
Peachy Parallel Assignments (EduPar 2024)
Alina Lazar∗, Ethan Scheelk†, Elizabeth Shoop‡, David P. Bunde§

∗Youngstown State University, USA, alazar@ysu.edu, 0000-0002-2096-1541
†Macalester College, USA, escheelk@macalester.edu, 0009-0008-9034-5358
‡Macalester College, USA, shoop@macalester.edu, 0009-0003-2871-8049

§Knox College, USA, dbunde@knox.edu, 0000-0001-6334-356X

Abstract—We present two new assignments in the Peachy
Parallel Assignments series of assignments for teaching parallel
and distributed computing. Submitted assignments must have
been successfully used previously and are selected for being
easy for other instructors to adopt and for being “cool and
inspirational” so that students spend time on them and talk about
them with others.

The first assignment in this paper familiarizes students with
the RAFT library for performing GPU-accelerated computation,
part of the RAPIDS AI ecosystem. Students use this library to
accelerate a Radius Nearest Neighbor computation, finding all
points within a given distance from a query point. In the second
assignment, students parallelize a bird flocking simulation using
OpenMP or OpenACC. It is a visual assignment which allows
students to readily see the performance improvement.

Keywords-Peachy Parallel Assignments, Parallel computing
education, Parallel programming, Curriculum development, Vi-
sualizing parallelism, RAPIDS AI ecosystem, Radius Nearest
Neighbor, Boid flocking algorithm

I. INTRODUCTION

Designing engaging, high-quality assignments requires cre-
ativity and hard work. New assignments also carry risk because
they don’t always run as smoothly as expected. At the same
time, the importance of course assignments is hard to over-
state. This is where students apply what they are learning in
class. In many cases, it is how they spend the majority of the
time they devote to the course. Assignments can also feature
prominently in students’ memory of the course and sometimes
even affect the reputation of a course or department when
students talk about their experiences. The Peachy Parallel
Assignments project aims to spread the benefits of assignment-
creation work by publishing high-quality assignments, allow-
ing others to leverage this work by adopting the assignments
and also giving assignment creators public recognition for their
ideas.

With these goals in mind, Peachy Parallel Assignments are
solicited in the Call for Papers of the Edu* workshops (EduPar
and EduHPC). Submissions are selected competitively using
the following criteria:

• Tested: All assignments must have been successfully used
with real students. Class testing reduces the risk of an
assignment “going sideways” on an adopting instructor.

• Adoptable: The assignments must be useful to other
instructors, with clear descriptions and the resources
needed for adoption by others (handouts, given code,

references for more information, etc.). Ideally, they focus
on core PDC topics using widely-used languages and
toolsets, with suggested customizations that can make the
assignments suitable for students at a variety of levels.
Thus, adopters have information on the assignment as it
was previously used and as much guidance as possible
to help them adapt it to other contexts. This information
is also potentially useful as a source of “lessons learned”
to others interested in creating assignments.

• Cool and inspirational: The assignments must motivate
students through the artifacts they create (e.g., images) or
the concepts taught. Ideally, students should be excited
about the assignment and want to talk about it with
friends, improving perception of the course, department,
and field as a whole.

Once selected, writeups of the assignments are published in
the workshop proceedings (e.g., [1], [2], [3]) and all the
assignment materials are archived on the Peachy Parallel
Assignments webpage (https://tcpp.cs.gsu.edu/curriculum/?q=
peachy).

This paper describes the two Peachy Parallel Assignments
selected for EduPar 2024. The first assignment asks students to
use a library to GPU accelerate the Radius Nearest Neighbor
problem. This problem has applications in machine learning
and computational geometry. By using the library, the assign-
ment is made more accessible to less experienced students
or those outside the CS major. The second assignment has
students parallelize a simulation of flocking behavior. This is
a graphical application that produces interesting behavior using
only very simple rules.

II. FIXED-RADIUS NEAREST NEIGHBOR SEARCH

The rapid growth of data in various fields like geospatial
analysis, bioinformatics, and social network analysis requires
efficient, fast processing techniques. Nearest Neighbor (NN)
search is a fundamental algorithm in these areas, and under-
standing its implementation is crucial for students aiming to
work with large-scale data. NN search is generally classified
into two categories: k-nearest neighbor search and fixed-
radius neighbor search. The latter, also known as radius query,
focuses on locating all data points that fall within a specified
distance from a query point and does not require sorting
the results. The simplest method to implement NN search is
through a linear scan of the entire database, commonly named



exhaustive or brute force search. An NN search assignment
using MapReduce was presented here [1]. The brute force
approach remains prevalent, often used with GPU acceler-
ation [4]. However, teaching GPU programming, especially
C++ CUDA to students is a real challenge.

More generally, the widespread availability of multi-
core hardware platforms and increasing need for high-
performance computing capabilities across diverse application
areas, presents a unique challenge for computer science ed-
ucators, particularly those who teach courses in parallel and
distributed computing (PDC) since a broader group of students
is interested in this material. One approach to making PDC
more accessible is through the use of libraries. RAPIDS AI [5]
is a suite of open-source software libraries that brings GPU
acceleration to data science, making tasks faster and more
efficient. RAFT, as part of RAPIDS AI, provides advanced
analytics and machine learning primitives implemented in both
Python and C++. Exposing students to these tools prepares
them for cutting-edge data science and machine learning de-
velopments. Implementing FRNN using RAFT will eliminate
the overhead of learning low-level CUDA programming, al-
lowing students to bridge theoretical knowledge of algorithms
and data structures with practical, real-world data processing
challenges. This hands-on approach reinforces learning and
enhances problem-solving skills.

The proposed assignment involves not just an implemen-
tation but also performance analysis, teaching students to
evaluate and optimize the efficiency of their code. This skill
is vital for developing high-performance applications in any
computing discipline. Understanding how to scale algorithms
and make them more efficient is a crucial part of modern
computing. This assignment introduces students to these con-
cepts concretely, showing how algorithms can be adapted
to handle larger datasets more efficiently. The assignment
encourages students to innovate and experiment with different
approaches to implementing FRNN, fostering creativity and
critical thinking skills that are highly valued in technology
fields.

A. The FRNN Assignment

This assignment aims to familiarize students with the
RAPIDS AI ecosystem, particularly the RAFT library, for
performing GPU-accelerated computations. Students will use
RAFT to implement a Fixed Radius Nearest Neighbor (FRNN)
search algorithm and analyze its performance on a given
dataset. The starting point of this assignment is a brute force
pseudocode, which implements a NN search. This assignment
lets students choose between C++ and Python.

The instructor provides synthetic generated and real datasets
of several sizes. Students will write code to load the dataset
to be used for the FRNN search. They will need to make sure
the data is in a format compatible with RAFT’s requirements
(e.g., RAFT objects or CuPy arrays).

To implement the FRNN search, the students must initialize
the RAFT environment and necessary data structures before
implementing the FRNN search algorithm using RAFT’s

nearest neighbor functionality. RAFT has a brute-force im-
plementation, index implementations for approximate nearest
neighbor search, and a graph-based nearest neighbor search
implementation [6] with state-of-the-art query performance.
The next step is to perform experiments that measure and
record the execution time of the different FRNN search
implementations. It is also possible to compare the GPU-based
performance with a CPU-based implementation of FRNN
search.

In addition to Python scripts or C++ code containing the
FRNN search implementation, students must submit a report
on their findings. They analyze the results obtained from the
FRNN search and discuss the performance improvements ob-
served with GPU acceleration. They are also asked to highlight
any challenges faced during the implementation and how they
were resolved. The instructor evaluates the submissions based
on a rubric defined using the following criteria:

• Correct implementation of the FRNN search using RAFT.
• Effective use of acceleration and memory management.
• Clarity and efficiency of the code.
• Depth of analysis in the report, including discussions on

performance and any challenges encountered.

B. Setup and Learning Outcomes

Before assigning this example as homework or in-class lab,
the instructor should review fundamental concepts such as
modern CPU and GPU architectures and how performance
improvements are measured to help students evaluate the
effectiveness of using GPUs. As technical requirements, the
students should have access to a computer with a GPU, have
Miniconda installed, and must be able to install RapidsAI in
a conda environment. Alternative possible resources include
Google Colab, which provides environments with up to 2
cores, or access to a supercomputer. For example, students
and instructors in the state of Ohio have access to the Ohio
Supercomputing Center [7].

In terms of learning outcomes, after completing this assign-
ment students should be able to:

• Gain a thorough understanding of both the NN and the
FRNN algorithms, including their significance, applica-
tions, and the computational challenges they address in
handling large datasets.

• Develop an understanding of GPU computing’s princi-
ples, including parallel processing, memory management,
and the advantages of using GPUs for specific types of
computational tasks.

• Acquire hands-on experience with RAPIDS AI and
RAFT, understanding how to leverage these libraries
for efficient data science and machine learning tasks on
GPUs.

• Learn to efficiently handle, process, and manipulate large
datasets using GPU-accelerated tools, which is a critical
skill in big data analysis and processing.

• Develop skills in optimizing code for better performance
on GPUs, including understanding how to measure, an-



alyze, and improve the execution time and resource
utilization

The educational goals achieved through this assignment
align with the learning objectives outlined in the NSF/IEEE-
TCPP Curriculum Initiative on Parallel and Distributed Com-
puting, specifically the Core Topics for Undergraduates as
referenced in Prasad et al., 2011 [8]. These objectives are
particularly relevant for CS2, Data Structures and Algorithms,
and Parallel Computing courses.

The main advantages of this assignment are that students
can acquire crucial skills in parallel computing, an area gaining
importance across various domains like scientific computing,
machine learning, and data science. Furthermore, the im-
plementations of the Nearest Neighbor (NN) search offer a
concrete demonstration of how parallel computing can enhance
both performance and efficiency, thereby encouraging students
to explore other similar applications.

C. Conclusion

The assignment on implementing Fixed Radius Nearest
Neighbor (FRNN) search using RAPIDS AI RAFT offers a
practical introduction to parallel and distributed computing for
computer science students. This hands-on project, requiring a
fundamental understanding of Python or C++ and access to a
multi-core system, provides vital experience in handling large
datasets with GPU-accelerated tools. It reinforces the learning
of parallel computing concepts and prepares students for the
computational challenges in modern data-driven fields. This
assignment extends beyond theory, enabling students to design
parallel code and understand its applications in various high-
computation scenarios, such as point clouds in computer vision
and molecular simulations.

III. VISUALIZING PARALLELISM WITH BOID FLOCKING

Our second assignment focuses on parallelizing for loops
based on the classic work of Reynolds from 1987 that intro-
duced autonomous agents called “boids” that model flocking
behavior in nature. Using available sequential code versions
that display the boids on an X graphics display or a window
created from the thread-safe graphics library (TSGL), students
can create one of several different parallel versions using
OpenMP and OpenACC and visualize the parallelism and
speedup in action.

A. Idea and Resources Available

In 1987, Craig Reynolds wrote a paper describing how to
model the behavior of flocks of animals for computer graphics.
He attempted to simulate birds, coining the graphic version
he created bird-oids, or “boids” [9]. He pointed out that the
behavior he modeled also applied to schools of fish and herds
of other animals.

This groundbreaking work by Reynolds ushered in the study
of individual agents that exhibit self-organizing behavior and
has been cited well over 14,000 times. One such citation is
in a book by Gary Flake called The computational beauty
of nature [10]. In chapter 16, section 3, Flake describes

Fig. 1. Display of flocking boids after 1000 steps using 200 boids

his implementation of Reynolds’ algorithm. We started with
Flake’s original code when formulating this assignment, but
made fairly extensive changes to modernize it.

In the program, a given number of boids are placed ran-
domly on a canvas, each with a x and y position and initial
velocity. Then they begin moving according to some rules.
Flake used three ‘rules’ from Reynold’s work to apply to each
boid as it moved and added a fourth rule of his own. The
movement takes place by simulating time using a for-loop for
an arbitrary number of times: each time through the loop, each
boid applies the rules by observing the location and speed of
every other boid. According to Flake [10, pg. 272], the rules
are the following:

1) “Avoidance. Move away from boids that are too close,
so as to reduce the chance of in-air collisions.

2) Copy. Fly in the general direction that the flock is
moving by averaging the other boids’ velocities and
directions.

3) Center. Minimize exposure to the flock’s exterior by
moving toward the perceived center of the flock.

4) View. Move laterally away from any boid that blocks
the view.”

Flake’s original code creates a simple X window visualiza-
tion that updates at each time step; the display for one run of
the program after 1,000 time steps using 512 boids (as arrows)
is shown in Figure 1.

This program’s sequential main code file is reasonably short
(approx. 500 lines including comments) and accessible, with
the details of the display separated into extra files that students
can treat as a black box. The code has several loops that
students would need to study to decide where to place an
OpenMP pragma to parallelize it, yet it’s possible to determine
the proper place to do this, given some preliminary activities
using OpenMP. So one version of the assignment can be done
in a course that uses C/C++ earlier in the curriculum, such as
a systems course, provided students have access to a Linux
machine.

The example also lends itself well to exploring more ad-
vanced methods of parallelization and alternate visualization.
We have used it in an advanced PDC course as project where



Fig. 2. The TSGL display when using 8 threads

students explore both OpenMP and OpenACC multicore and
GPU solutions. We have also successfully ported the code to
C++ and replaced the original X visualization with visualiza-
tion using the thread-safe graphics library (TSGL) [11]. This
enables students to see what threads are computing the next
heading of each boid by coloring the arrows based on thread
number (see Figure 2).

We supply 3 code versions on our GitHub repository
(https://github.com/csinparallel/PDCAssignments/tree/main/
Boids) [12]:

1) An updated version of the C code from Flake with
X display, modernized to remove global variables and
avoid compiler warnings. This is ready to apply OpenMP
with a Makefile that includes the necessary flags for
compiling it for OpenMP. It already has arguments for
setting the number threads and timing the code built in.

2) A sequential version similar to 1, but with a Makefile
for building a GPU version using OpenACC.

3) A new C++ implementation that uses TSGL libraries
for the display. In this version, intended for advanced
students, we have a single Makefile and some hints
for how to use it to create 3 executables: an OpenMP
version, an OpenACC version for multicore, and an
OpenACC version for the GPU.

We suggest the following ways that these could be used with
assignment documents that we supply:

• Start with 1 and use an assignment we have written as a
guide for use in a sophomore-level course.

• Start with 2 and use it as a long assignment or project
in a PDC course that introduces OpenACC. We have an
example assignment for this.

• Start with 3 and use it in various contexts, adding
scaffolding as you see fit in less advanced courses.

In any case, the primary positive aspect of these assignments
is that the visualization is not only fun for students, it enables
them to determine if their solution appears to be working
and to visualize the speedup as they use more threads. When
they want to time their working solution, they can choose to
eliminate the display with a command line argument.

B. Concepts Covered

The primary concept of this assignment is applying paral-
lelization to for loops in a somewhat complex program. At its
core, the updates at each time step for each boid fit naturally
into parallel techniques because the computations of a new
headings (position and velocity) are independent.

The challenge for students is to study the code and to
determine where the parallelization should take place, because
the code contains multiple nested loops. This is a skill that
the assignment enables the students to practice. Within those
loops, students need to determine whether there are any
dependencies on any of the variables. This can take some
effort, because there are quite a few variables in the code
that computes the new headings. Once they study the code,
however, students will find there are no dependencies as
long as they ensure that each thread uses private and shared
variables appropriately.

C. Using the assignment

Author Shoop has used this assignment in a PDC course
in a liberal arts college for several years. After first using the
original Flake code, she realized that it had some problems,
mainly through its extensive use of global variables. So she
created a new version that eliminated this and made minor
fixes to avoid compiler buffer overflow warnings in the X
display code. This version was the basis for several successful
student projects that emphasize not only the parallelization
improvements, but also study the scalability of the program
by conducting experiments and measuring its strong and weak
scalability under various conditions. Students read the original
paper [9] and the chapter in [10] for inspiration.

Though she hasn’t used the OpenMP/X version in a sopho-
more level course yet, she has observed that students easily
understand where to place the pragmas with just a bit of
guidance and discussion before using it. With the assignment
we provide, it should be possible to use it at this level.

The TSGL version of the code was recently completed by
author Scheelk as part of a project for the PDC course. He
completely re-wrote the code for C++, which is needed to
incorporate the TSGL library for visualization. His work has
thus created a new version that Shoop intends to use going
forward when offering this course. It is flexible enough to
have students try three versions: OpenMP or OpenACC with
either multicore or GPU. We supply an assignment for this
purpose.

To add more difficulty, an addition is to suggest to students
that parallel random number generation could be added when
updating the headings. Flake had this feature in the code, but
we have commented it out to remove that complexity.



Prerequisites: Students need to have studied simple exam-
ples of OpenMP pragmas, especially the for-loop pattern. They
also need to be able to read C code and use Makefiles.

Technical considerations: We have instructor notes on our
GitHub site for the following: 1) Students will need the ability
to display X remotely if you use a server. 2) Installing TSGL
under WSL or Linux is needed, but feasible. 3) For OpenACC,
installing NVDIA HPC SDK is necessary.

REFERENCES

[1] H. M. Bücker, J. Corrado, D. Fedorin, D. Garcı́a-Álvarez, A. Gonzalez-
Escribano, J. Li, M. Pantoja, E. Pautsch, M. Plesske, M. Ponce et al.,
“Peachy parallel assignments (EduHPC 2023),” in Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023, pp. 366–373.

[2] A. Lazar, V. Niculescu, and D. Bunde, “Peachy parallel assignments
(EduPar 2023),” in Proc. 12th NSF/TCPP workshop on parallel and
distributed computing education (EduPar), 2023.

[3] R. Carratalá-Sáez, A. Gonzalez-Escribano, A.-S. Iliopoulos, C. Leiser-
son, C. Park, I. Rosa, T. Schardl, Y. Torres, and D. Bunde, “Peachy
parallel assignments (EduHPC 2022),” in Proc. Workshop on Education
for High-Performance Computing (EduHPC), 2022.

[4] P. Leite, J. M. Teixeira, T. Farias, B. Reis, V. Teichrieb, and J. Kelner,
“Nearest neighbor searches on the GPU: A massively parallel approach
for dynamic point clouds,” International Journal of Parallel Program-
ming, vol. 40, pp. 313–330, 2012.

[5] T. Hricik, D. Bader, and O. Green, “Using RAPIDS AI to accelerate
graph data science workflows,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2020, pp. 1–4.

[6] H. Ootomo, A. Naruse, C. Nolet, R. Wang, T. Feher, and Y. Wang,
“Cagra: Highly parallel graph construction and approximate nearest
neighbor search for GPUs,” arXiv preprint arXiv:2308.15136, 2023.

[7] Ohio Supercomputer Center, “Ohio supercomputer center,” 1987.
[Online]. Available: http://osc.edu/ark:/19495/f5s1ph73

[8] S. K. Prasad, A. Chtchelkanova, S. Das, F. Dehne, M. Gouda, A. Gupta,
J. Jaja, K. Kant, A. La Salle, R. LeBlanc, M. Lumsdaine, D. Padua,
M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B. Shirazi,
A. Sussman, C. Weems, and J. Wu, “NSF/IEEE-TCPP curriculum
initiative on parallel and distributed computing: core topics for under-
graduates,” in Proceedings of the 42nd ACM technical symposium on
Computer science education, ser. SIGCSE ’11. New York, NY, USA:
Association for Computing Machinery, Mar. 2011, pp. 617–618.

[9] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25–34.

[10] G. W. Flake, The computational beauty of nature: Computer explorations
of fractals, chaos, complex systems, and adaptation. MIT press, 2000.

[11] J. C. Adams, P. A. Crain, C. P. Dilley, C. D. Hazlett, E. R. Koning, S. M.
Nelesen, J. B. Unger, and M. B. V. Stel, “TSGL: A tool for visualizing
multithreaded behavior,” Journal of Parallel and Distributed Computing,
vol. 118, pp. 233–246, 2018.

[12] “CSinParallel Project Assignments Repository,” https://github.com/
csinparallel/PDCAssignments/tree/main/Boids, accessed: 01-24-2024.


