Peachy Parallel Assignments (EduPar 2025)

H. Martin Biicker
Institute for Computer Science
Friedrich Schiller University Jena
Jena, Germany
ORCID: 0000-0002-5210-0789

Xiaoyuan Suo
Dept. of Computer and Information Sciences
Webster University
St. Louis, MO, USA
ORCID: 0000-0003-2473-0705

Abstract—Peachy Parallel Assignments are assignments on
parallel computing topics that have been tested in a classroom,
are designed for easy adoption by others, and are “cool and
inspirational” for students. They are published so that others can
benefit from the authors’ assignment-creation work, raising the
overall quality of assignments given in our area while also saving
instructors time. The assignments are selected competitively
at the Edu* workshops. This article presents two assignments
selected for presentation at EduPar 2025: one that has students
use the MapReduce framework to resize images using the 2D
discrete Fourier transform and one that has them parallelize an
agent-based model to simulate a zombie outbreak.

Index Terms—Peachy Parallel Assignments, Parallel comput-
ing education, Parallel programming, MapReduce, Big Data,
Discrete Fourier transform, Parallel simulation

I. INTRODUCTION

Assignments are an important part of any course. High-
quality assignments solidify and reinforce lessons that stu-
dents learn in class. Ideally, assignments also excite students
about the material and give them a sense of accomplishment,
encouraging them to dive deeply into the material and then
continue pursing the subject. Excited students also provide
positive word-of-mouth advertising for the field, potentially
attracting others to join them.

Unfortunately, creating such assignments requires time, cre-
ativity, and hard work. There is also risk to creating a new
assignment because sometimes there are unforeseen problems
such as required student background or a brittle environment
that cause assignments to be less successful than anticipated.

Peachy Parallel assignments are an effort to share suc-
cessful, high-quality assignments on Parallel and Distributed
Computing (PDC) topics. The goal is to improve the quality
of assignments in this area, recognize the instructors who
do the important work of creating such assignments, and

The Ara cluster at Friedrich Schiller University Jena is supported by DFG
grants INST 275/334-1 FUGG and INST 275/363-1 FUGG. The work on the
first assignment is partly funded by the German Federal Ministry of Education
and Research (BMBF), within project THInKI, project number 16DHBKI084.

Johannes Schoder
Institute for Computer Science
Friedrich Schiller University Jena
Jena, Germany
ORCID: 0000-0002-0771-3738

David P. Bunde
Dept. of Computer Science
Knox College
Galesburg, IL, USA
ORCID: 0000-0001-6334-356X

simultaneously reduce the workload and risk for instructors
who adopt the assignments.

With these goals in mind, Peachy Parallel Assignments
are solicited from the community, selected competitively,
presented at the Edu* (EduPar and EduHPC) workshops
(e.g. [2[I, [6], [7]), and archived online for others to use
(https://tcpp.cs.gsu.edu/curriculum/?q=peachy). The selection
criteria are as follows:

o Tested: All assignments have been tested with real stu-
dents, helping to identify any issues and reducing risk for
adopters.

o Adoptable: All assignments come with materials to fa-
cilitate adoption by others. More broadly, we seek as-
signments that will be useful to many others, covering
common topics, relying on widely-used technologies, etc.

e Cool and inspirational: Assignments must motivate stu-
dents by impressing them with the material’s importance
or teaching it an an attractive way.

This paper gives two Peachy Parallel Assignments which
were selected for presentation at EduPar 2025. The first
assignment has students use the MapReduce framework [5]]
to compute a 2D discrete Fourier transform, with image
resizing as an application. The second assignment has students
complete and then parallelize a simple agent-based simulation
of a zombie outbreak as a visual introduction to the impact of
parallel computing.

II. MAPREDUCE FOR DFT AND IMAGE RESIZING

The widely-known MapReduce programming model is an
integral part of processing massive datasets. It demands a
high capability of abstraction to adapt existing algorithms to
this specific programming paradigm. In our first assignment,
students are asked to develop a MapReduce version of the row-
column algorithm to compute the two-dimensional discrete
Fourier transform. The most remarkable outcome of this
assignment is that, by using MapReduce, an explicit matrix
transpose operation can be encapsulated in MapReduce’s
group-by-keys phase.


https://tcpp.cs.gsu.edu/curriculum/?q=peachy

MapReduce 2D-DFT

ii) Fourier Transform (96 x 96)

%
e *

1) Input Image (96 x 96)

MapReduce Inverse 2D-DFT

. EIII.

iii) Low-Pass Filtered (30 x 30)

iv) Output Image (30 x 30)

(a) The full pipeline for scaling down images by removing high frequencies and performing an inverse discrete Fourier transform.

Input Map Group-By-Keys Reduce Output
Unsorted Values
Input 1 Mapper 1 . " [Reducer 1 Output 1
| Lt [ tall f \ LIt s tmall] |
‘ Tii.. Tin DFT(@11. . @1n) =11 t1n | b tutma }—»{ DFT(t1,1 - 1) = Y11 - Yot ‘ YL Yma ‘
o) I
: = I : : :
Input m : Mapper m 3 Reducer n - 5 Output n -
— — LI tmall v st n]) - & I [[L tan] - [ bl | - -
[ (@mi @mn DUPL G o) = o] [ tin.tmn o{DFT(n o bmn) =prn o -ymn o] YinYmn |
DFT on Rows u Sort by Row Index DFT on Former Columns
N R

(b) The various phases of the 2D-DFT in MapReduce with the transpose operation implicitly encapsulated in the group-by-keys phase.
Fig. 1: The assignment’s application for image size reduction in Fig. |lal and the MapReduce job for the 2D-DFT in Fig.

The assignment is part of a course at Friedrich Schiller
University Jena targeting master’s students with a diverse
background in various STEM disciplines. The course concen-
trates on big data processing. A previous publication already
describes a selection of further assignments of this course [[10].

The new assignment is built around the two-dimensional
discrete Fourier transform (2D-DFT) [[14]. Its main goal is to
encourage students to design a MapReduce algorithm from a
given serial algorithm. This conceptual task requires them to
raise the level of abstraction at which they view and design
algorithms serially.

In addition to a clear understanding of MapReduce, a pre-
requisite for this assignment is a basic knowledge of Apache
Hadoop. The students are encouraged to solve the assignment
with Python using Hadoop Streaming. While we are using
the DFT as an example for designing MapReduce algorithms,
the assignment itself is not intended to teach any principles
of digital signal processing. Thus, the students are allowed
to use Python libraries, making available the one-dimensional
discrete Fourier transform (1D-DFT) upon which the given
2D-DFT algorithm is built. As the assignment is meant to
provide a more intricate example of designing algorithms in
MapReduce, its key objective is to establish the development
of the mappers and reducers rather than benchmarking the
performance on massive datasets.

The assignment comprises a short introduction to a simple
yet powerful 2D-DFT algorithm, two programming tasks,
and a discussion of an application. This application not only

computes the DFT in the forward direction, but also executes
the inverse DFT to demonstrate resizing of images as sketched
in Fig. [Ta] This more complex application is used as an
illustrating example whose implementation is presented to the
students. Students are required to implement the two program-
ming tasks on the Ara system, the university’s central compute
cluster. The complete assignment, including its solution, is
available in a public git repository [11].

A. Assignment’s Structure

A brief introduction first addresses the fundamentals of
the discrete Fourier transform. It takes approximately 30
minutes, depending on the background of the participants.
It is mainly based upon small code examples included in a
Jupyter notebook. The 2D-DFT transforms a discrete signal
from the time to the frequency domain. For an arbitrary matrix
A € R™*" the symbol a; represents its ith row and the
notation a; ; denotes its element in row ¢ and column j. Let
DFT(a;) denote a ID-DFT of a matrix row that is stored
contiguously in memory (row-major order of A). Then, the
first programming task of the assignment is to implement
the serial row-column algorithm for the 2D-DFT by multiple
1D-DFTs first along all rows and then along all columns of a
matrix X as described in Algorithm [I]

This algorithm takes into account the memory layout of ma-
trices. It first accesses X in a row-oriented fashion computing
the 1D-DFTs for all rows of X resulting in an intermediate
matrix 7. Since the code DFT(:) assumes that its input is
stored contiguously in memory, a transpose operation on T’



Data: X ¢ R™*"
Result: Y € R™**™
for i + 0 to m do
L t; < DFT(x;) /= 1D-DFT (row ¢ of X) =/

T < Transpose(1') /+ explicit transpose x/
for ; < 0 to n do

L yi < DFT(t;)/ 1D-DFT (row i of T) */
Algorithm 1: Row-column algorithm for the 2D-DFT

is needed. This operation results in excessive amounts of
memory transfer, as almost all elements of the matrix have to
be relocated in memory. After the transposition, the 1D-DFT
is computed for each row of the transposed matrix resulting
in the output Y of the 2D-DFT. Notice that, for the sake of
simplicity, we omit a second transpose operation on Y and
tolerate that the output Y € R™*™ is transposed compared to
the input matrix X € R™*".

The second programming task is to design a MapReduce
algorithm following the row-column approach. This algo-
rithm is summarized in Fig. Throughout the map phase,
each mapper 7 receives the row x; of the input matrix and
computes the 1D-DFT of that row stored in the vector t;.
Each element ¢; ; of this vector is then emitted in a key-
value pair. More precisely, the key-value pairs (7, (¢,%;;))
for j = 1,2,...,n are generated, whose key is the column
index j and whose value is the tuple (i,¢; ;) consisting of
the row index 7 and the element ¢; ;. These tuples are then
grouped by their column indices j before being passed to the
reducers. The task at a reducer j is to sort the elements ¢; ;
by their row indices, as it cannot be guaranteed that they are
passed to the reducer in their original order. These resulting
ordered vectors now contain the former columns of the matrix,
and the 1D-DFT of these ordered vectors is computed, taking
advantage of the memory layout. The exploitation of data
locality is managed and handled by the Python library NumPy
and its DFT routines. The combination of the group-by-
keys phase and the sorting in the reduce phase resembles
the explicit transpose operation from Algorithm [I] However,
in MapReduce, this operation is given implicitly. Following
up on the programming tasks, this implicit transformation is
discussed with the students. Lastly, as shown in Fig. in
addition to the 2D-DFT, a second MapReduce step performing
an inverse 2D-DFT can be added. This results in a basic
image resizing algorithm. The code is included in the Jupyter
notebook and given to and discussed with the students.

B. Experiences and Outlook

To evaluate this assignment, there was a small, optional,
anonymous survey handed out to the students. Unfortunately,
only four (out of thirteen) students completed the survey,
leaving us with no statistically significant feedback. The
responses indicate that the assignment seemed to be of rea-
sonable difficulty. For students not familiar with the DFT, its
introduction fell a bit short. However the assignment appeared
to be generally well received.

A strength of the assignment is to illustrate the high
expressivity of the MapReduce programming model. For the
DFT, it allows one to implicitly execute a matrix transpose
operation that otherwise needs to be specified explicitly. In
future instances of the course, we plan to emphasize this aspect
even more, as it constitutes the main learning goal of this
Peachy Assignment.

III. SIMULATING A ZOMBIE OUTBREAK

For our second assignment, we present a novel approach to
teaching Parallel and Distributed Computing (PDC) concepts
through an interactive, grid-based simulation of a zombie out-
break. The simulation uses agent-based modeling to simulate
the spread of a zombie infection across a population, using
parallel computing techniques to speed up the computation.
By visualizing the effects of parallelism, students can observe
the performance benefit from PDC, making abstract concepts
more tangible and engaging.

PDC offers powerful tools for solving complex problems,
but it can be difficult for students to grasp the real-world
implications of parallelism [9], [13]. Interactive simulations
provide an effective way to illustrate these concepts in an
engaging and relatable way []1], [4].

This paper presents a zombie outbreak simulation that
models infection spread using agent-based modeling on a
2D grid. The underlying concept draws inspiration from the
work of Munz et al. [8], who used mathematical modeling
to study the dynamics of zombie outbreaks. This assignment
builds on their work, implementing a simple simulation using
C++ 2D arrays to demonstrate how parallelism can accelerate
computations in the context of agent-based modeling.

A. Methodology

The assignment was created for a CS2 course where stu-
dents have a background in C++ programming. The goal of
this assignment is to demonstrate the performance improve-
ment achieved through multi-threaded programming in 2D
array processing. We began by presenting an animation written
in JavaScript to illustrate the zombie outbreak simulation
(Fig. 2). The animation was designed with a slower speed,
allowing users to visually observe the effects of parallelism
and how the infection spreads over time. A slider feature
enables users to adjust the number of threads. The animation
is available in a GitHub repository [12]]. In the 2D grid rep-
resentation shown in Fig. 2] humans are initially represented
by blue cells, while zombies are in red. As the simulation
progresses, zombies infect neighboring humans, turning their
cells red, with the infection spreading based on proximity.

Following this demonstration, we explained how the simula-
tion works and introduced students to the core implementation
details. Students are required to implement the simulation
using C++ and representing the grid as a 2D array. To apply
parallel computing, they must use OpenMP, a widely-adopted
framework for parallel programming in C++ [3].



Zombie Outbreak Simulation

Threads: 3 ==@

Start Simulation

Fig. 2: Simulation Screenshot

Assignment: Zombie Outbreak Simulation (Grid-Based)

Objective:

This assignment will help you apply key concepts from parallel programming, specifically
OpenMP, and reinforce your understanding of arrays, loops, and basic simulation logic. You will
implement a grid-based simulation of a zombie outbreak using C++. For the detailed process,
please review notes or look at my animation on GitHub

Tasks:

1. Complete the Template
The provided template (located in the "Week 5" folder on World Classroom) contains
parts of the code that need to be completed. Fill in the missing sections to make the
simulation functional.

. Zombie Spread Logic
Check that the simulation correctly spreads the zombie infection to neighboring humans
at each step. Zombies should infect humans in all vhlid neighboring grid cells (up, down,
left, right). You can also add a “idle” time.

. Simulation Termination
The simulation should terminate once all humans are infected. Implement the logic to
stop the simulation when this condition is met.

©

w

Submission Instructions:

Submit your completed C++ template file through World Classroom.

Include a brief explanation (1 paragraph, docx/pdf) of your approach, including how you
used OpenMP for and any chall you

I will pick some students to present their programs in class next Friday. Be prepared to

explain your work and answer questions.

Grading Criteria (Total: 100 points):

Category Points

Template Completion 30

Description

All missing parts of the template must be correctly filled in.

Zombie Spread Logie 25 The simulation must corectly simulate zombie spread,
ensuring that all valid neighboring cells are infected each step.

The simulation must stop correctly once all humans are

Termination Condition 20 5
infecter

Fig. 3: Assignment details

1) Assignment Implementation Details: Students receive a
C++ template with missing sections to complete. Key compo-
nents include:

o A 2D array tracking infection status (human or zombie).

o OpenMP-based parallel computation to accelerate infec-

tion spread.

¢ An interactive user input that adjusts the number of

threads used for parallel processing, affecting the speed
of the infection spread.

2) Results: Students’ submissions were tested with vari-
ous configurations of threads, and the effects of parallelism
was clearly observable. Students recorded the computational
efficiency gained by utilizing multiple threads, reinforcing the

et evvme v o e

}
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}

// Function to spread the zombie infection
=lvoid spreadzZombie() {
std::vector<std::pair<int, int>> newZombies;

E for (int i = @; i < gridSize; i++) {
= for (int j = @; j < gridSize; j++) {
= if (grid[i][j]1 =="") { //
int neighbors[4][2] = //
= for (auto& n : neighbors) {
int x = n[@], y = n[1];
= if (x >= @ & & x < gridSize && y >= 0 & y < gridSize && grid[x][y] == "' ") {
1/ (What should happen to infect a human?)

(The character represents a zombie)
(the 4 neighbors)

%

}

= for (auto& z :
e 1/
}

newZombies) {
(What character should a newly infected human turn into?)

}

=//implement a main below:
// how do you spead up the process using Parallel algorithms?

Fig. 4: Screenshot of the program template provided to stu-
dents

idea that parallelism can drastically reduce the time required
for large-scale simulations. A sample output can be seen in

Fig. ]

Microsoft Visual Studio Debur X +

z
7
i
Z
Z
z
Z
z
z
Z
z
Z
Z
Z
2
Z
z
z
yA
Z

7 iZ 7 2
humans have been infected!
Elapsed time: 2032 milliseconds

Fig. 5: Screenshot of students’ output

3) Students Feedback: The use of animation to demonstrate
PDC in a fun and relatable context, such as a zombie outbreak,
proved to be an effective pedagogical tool. Several observa-
tions were made during the simulation:

o Parallelism: Students learn performance improvements
through visual feedback as they increased thread counts.
"The simulation made parallel computing clearer—I
could see the impact of multiple threads in real-time.”

o Engagement: The game-like animation captured students’
interest, making HPC concepts more accessible. "I en-
Jjoyed experimenting with different thread counts to see
how the infection spread. It made learning more fun.”

o Interactive Learning: Allowing students to adjust pa-
rameters and observe changes in real-time fostered a
more active learning environment, where students could
experiment and learn from their observations.



Despite the success of the simulation, some challenges were
encountered. For example, some students struggled with the
implementation details of OpenMP and parallelism. ”More
detailed programming-based instructions would be helpful.”
”Spent over 10 hours on the implementation.”

B. Future Work

Future work may involve expanding the simulation to in-
corporate additional features, such as more complex infection
dynamics or additional parallelism techniques. Additionally,
providing students with more detailed resources on parallel
programming could help them better understand the underly-
ing mechanisms of the simulation.

REFERENCES

[1]1 C. Bourke and J. Firestone, “Codeless PDC modules for early comput-
ing curriculum,” in Proc. IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2024.

[2] H. Biicker, J. Corrado, D. Fedorin, D. Garcia-Alvarez, A. Gonzalez-
Escribano, J. Li, M. Pantoja, E. Pautsch, M. Plesske, M. Ponce, S. Rizzi,
E. Saule, J. Schoder, G. Thiruvathukal, R. van Zon, W. Weber, and
D. Bunde, “Peachy parallel assignment (EduHPC 2023),” in Proc.
Workshop on Education for High-Performance Computing (EduHPC),
2023.

[3] R. Chandra, Parallel Programming in OpenMP. Academic Press, 2001.

[4] B. Chaudhury, A. Varma, Y. Keswani, Y. Bhatnagar, and S. Parikh,
“Let’s HPC: A web-based platform to aid parallel, distributed and
high performance computing education,” J. Parallel and Distributed
Computing, vol. 118, pp. 213-232, 2018.

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008. [Online]. Available: https://doi.org/10.1145/1327452.1327492
A. Lazar, V. Niculescu, and D. Bunde, “Peachy parallel assignments
(EduPar 2023),” in Proc. 13th NSF/TCPP workshop on parallel and
distributed computing education (EduPar), 2023.

A. Lazar, E. Scheelk, E. Shoop, and D. Bunde, “Peachy parallel
assignments (EduPar 2024),” in Proc. 14th NSF/TCPP workshop on
parallel and distributed computing education (EduPar), 2024.

P. Munz and et al., “When zombies attack!: mathematical modelling of
an outbreak of zombie infection,” Infectious disease modelling research
progress, vol. 4, pp. 133-150, 2009.

D. E. Post, R. P. Kendall, and R. F. Lucas, “The opportunities,
challenges, and risks of high performance computing in computational
science and engineering,” Advances in Computers, vol. 66, pp. 239-301,
2006.

J. Schoder and H. M. Biicker, “Exploring data science workflows: A
practice-oriented approach to teaching processing of massive datasets,”
Journal of Parallel and Distributed Computing, p. 105043, 2025.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2025.105043

——, “2D Fourier Transform with MapReduce,” Git Repository,
2024. [Online]. Available: https:/git.uni-jena.de/big_data_assignments/
2D-DFT

X. Suo, ‘“Zombie attack simulation,” GitHack, 2025, available:
https://raw.githack.com/xiaoyuansuo51- webster/teaching- PDC-HPC/
refs/heads/main/ZombieAttach_XSUO.html, Accessed: Feb. 13, 2025.
X. Suo, O. Glebova, D. Liu, A. Lazar, and D. Bein, “A survey of
teaching PDC content in undergraduate curriculum,” in Proc. 2021 IEEE
11th Annual Computing and Communication Workshop and Conference
(CCWC), 2021.

C. Van Loan, Computational Frameworks for the Fast Fourier Trans-

form, ser. Frontiers in Applied Mathematics. Philadelphia: SIAM, 1992,

vol. 10.


https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1016/j.jpdc.2025.105043
https://git.uni-jena.de/big_data_assignments/2D-DFT
https://git.uni-jena.de/big_data_assignments/2D-DFT
https://raw.githack.com/xiaoyuansuo51-webster/teaching-PDC-HPC/refs/heads/main/ZombieAttach_XSUO.html
https://raw.githack.com/xiaoyuansuo51-webster/teaching-PDC-HPC/refs/heads/main/ZombieAttach_XSUO.html

	Introduction
	MapReduce for DFT and Image Resizing
	Assignment's Structure
	Experiences and Outlook

	Simulating a Zombie Outbreak
	Methodology
	Assignment Implementation Details
	Results
	Students Feedback

	Future Work

	References

