download
temperature data from Germany’s National Meteorolog-
ical Service, Deutscher Wetterdienst (DWD). The Federal
Republic of Germany comprises 16 constituent states.
The data consist of monthly average temperature values
of different states over a time span starting 1881. These
values are distributed across 12 input files storing the
average temperature of one month for every year (row)
in every state (column). The task is to compute the
annual average temperatures in Germany for all years.
Since the focus of this assignment is on the MapReduce
programming paradigm rather than on general-purpose
programming, the Jupyter notebook of the assignment
provides software that the students will use to visualize
the results.

This course assignment covers several main concepts.
While the task is simple in a general-purpose program-
ming language, it is more difficult in the MapReduce
programming paradigm. The reason is that MapReduce
forces the programmer to employ a three-phase ap-
proach, starting with the map phase, followed by the
group-by-keys phase, ending with the reduce phase. For
beginners, it is difficult to reformulate a given problem
under the severe constraints of this three-step approach.
The concept of finding a suitable reformulation of a
given problem in terms of mappers and reducers is
shown via a mapper whose key-value pairs at the output
represent a year as the key and temperatures averaged
over all states as the value. The group-by-keys phase
then rearranges all values at the output of the map phase
into different groups at the input of the reduce phase.
Each group is associated with a key which corresponds
to a particular year in this MapReduce program. For each
year, a reducer then averages over all months.

3) Data Science Workflows: Without considering details,
a typical workflow of a data science project consists
of the following four phases: (1) data acquisition, (2)
data pre-processing, (3) computations to analyze data,
and (4) result validation. This assignment uses averaging
temperatures over time as a simple example and guides
students through all of these stages. In particular, it
shows that the last step is essential, as the data set
provided by the DWD may be incomplete. For instance,
when students downloaded the data from DWD in late
2020, the temperatures of the last few months of that
year were missing. So, if they don’t take steps to remedy
the situation with missing data for winter 2020, the
average temperature of this year will be too high. From
this example, the students are encouraged to critically
evaluate the quality of the data set.

4) Software Engineering and Reusability: In the actual
assignment, we use data sets that are small. The reason
is that this introductory example is designed to start
learning MapReduce. That is, we consider this assign-
ment similar to a “Hello World!” program that can
first be executed on the student’s local machine and
that intentionally postpones the additional challenges
of accessing a departmental compute cluster. However,
the cluster is used to execute the final implementation
of this assignment not only for small data sets but
optionally also for larger data sets to be downloaded
by the students from various different sources. It is also
used in all later programming assignments for the course
(not detailed in this manuscript).

Climate data sets can grow very fast in size, for exam-
ple by increasing the number of weather stations and/or
the time resolution. Also, different shapes of input data
are possible. For instance, there could be different input
data files associated with individual weather stations
rather than with months. We ask the students to design
a MapReduce implementation that is relatively invari-
ant to different data formats. In particular, the mapper
should be capable of averaging any kind of data and not
be restricted to the computation of average temperatures.
Therefore, it should include a data-pre-processing stage
that reorders and rearranges the input, enabling it to
process different data in the same way. The aim is to
encourage students to pay attention to good software
engineering practices.

5) Hardware Infrastructure: Besides using a local ma-
chine, it is recommended to run the assignment on a
Hadoop cluster. In our course, we use the Hadoop par-
tition of the Ara cluster of Friedrich Schiller University
Jena, consisting of 16 compute nodes, each equipped
with 192 GB RAM and two Intel Xeon Gold 6140s, each
with 18 cores and 2.3 GHz.

B. Classroom Evaluation

The assignment has been tested in a big data course for
two subsequent years. A subset of eight participants of



the course in winter 2021/2022 took part in an optional
survey that collected student feedback. The survey con-
sisted of three multiple-choice questions each with five
possible answers which are given below in parentheses
with an italic font. The remaining questions left room
for students to write freely. Although the sample size
is small, we believe the survey results are interesting.
Specifically, we found the following:

• Six students thought that the prerequisites taught
in class were sufficient for the assignment, while
two thought their knowledge was absolutely suffi-
cient. Choices: (absolutely sufficient, sufficient, neutral,
insufficient, absolutely insufficient).

• Seven students found the assignment to be reasonable
and one student thought it was difficult. Choices: (too
difficult, difficult, reasonable, easy, too easy).

• We asked the students whether and why the assign-
ment increased or decreased their interest in MapRe-
duce. Seven participants answered that it increased
their interest in MapReduce. Answers mentioned an
up-to-date problem, a practicably relevant exercise,
and a rapid and simple approach.

• Seven participants remarked that the assignment
helped in understanding the typical steps of a data
science project, from data acquisition to the evalua-
tion of the results.

• Four students found that the assignment helped
them to solve more complex assignments that fol-
lowed later in the course. Some students mentioned
that it also prepared them to start their homework
projects which were mandatory for the admission to
the final exam.

• Seven participants found the assignment to be
mostly cool and one person very cool, mainly be-
cause of the real practical data and up-to-date topic.
Choices: (very cool, mostly cool, okay, mostly boring,
very boring).

• Seven students did not think that the assignment
changed their awareness of the climate crisis, mostly
because their level of awareness was already high.
Two students noted that it was interesting to repro-
duce the warming stripes.

IV. PERFORMANCE AND CARBON FOOTPRINT OF
DISTRIBUTED WORKFLOW EXECUTIONS

Our third assignment exposes students to the notion
that, in addition to performance, a pressing concern
for the execution of distributed applications is their
carbon footprint. Students are presented with a scientific
workflow application and are asked to reason about
and experiment with different execution scenarios with
the reduction of the carbon footprint as an objective.
This assignment requires no programming and active
learning is achieved via interactive, in-the-browser simu-
lation experiments. No hardware or software is required
besides a web browser. This assignment is hosted on the

EduWRENCH site, which hosts several pedagogic mod-
ules that cover all prerequisite material if needed [7]. Al-
though intended for advanced undergraduate students,
to date, this assignment has been used in one offering of
a graduate-level HPC course. Feedback gathered from
that one course was very positive. It was also used to
improve the pedagogic content and its presentation.

A. Overview and Prerequisites

The premise of this assignment is that students work
for an organization that needs to repeatedly execute an
astronomy scientific workflow (738 tasks with a 7.5GB
total data footprint). The organization has access (i) to
a local cluster where nodes are powered by a non-
green energy source and can be turned off or down-
clocked to improve power efficiency; and (ii) to a few
virtual machine instances running on a remote cloud
whose physical nodes are powered by a green energy
source. Students are tasked with reasoning about the
workflow execution and optimizing it for various ob-
jectives and using various methods, including resource
provisioning, resource configuration, and task schedul-
ing decisions. Students do this interactively through
their browser. The simulator is hosted on a back-end
server. It is implemented using the WRENCH (https://
wrench-project.org) and SimGrid (https://simgrid.org)
simulation frameworks [6].

The prerequisites for this assignment include basic
knowledge of parallel computing concepts (multi-core
and multi-node parallelism, speedup, efficiency), of dis-
tributed computing concepts (network data transfers,
network data proximity), and of workflows (task data
dependencies, width). In courses focused on parallel
and distributed computing, it may be that students
already have covered these prerequisites. Regardless,
this assignment is hosted on the EduWRENCH site
(https://eduwrench.org), which hosts several pedagogic
modules that cover all the above concepts and more.
These modules all include learning objectives, pedagogic
narratives, interactive simulation applications, practice
questions, as well as open-ended questions. It should
thus be straightforward for an instructor to point stu-
dents to particular prerequisite content that they must
cover before starting on the assignment.

B. Assignment Description

The assignment is available at https://eduwrench.
org/pedagogic_modules/workflow_co2/ as a single
page with two tabs, each with learning objectives, a
narrative, an interactive simulation application, and a
set of questions. No software download/installation is
required, and any teacher/student at any institution can
go through the assignment today via any Web browser.

Tab #1 – The first tab introduces the workflow of in-
terest, which is an instance of the Montage astronomy



application. This workflow is to be executed on a 64-
node cluster powered by a power plant that generates
291 gCO2e (gram CO2 equivalent) per kWh. The cluster
nodes can be configured to operate in one of seven
power states (p-states), each corresponding to a different
trade-off between compute speed and power consump-
tion. Furthermore, a number of nodes can be powered
off. The assignment makes the simplifying assumption
that all powered on nodes operate in the same p-state
(i.e., the cluster is homogeneous). Students are provided
with an in-the-browser simulation application in which
they can pick the number of nodes that are powered
on and their p-state, simulate the workflow execution
(which takes a few seconds), and see the simulation
output as execution time, power consumed, and gCO2e
generated.

Students are then asked to answer three questions. The
first question establishes a baseline for execution time,
parallel speedup, and parallel efficiency when powering
on all nodes in their highest p-state (i.e., aiming for
highest performance). The second question states that,
in fact, it is only necessary to execute the workflow in
under 3 minutes. Students are then asked to evaluate
two (for now mutually exclusive) options for minimizing
CO2 emission given this execution time bound: power
off some nodes or downclock all nodes. They are asked
to perform a binary search to identify the minimum
number of nodes to power on and the minimum p-state
to use, and then report to their hypothetical boss on the
merit of each option. Finally, the third question presents
students with a heuristic designed by their hypothetical
boss. This heuristic combines both power management
techniques (powering off and downclocking) and stu-
dents are asked to evaluate how well this heuristic
works. It turns out that it leads to lower CO2 emission
than both previously evaluated options, showing that
combining power management techniques can be useful.

Tab #2 – In the second tab, students are told that their
organization has purchased 16 virtual machine instances
on a remote, green, cloud. As a result, the organization
now only powers on 12 nodes of the local cluster, all op-
erating at the lowest possible p-state. The remote cloud
is accessible via a network link with limited bandwidth.
The key issue now is to decide whether a task should
be executed on the local cluster or on the remote cloud.
Note that the remote cloud has storage, so the output
of a task executed on the cloud is available locally to a
subsequent child task that also executes on the cloud.
In other words, there is possibility of data locality. Like
the previous tab, this tab also includes an interactive
simulation application. Students can use it to see the
effect, in terms of performance and CO2 emission, of
running some fraction of tasks in particular workflow
levels on the remote cloud.

Students are then asked to answer five questions. The

first question establishes baselines for “all on the local
cluster" and “all on the cloud" executions. The second
question asks students to reason about, and then com-
pare using simulation, three options for executing the
first two levels of the workflow. Subsequent questions
guide students toward coming up with configurations
that execute fractions of some workflow levels on the
cloud, engaging in a “treasure hunt” for the configu-
ration that minimizes CO2 emission. In particular, for
the last question students are free to experiment with
whatever scheme they can come up with. During in-
class sessions in which students went through this as-
signment, the instructor observed students actively ex-
perimenting and trying to beat the footprint achieved
by other students, denoting a reasonably high level of
student engagement in the assignment. In the future,
we will run our simulator to exhaustively evaluate all
possible options so as to compute the actual optimal
CO2 emission for this (NP-complete) problem and state
its value in the assignment, so that students know how
far their solution is from the optimal.

C. Strengths and Weaknesses

The main weakness of this assignment is that it is
only in simulation: although it allows for active learn-
ing via interactive experiments, these experiments are
not “real”. This is a deliberate design choice of this
assignment and in fact of the EduWRENCH project as a
whole: programming is not required so that assignments
can be easily integrated in early courses and/or in non-
computer-science curricula. But, as a result, some of
the “excitement” is lost. Note, however, that student
feedback collected for this and other EduWRENCH as-
signments does not indicate that students deem this a
big impediment to their learning experience.

A strength of this assignment is that it should be
extremely easy to integrate into existing courses. Al-
though it has prerequisites, these prerequisites are cov-
ered in other modules available on the same Web site
(which also includes a handy glossary of terms). The key
strength of the assignment is that it teaches learning ob-
jectives that would be extremely difficult to achieve with-
out simulation. In most institutions, it would be close to
impossible to provide students with the necessary hard-
ware and software environments for running meaningful
experiments. Even if provided, students would have to
learn myriads of technical details and skills for using
these environments. This would preclude achieving the
learning objectives hands-on in most courses, and in
particular in undergraduate courses.

D. Previous Uses

This assignment was used in a graduate HPC course
(ICS 632) at the University of Hawai‘i at Mānoa in Fall
2021. 11 students completed a self-assessment question-
naire, and provided feedback on the pedagogic material



Table I: Student feedback (n = 11).

Question Choices #Answers

How easy / difficult is the assignment?

very easy 1
somewhat easy 6
neither easy nor difficult 4
somewhat difficult -
very difficult -

How useful is the assignment?

very useful 5
useful 3
somewhat useful 3
of little use -
not useful -

To what extent did the assignment help you learn new things?

to a great extent 5
to a moderate extent 4
to some extent 2
to a small extent -
not at all -

Are you interested in learning more about this topic? yes 10
no 1

How useful is simulation in this assignment?

very useful 6
useful 3
somewhat useful 3
of little use -
not useful -

How valuable is the overall learning experience in the module?

very much 7
quite a bit 3
somewhat 1
a little -
not at all -

(9 were Computer Science graduate students and 2
Computer Science undergraduate students). All student
feedback is summarized in Table I. These self-assessment
results are a good indication that the assignment accom-
plishes its objectives. Assessment results showed that
almost all students in the course scored more than 90%
on this assignment, which is expected in a graduate
course. Open-ended comments entered by students in
the self-assessment questionnaires were very positive
and include comments such as “The writing and expla-
nations are great, being able to do a lot of trial and error
is fun” and “The visual aspect of the simulation really
helped me understand what was happening”. Finally,
students have provided constructive feedback on the
assignment, all of which has been taken into account for
improving the pedagogic content and its presentation.

REFERENCES

[1] “SDL: Simple directmedia layer,” (Visited on 2020-03-09).
[Online]. Available: https://www.libsdl.org

[2] M. Agung, M. Amrizal, S. Bogaerts, R. Egawa, D. Ellsworth,
J. Fernandez-Fabeiro, A. Gonzalez-Escribano, S. Kundu, A. Lazar,
A. Malony, H. Takizawa, and D. Bunde, “Peachy parallel assign-
ments (EduHPC 2019),” in Proc. Workshop on Education for High-
Performance Computing (EduHPC), 2019.

[3] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality,”
Physical Review A, vol. 38, pp. 364–374, 07 1988.

[4] H. Casanova, R. F. da Silva, A. Gonzalez-Escribano, W. Koch, and
Y. Torres, “Peachy parallel assignments (EduHPC 2020),” in Proc.
Workshop on Education for High-Performance Computing (EduHPC),
2020.

[5] H. Casanova, R. F. da Silva, A. Gonzalez-Escribano, H. Li, Y. Tor-
res, and D. Bunde, “Peachy parallel assignments (EduHPC 2021),”
in Proc. Workshop on Education for High-Performance Computing
(EduHPC), 2021.

[6] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jeth-
wani, W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing
accurate and scalable simulators of production workflow manage-
ment systems with wrench,” Future Generation Computer Systems,
vol. 112, pp. 162–175, 2020.

[7] H. Casanova, R. Tanaka, W. Koch, and R. Ferreira da Silva, “Teach-
ing parallel and distributed computing concepts in simulation
with wrench,” Journal of Parallel and Distributed Computing, vol.
156, pp. 53–63, 2021.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, Jan. 2008. [Online]. Available: https://doi.org/10.1145/
1327452.1327492

[9] D. Dhar, “Self-organized critical state of sandpile automaton
models,” Phys. Rev. Lett., vol. 64, pp. 1613–1616, Apr 1990.

[10] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the
2010 Workshop on Parallel Programming Patterns, ser. ParaPLoP ’10.
New York, NY, USA: Association for Computing Machinery, 2010.
[Online]. Available: https://doi.org/10.1145/1953611.1953615

[11] A. Lasserre, R. Namyst, and P. Wacrenier, “Easypap: A framework
for learning parallel programming,” J. Parallel Distributed Comput.,
vol. 158, pp. 94–114, 2021.

[12] R. Namyst and P.-A. Wacrenier. (2018) The EASYPAP web site.
(Visited on 2020-03-09). [Online]. Available: https://gforgeron.
gitlab.io/easypap/

[13] O. Ozturk, B. Glick, J. Mache, and D. Bunde, “Peachy parallel
assignments (EduPar 2019),” in Proc. 9th NSF/TCPP workshop on
parallel and distributed computing education (EduPar), 2019.

[14] J. Schoder and H. M. Bücker, “Peachy parallel assignment:
Warming stripes with MapReduce,” Git Repository, 2022. [On-
line]. Available: https://git.uni-jena.de/big_data_assignments/
warming_stripes.git


