
Peachy Parallel Assignments (EduPar 2023)
Alina Lazar

Department of SCSIET
Youngstown State University

Youngstown, OH, USA
alazar@ysu.edu

Virginia Niculescu
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

virginia.niculescu@ubbcluj.ro

David P. Bunde
Department of Computer Science

Knox College
Galesburg, IL, USA
dbunde@knox.edu

Abstract—The presentation of Peachy Parallel Assign-
ments at parallel and distributed computing education work-
shops is an effort to promote the reuse of high-quality assign-
ments, both saving precious faculty time and improving the
quality of course assignments. These assignments must have
been used in class and are selected for being easy to adopt
by other instructors and for being “cool and inspirational”
so that students spend time on them and talk about them
with others. The assignments and their materials are also
archived on the Peachy Parallel Assignments website.

In this paper, we present two new assignments. The
first has students implement the Mandelbrot set in Python,
combining an interesting image with Python’s ease of use.
The second assignment is a substantial project to implement
a programming contest judge. It requires that students use
many parallel and distributed computing concepts, with the
added benefit of solving a “real problem” and creating soft-
ware with which students may have personally interacted.

Keywords-Peachy Parallel Assignments, Parallel comput-
ing education, Parallel programming, Curriculum Develop-
ment, Mandelbrot set, Programming contest

I. INTRODUCTION

The Peachy Parallel Assignments effort aims to pro-
mote the development and spread of high-quality home-
work assignments and laboratory exercises to teach con-
cepts in Parallel and Distributed Computing (PDC). We
specifically seek assignments that are not only well-
designed, but also motivating for students to encourage
them to spend time working on the assignment and also
spread positive messages about the field by excitedly
showing the results to their friends, roommates, and
family members. Developing such assignments is not
easy, requiring both creativity and hard work. Our goal
is to recognize this effort and also, by sharing the assign-
ments themselves, to allow other instructors to leverage
this effort through reuse.

With these goals in mind, Peachy Parallel Assignments
are solicited with a public call for submissions and
selected competitively using the following criteria:

• Tested: All assignments must have been successfully
used with real students

• Adoptable: The assignments must be useful to other
instructors, with clear descriptions and the resources
needed for adoption by others (handouts, given
code, references for more information, etc.). Ideally,

they focus on core PDC topics using widely-used
languages and toolsets, with suggested customiza-
tions that can make them suitable for students at a
variety of levels.

• Cool and inspirational: The assignments must moti-
vate students through the artifacts they create (e.g.,
images) or the concepts taught. Ideally, students
should want to talk about the assignment with
friends and show it off to others.

Assignments selected as Peachy Parallel Assignments
join a series published at the Edu* (i.e., EduPar and
EduHPC) workshops, e.g., [6], [10], [11]. The assign-
ments are also archived at the Peachy Parallel Assign-
ments webpage (https://tcpp.cs.gsu.edu/curriculum/
?q=peachy), along with all the materials needed to adopt
them. The assignments are meant to be used as-is or
adapted by other instructors to fit the context of their
class. The assignments can also serve as inspiration for
other assignments.

This paper describes two new Peachy Parallel Assign-
ments selected for presentation at EduPar 2023. Section
II describes an assignment to create a representation
of the Mandelbrot set in parallel. This task has been
used in assignments previously [7] because it is visually
interesting but this version improves on prior work by
better integrating visualization and also demonstrating
the use of Python, which is seeing increased usage in
parallel and high-performance computing contexts. It
is also widely used in introductory Computer Science
courses, allowing the assignment to be used very early
in the CS curriculum. Section III describes a larger
assignment that requires students to combine many PDC
concepts to create a server to judge programming contest
problem submissions. Unlike most programs developed
for programming assignments, this is practical software
that students might have already used, giving it a “real-
world” appeal.

II. PARALLEL MANDELBROT SET IMPLEMENTATION

In this section, we present a parallel programming
assignment that is suitable for an introductory program-
ming course and, with minor modifications, also well-
suited for upper-division undergraduate courses. The as-
signment asks students to execute sequential and parallel

Python code to produce an image of the Mandelbrot set.
Python is a very popular programming language and is
widely used in introductory programming courses. To
support parallel computing, we use IPython Parallel, a
Python library that provides a simple and flexible way
to execute code in parallel across multiple processors or
machines. It is well-suited for prototyping and experi-
mentation, and provides standard APIs compatible with
many other implementations. By utilizing IPython Par-
allel framework and mpi4py, students can gain a deeper
understanding of parallel and distributed processing.
Moreover, this task provides students with a fascinating
example to grasp the basics of parallel computing and
teaches them how to assess the execution time of both
sequential and parallel implementations.

A. Motivation

Parallel computing is becoming increasingly impor-
tant in many fields, from scientific simulations to ma-
chine learning. As multi-core hardware platforms evolve
and become widely available, people will have high-
performance computing at their fingertips. To prepare
students for careers in computing and particularly in
parallel and distributed computing (PDC), CS educators
are finding it increasingly challenging to decide what
material to cover and in what order. The typical college-
level introductory CS course sequence only exposes stu-
dents to sequential type programming and data struc-
tures concepts, no matter the programming language
used. PDC is mainly taught in upper-division courses
such as parallel computing, algorithms, operating sys-
tems, and computer architecture. The community has
long recognized [18], [22], [23] the benefits of exposing
students to PDC concepts as early as possible during
their studies.

Currently, Python is the most popular programming
language according to the TIOBE Index [4] and one
of the favorite programming languages to teach in the
college introductory programming courses CS1 and CS2.
Python’s simpler syntax lets students start faster and
provides an easier learning curve for those without
programming experience. It also sets the stage for later
coursework in object-oriented programming, parallel
computing, data science, AI, and machine learning. Ad-
ditionally, integrated development environments (IDEs)
such as Jupyter Notebooks and VS Code have helped in-
crease Python’s popularity. At the same time, as all mod-
ern computing devices have multiple cores and many
have GPUs, there is a push to integrate parallel and
distributed computing in the early CS courses [20]. How-
ever, in most cases, CS1 and CS2 still teach students to
solve problems using only sequential thinking. Even in
the best case, concurrency and parallel problem-solving
are only demonstrated using unplugged activities [13].
Many Python libraries for Just In Time (JIT) compilation,
multiprocessing, and high-performance computing exist,

however IPython Parallel [3] makes explicit parallel com-
putations interactive, which means it is very appealing
for beginners because it removes the barrier of accessing
remote computers. IPython Parallel is a Python library
that provides a simple and flexible way to execute code
in parallel across multiple processors or machines. It is
built on top of the IPython interactive computing frame-
work and provides an easy-to-use, flexible interface for
parallel computing tasks.

With IPython Parallel, students have all the power of
IPython’s inspection, interactivity, magic, and debugging
at their fingertips, no matter of where they run their
code. This makes it especially well-suited to prototyping
and experimentation. IPython Parallel also presents stan-
dard APIs such as Python Executors that are compatible
with many other implementations to make it easy to mi-
grate to and from IPython Parallel, enabling developers
to write code on a single multi-core laptop but to deploy
it to a thousand cores on an HPC cluster.

For this assignment, we use the IPython Parallel pack-
age together with the mpi4py package. IPython Paral-
lel is a lightweight framework that efficiently manages
clusters of IPython processes. It can utilize all cores of
a single machine to execute computations in parallel.
Once you develop your parallel code locally, IPython
Parallel lets you scale it up resiliently and elastically to
clusters with many nodes for speeding up your solution
or for solving even larger problems. Under the Anaconda
platform, both IPython Parallel and mpi4py can be in-
stalled with a conda or pip install command, under a
separate conda environment. This installation includes
an extension for both the classic Jupyter Notebook and
JupyterLab. IPython’s parallel computing architecture
has been purposefully built to seamlessly integrate with
the Message Passing Interface (MPI). In order to incorpo-
rate MPI functionality with IPython, the mpi4py package
must be also installed.

B. The Assignment

This assignment aims to use the IPython Parallel and
mpi4py packages to introduce students in introductory
programming classes to parallel computing concepts.
The starting point of this assignment is the sequential
pseudocode in Listing 1, which computes and displays
the Mandelbrot set shown in Figure 1. The Mandelbrot
set is considered one of the most popular fractals. The
Python code generates an image of the Mandelbrot set by
iterating the function z = z2+c for each complex number
in a grid spanning the specified range of the complex
plane. The number of iterations is limited to a maximum
value, and a threshold is used to determine when a point
has diverged. The resulting image can be plotted using
Matplotlib. Generating the image of the Mandelbrot set
is a widely-used benchmark to test computer systems as
well as programming language implementations because

it is computationally intensive and a speed up can be
easily observed.

The Mandelbrot set computation is relatively easy to
parallelize because the value of each pixel in the image
can be calculated independently, without any informa-
tion about the values of surrounding pixels. The main
idea of this embarrassingly parallel example is to group
the pixels together and assign them to be processed by
the same process or core.

To generate an image of the Mandelbrot set faster,
we employ MPI to distribute the work among multiple
processes. First, the image is split into rows, and each
process works on a subset of rows. The results are then
gathered on the root process (rank 0), which combines
them into the full image. Finally, the root process plots
the Mandelbrot set using Matplotlib or other plotting
packages. Note that the MPI code is more complex than
the non-parallel code, but it can significantly speed up
the computation for larger images or when running
many iterations.

Listing 1: Sequential Mandelbrot set Python code
MAX_ITER = 100

def mandelbrotSet (complex) :
z = 0
i = 0
while abs (z) <= 2 and i < MAX_ITER :

z = z * * 2 + complex
i += 1

return i

The parallel MPI implementation is presented in a
Jupyter notebook using IPython Parallel to make it sim-
ple and easier for students. A static-type MPI parallel
implementation of the Mandelbrot set is also provided
to the students. The main goal of the assignment is to
check if this parallel implementation scales well when
the number of processes or cores increases (e.g., 2, 4,
8, 16). Students are asked to run these experiments and
to plot a bar plot to show the time it takes to finish
the computation using different numbers of computing
cores. Students will use the generated plot to decide
if the output scales linearly with the number of cores.
Another question highlights the relationship between
the output and Amdahl’s [5] and Gustafson’s [15] laws.
More details about this assignment can be found at
https://github.com/alinutzal/EduPar-23_Peach.

C. Setup and Learning Outcomes

Before assigning this example as homework or as an
in-class lab, the instructor should review fundamental
concepts such as modern CPU architecture, Amdhal’s
law, Gustafson’s law, task distribution, and speed-up.
Also, the students should have access to a computer with
multiple cores, have miniconda installed, and be able to

Figure 1: Mandelbrot set

install IPython parallel and mpi4py in a conda environ-
ment. Other possible resources are Google Colab, which
provides environments with up to 2 cores, or access to
a supercomputer. For example, Ohio Supercomputing
Center [12] gives access to HPC resources for instructors
and students in Ohio. Instructors can request Classroom
Projects for individual courses and generate accounts for
students.

In terms of learning outcomes, after completing this
assignment students, should be able to:

• Understand the basics of parallel computing and
how it can be used to speed up computationally
intensive tasks.

• Explain the concept of embarrassingly parallel tasks
and how they can be easily parallelized. Also, de-
velop an understanding of how to split work into
subtasks to be processed in parallel.

• Use IPython Parallel and mpi4py packages to im-
plement parallel tasks in Python.

• Apply the Mandelbrot set iterative process as a
benchmark to test sequential and parallel Python
implementations.

• Explain the process of distributing work among
multiple cores using MPI.

• Implement Python code to distribute work among
multiple cores using MPI.

• Demonstrate how to gather results from multiple
cores and combine them into a single final result.

• Understand the limitations and benefits of parallel
computing in terms of performance, complexity, and
running time.

These learning outcomes align well with the par-
allel computing learning outcomes highlighted in the
NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing - Core Topics for Undergradu-
ates [20] for CS1, CS2, Data Structures and Algorithms,
and Parallel Computing courses.

D. Student Feedback
To understand the experience of CS1 and CS2 students

in using IPython parallel with MPI, it is important to
consider their background knowledge and familiarity
with basic programming concepts. Students with more
experience and motivation in programming may find the
assignment straightforward and engaging, while those
with less experience may need additional help, espe-
cially with the implementation details. Therefore, it is
crucial to provide appropriate guidance and support to
all students, regardless of their prior knowledge. This
can include providing clear lecture notes, instructions,
examples, and documentation, as well as offering office
hours, tutoring, or peer support. Encouraging students
to work collaboratively and share their experiences can
also enhance the learning experience and build a sense
of community.

Regarding the benefits of the assignment, students
can gain valuable skills in parallel computing, which is
becoming increasingly important in many fields, such
as scientific computing, machine learning, and data
analysis. Additionally, the Mandelbrot set computation
provides a tangible example of how parallel computing
can significantly improve performance and efficiency,
which can motivate students to explore further related
applications.

Overall, incorporating IPython Parallel and MPI into
introductory programming courses can be a valuable
addition to the curriculum and can inspire students to
pursue more advanced topics in parallel computing and
CS in general. In this context, most feedback received
from students solving this assignment was very positive.
The following are a few of the comments collected from
students:

“I found this assignment creative and very useful. In
addition, the instructor was helpful in clarifying the hard
concepts.”

“This assignment taught me a ton about parallel pro-
gramming. Python is a little trick[y] at first, but I can try
programming other algorithms now.”

“Very challenging and fun. Enabled me to incorporate
parallel programming skills into problem-solving.”

E. Conclusions
The proposed assignment provides an approachable

introduction to parallel and distributed computing for
CS students. Before attempting this assignment, students
are expected to have a working knowledge of Python
and Numpy, usually gained earlier in the semester.
This assignment requires access to a multicore computer
and a miniconda environment. Students can use either
Jupyter Notebooks or VS Code to run the notebooks.
The skills acquired while solving this assignment will be
useful in understanding how parallel code is designed.
This assignment can be extended to present a dynamic
task assignment parallel solution for the Mandelbrot

set. The same approaches can be used to show the
generation of other fractals, such as Julia, or extended
to solve different problems requiring a high amount
of computation, such as Monte Carlo simulations and
random numbers generation.

III. PROGRAMMING CONTEST JUDGE

Now we describe our second Peachy Parallel Assign-
ment, the implementation of a judge for programming
contests. Our idea is that using a real life problem
will attract students’ interest to the problem even if it
is as complicated as those in parallel and distributed
programming.

This assignment was used in “Parallel and Distributed
Programming”, a mandatory course in the curricula
of the third-year undergraduate students pursuing the
Computer Science specialization at “Babeş-Bolyai” Uni-
versity. The course classes contain lecture hours, but also
laboratories where students must do assignments that
allow them to put the principles, concepts, and mecha-
nisms they are learning about into practice. The course
uses Java and C++ to demonstrate the general pro-
gramming concepts and mechanisms. For this project,
we required that students do their implementation in
Java based on previous years insights’ into the students’
preferences.

The assignment is a complex project that covers many
of the previously presented topics:

• client-server,
• thread-pools,
• balanced distribution,
• producer-consumer pattern,
• conditional synchronization,
• data race,
• fine-grain vs. coarse-grain synchronization,
• synchronized methods vs. locks,
• signalization of the end of an operation/compu-

tation in multi-threaded and client-server environ-
ments,

• the impact on the performance of right splitting of
the resources (number of threads).

Details about the assignment could be found at https:
//www.cs.ubbcluj.ro/~vniculescu/pdp/.

A. The problem
The high-level problem statement given to students

is the following: An international programming contest
proposes several assignments to very many participants from
different countries. For each assignment some points could be
gained and finally the competitors that gain more points will
be the winners. There are several ethical rules that should be
respected; if a competitor doesn’t respect one of these rules,
then he/she is eliminated from the competition. At the end of
the competition, the results for each assignment are sent (by
each country client) to a central server that stores them in
a specific directory. There are several prizes and in order to

determine the winners, a list ordered descending based on the
total points is needed. The server is responsible for delivering
this list as soon as possible.

Performance analysis should be conducted based on the
resources’ allocation for different tasks, on synchronization
granularity, and on the size of the blocks sent by the clients.

They are also given the following information and
constraints:

• There are the same number of participants in each
country.

• Configuration data are read from a given file that
contains:

#_assignments, #_countries, #_competitors, #_prizes
• For each assignment and each country there is an

associated file that contains the results. A result for
a specific assignment is specified using a pair (id,
#_points), where id represents the id of a competi-
tor. The file that contains the results of a specific
assignment contains all the corresponding pairs (an
id appears only once), in an unspecified order. For
each assignment the maximum number of points is
100.

• If a competitor breaks an ethical rule for an assign-
ment, then a pair (id,−1) is added in the corre-
sponding assignment file.

• The list should be represented as an ordered linked
list.

• For the list construction at the server side, a maxi-
mum of p threads can be used (the number p will
be different for different test cases).

• The final result is represented by an output file that
contains the country and the id of each winner in
descending order of their accumulated points, each
on a separate line.

B. Design

Students are also told to create the following two
components:

1) Client-Server component
• Each client is associated to a country and sends

the files of the corresponding assignments results.
2) Classification list construction component

• This is done at the server side using multiple
execution threads.

The result data from each country for each assign-
ment are sent to the central server through the Client-
Server application. The results for each assignment are
processed as soon as they are completely received. The
server receives files and stores them into directories
that correspond to each assignment, and concurrently
executes the second component. A visual description of
its behavior is depicted in Figure 2.

The following technical constraints [2], [8], [9], [16]
should be followed:

Figure 2: Visual description of the client-server applica-
tion.

- The server uses a thread pool executor defined with
t threads (Executors.newFixedThreadPool(t)).

- The connection should be based on Java sockets.
- A client sends a file split in blocks of predefined

size.
The ordered list construction component is executed at

the server side and uses the files that contains the results
for each assignment sent by each country.

Figure 3: Visual description of the ordered list construc-
tion.

The p threads that can be used for the list creation are
split into two groups: readers (pr) and workers(pw) such
that p = pr + pw. In addition, the assignment specifies
the following:

- The readers are responsible for reading pairs from
the files and add them into a queue Q that has a
maximum capacity.

- A worker takes a pair from Q and adds it into the
list L (initially this list is empty and eventually it
will contain the descending ordered list).

- The producer-consumer pattern [21] should be used!
Readers are the producers and the workers are the
consumers.

Figure 3 describes the steps and the entities involved
in this activity.

For adding a pair into the list, the synchronization
should be based on the following:

• Variant WA: mutual exclusion by blocking the entire
list,

• Variant WB : mutual exclusion at the node level.

C. Methodology and Analysis
The project is very complex and it should be devel-

oped in stages. Because of this, two approaches could
be considered:

1) Waterfall approach. Inform the students from the
beginning about the entire goal of the application,
and then split its development into stages.

2) Agile approach. Split the problem into independent
stages. This means to starting first with the problem
that creates the ordered list from a given set of input
files, then, develop a client-server application that
receives files from clients, and then, integrate these
two components.

The first approach has the advantage of rising the stu-
dents’ interest by focusing on the real-life application,
but it may increase the risk of failure due to the esti-
mated complexity. The second is an agile approach that
could lead the students to the final results following
a gentler path, and in the same time, allowing better
focus on different concurrency mechanisms. This was the
approach that we followed.

Following the agile approach, we broke the problem
into the following stages:

1) Development of the component that creates the
ordered list from some input files that contain the
pairs of type (id, points).
a) Development of the first variant that uses WA:

mutual exclusion by blocking the entire list,
b) Development of the second variant that uses WB :

mutual exclusion at the node level.
c) Comparison of the two approaches.

2) Develop a client-server application in which files are
sent from clients to the server by splitting the files
in blocks.

3) Integrate the first component into the client-server
application.

4) Testing with different test-cases.
In order to make the first stage independent, the

files that finally will be received from the clients are
generated by using random numbers.

At the first stage, the producer-consumer pattern is
discussed and analysed in more details. For the second
stage, we discuss the implications of using fine-grain
synchronization over coarse-grain synchronization [14].
The general producer-consumer pattern and its implemen-
tations were previously presented at the lectures, so the
students just have to identify the fact that this pattern
fits to the problem readers=producers, workers=consumers),
and put it to work.

The workers should add new nodes into the ordered
list, update the points of some nodes, or delete some
nodes. These operations could have a data race, and so,
the implementation uses mutual exclusion. This can be
done for the entire list, which allows a very simple
implementation. For large volumes of data, however, the

performance can be much better if synchronization is
done at the node level. Synchronization at the node level
is not so simple to understand and implement and a
detailed analysis of this solution should be provided to
the students from the beginning (concrete examples, sce-
narios based analysis, recommendations as using head
and tail empty nodes, etc.). The process illustrates the
need to use fine grain synchronization even if it implies
a much complex solution compared to coarse grain syn-
chronization [1], [14].

The readers should read pairs from files. The files
are organized into #_assignment directories, and there
are pr threads that should fulfill this task. It could be
assumed that each directory contains a similar number
of pairs distributed into #_countries files stored in each
directory. A balanced distribution of the work should be
done and this mainly depends on the relation between
#_assignment and pr.

Another interesting problem, which is not so obvious
at the first analysis, and proved to be difficult for the stu-
dents, is the need to signal the end of the computation.
For the workers, an empty queue does not necessarily
mean that the work is finished; they should be informed
when no other data is going to be added to the queue.
It is important for the students to understand that this
happens only when all the readers finish their job. The
Poison Pill pattern [17] was discussed in this context. On
the other hand, atomic variables could be used, and so,
low-level synchronization was used, too.

The solution should be tested for correctness and
also performance. The correctness testing is suggested
to be done by implementing a sequential solution, and
then comparing the outputs of the sequential and of
the parallel solutions. The students are informed that
this method just increases the level of confidence in
correctness.
Different values for p, pr, pw are considered for the per-
formance analysis, and the execution times are compared
with the sequential time.

This first stage is oriented especially to synchroniza-
tion problems. Regarding this, an important observa-
tion has been noticed: initially the students are not
good at identifying all the data-race situations or the
synchronizations imposed by the conditional waiting.
After they realize the importance of sychronization, they
tend to have the opposite behavior and to overuse
synchronization and mutual exclusion to the detriment
of performance.

The second stage imposes the development of a ba-
sic client-server application, in which the clients send
several files to the server that stores them into different
directories based on their names. For sending files the
students are told to define clients that send chunks
(binary blocks) of files in sequence. The problem of
signaling the end of the computation also appears here, but
in the context of the distributed memory environment,

where the solution should be based on messages. The
testing should evaluate the impact of the block size
on the performance. The possible sizes of these blocks
should be discussed, and performance analysis could be
done for different values.

In the integration stage, the two main components are
put together. This also involves some challenges due
to the requirement of concurrency. The readers of the
component that constructs the list should start reading
files associated to an assignment as soon these are all
received. When all the files that correspond to an as-
signment are received, the directory that contains them
may be used by the readers. For implementing this, flags
defined using atomic variables should be used.

Finally, in the last stage, the whole application is tested
in several scenarios. The scenarios are defined based on
different values for the total number of threads used by
the server (t), how are these distributed for the different
tasks (pr, rw), and the size of the blocks into which the
clients split the files are split to send them. All these
scenarios were tested for the both variants WA and WB .
The testing activity is very important for this project
since it depends on many parameters that may have
impact on the performance.

Depending on the server hardware, the total number
of threads should be split between the threads that work
for thread pool that receives the files, the threads that
read pairs from the files, and the threads that add the
pairs to the list.

D. Variations
A significant possible variation of this assignment is to

eliminate the reader threads and to have the clients send
result pairs (not only one, but a bunch of pairs) which are
put into the queue (Q) directly by the server’s executor
tasks. The advantage of this approach is that the threads
at the server side could be used more efficiently. If both
variants are implemented than they could be compared
from the performance point of view.

Another variation is to implement the list construction
using only CAS operations [14].

This problem could also have different real-life wrap-
pers; in general, it could be applied to problems where
many applications are submitted from different loca-
tions, and they have to be aggregated based on specified
criteria in order to select the best of them.

Another variation, not as much a real-life problem
but appropriate for students interested in Mathematics,
is to consider the computation of the sum of several
polynomials that are represented using monoms— pairs
of (coefficient, exponent). We have used this for the
students from the specialization “Mathematics and Com-
puter Science”.

E. Conclusion
Overall, the problem emphasizes that there are many

factors on which the performance depends, and these

factors are correlated. The analysis of the possible op-
timization should be done first at the component level
and then for the entire application.

The problem forces students to use many of the mech-
anisms and paradigms they learned related to parallel
and distributed programming, and shows that deep
understanding and analysis are important in order to
obtain good performance.

Even though the problem is complex, the students
managed to complete the assignment. We believe that
the most important reason for this was the agile ap-
proach that split it into stages that could be developed
and tested independently. Agile methodology has im-
portant advantages in software development and it can
be successfully used in teaching and learning activities
[19]. The students’ feedback emphasized that this as-
signment allows them to better understand the patterns,
mechanisms, and principles of parallel and distributed
computing that were previously discussed, and gave
them a rewarding practical experience.

REFERENCES

[1] “The Java tutorials, Oracle Java documentation —
Concurrency,” https://docs.oracle.com/javase/tutorial/
essential/concurrency/.

[2] “The Java tutorials, Oracle Java documentation — Networking,”
https://docs.oracle.com/javase/tutorial/networking/.

[3] “Using IPython for parallel computing — ipyparallel 8.4.1 doc-
umentation,” https://ipyparallel.readthedocs.io/en/latest/, ac-
cessed: 2023-1-27.

[4] “TIOBE index,” https://www.tiobe.com/tiobe-index/, Dec. 2021,
accessed: 2023-1-27.

[5] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities, reprinted from the
afips conference proceedings, vol. 30 (atlantic city, nj, apr. 18–
20), afips press, reston, va., 1967, pp. 483–485, when dr. amdahl
was at international business machines corporation, sunnyvale,
california,” IEEE Solid-State Circuits Society Newsletter, vol. 12,
no. 3, pp. 19–20, 2007.

[6] H. Bücker, H. Casanova, R. F. da Silva, A. Lasserre, D. Luyen,
R. Namyst, J. Schoder, and P.-A. Wacrenier, “Peachy parallel
assignments (EduPar 2022),” in Proc. 12th NSF/TCPP workshop on
parallel and distributed computing education (EduPar), 2022.

[7] D. Bunde, “Modules for introducing threads,” in Topics in parallel
and distributed computing: Introducing concurrency in undergraduate
courses, S. Prasad, A. Gupta, A. Rosenberg, A. Sussman, and
C. Weems, Eds. Morgan Kaufmann, 2015, ch. 4, pp. 59–82.

[8] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern Oriented
Software Architecture Volume 4: A Pattern Language for Distributed
Computing.

[9] K. L. Calvert and M. J. Donahoo, TCP/IP Sockets in Java, Practical
Guide for Programmers, 2nd ed. Morgan Kaufmann, 2008.

[10] R. Carratalá-Sáez, A. Gonzalez-Escribano, A.-S. Iliopoulos,
C. Leiserson, C. Park, I. Rosa, T. Schardl, Y. Torres, and D. Bunde,
“Peachy parallel assignments (eduhpc 2022),” in Proc. Workshop
on Education for High-Performance Computing (EduHPC), 2022.

[11] H. Casanova, R. F. da Silva, A. Gonzalez-Escribano, H. Li, Y. Tor-
res, and D. Bunde, “Peachy parallel assignments (EduHPC 2021),”
in Proc. Workshop on Education for High-Performance Computing
(EduHPC), 2021.

[12] O. S. Center, “Ohio supercomputer center,” 1987. [Online].
Available: http://osc.edu/ark:/19495/f5s1ph73

[13] S. K. Ghafoor, D. W. Brown, M. Rogers, and T. Hines, “Unplugged
activities to introduce parallel computing in introductory pro-
gramming classes: an experience report,” in Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science

Education, ser. ITiCSE ’19. New York, NY, USA: Association for
Computing Machinery, Jul. 2019, p. 309.

[14] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing. Addison Wesley, 2003.

[15] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring
the scalability of parallel algorithms and architectures,” IEEE
Parallel & Distributed Technology: Systems & Applications, vol. 1,
no. 3, pp. 12–21, 1993.

[16] E. R. Harold, Java Network Programming, 4th ed. O’Reilly Media,
Inc, 2013.

[17] B. L. Massingill, T. G. Mattson, and B. A. Sanders, A Pattern
Language for Parallel Programming, ser. Software Patterns Series.
Addison Wesley, 2004.

[18] T. Newhall, K. C. Webb, V. Chaganti, and A. Danner, “Introducing
parallel computing in a second CS course,” in 2022 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW). ieeexplore.ieee.org, May 2022, pp. 321–329.

[19] V. Niculescu, D. M. Suciu, and D. V. Bufnea, “Agile principles
applied in learning contexts,” in Proc. 3rd Intern. Workshop on
Education through Advanced Software Engineering and Artificial In-
telligence, 2021, pp. 31–38.

[20] S. K. Prasad, A. Chtchelkanova, S. Das, F. Dehne, M. Gouda,
A. Gupta, J. Jaja, K. Kant, A. La Salle, R. LeBlanc, M. Lums-
daine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, A. Rosen-
berg, S. Sahni, B. Shirazi, A. Sussman, C. Weems, and J. Wu,
“NSF/IEEE-TCPP curriculum initiative on parallel and dis-
tributed computing: core topics for undergraduates,” in Proceed-
ings of the 42nd ACM technical symposium on Computer science
education, ser. SIGCSE ’11. New York, NY, USA: Association for
Computing Machinery, Mar. 2011, pp. 617–618.

[21] P. Raj, A. Raman, and H. Subramanian, Architectural Patterns.
Packt Publishing — O’Reilly, 2017.

[22] X. Suo, O. Glebova, D. Liu, A. Lazar, and others, “A survey of
teaching PDC content in undergraduate curriculum,” 2021 IEEE
11th Annual, 2021.

[23] N. Watkinson, A. Shivam, A. Nicolau, and A. Veidenbaum,
“Teaching parallel computing and dependence analysis with
python,” in 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). ieeexplore.ieee.org, May
2019, pp. 320–325.

