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Abstract

Given a distribution of pebbles on the vertices of a graph G, a pebbling move takes

two pebbles from one vertex and puts one on a neighboring vertex. The pebbling number

Π(G) is the least k such that for every distribution of k pebbles and every vertex r, a

pebble can be moved to r. The optimal pebbling number ΠOPT (G) is the least k such

that some distribution of k pebbles permits reaching each vertex.

Using new tools (such as the “Squishing” and “Smoothing” Lemmas), we give short

proofs of prior results on these parameters for paths, cycles, trees, and hypercubes, a

new linear-time algorithm for computing Π(G) on trees, and new results on ΠOPT (G).

If G is connected and has n vertices, then ΠOPT (G) ≤ ⌈2n/3⌉ (sharp for paths and

cycles). Let an,k be the maximum of ΠOPT (G) when G is a connected n-vertex graph

with δ(G) ≥ k. Always 2
⌈

n
k+1

⌉

≤ an,k ≤ 4
⌈

n
k+1

⌉

, with a better lower bound when

k is a nontrivial multiple of 3. Better upper bounds hold for n-vertex graphs with

minimum degree k having large girth; a special case is ΠOPT (G) ≤ 16n/(k2 +17) when

G has girth at least 5 and k ≥ 4. Finally, we compute ΠOPT (G) in special families

such as prisms and Möbius ladders.
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1 Introduction

Graph pebbling is a model for the transmission of consumable resources. Initially, pebbles

are placed on the vertices of a graph G according to a distribution D, a function D : V (G) →

N ∪ {0}. A pebbling move from a vertex v to a neighbor u takes away two pebbles at v and

adds one pebble at u. Before the move, v must have at least two pebbles. A pebbling sequence

is a sequence of pebbling moves.

Given a distribution and a “root” vertex r, the task is to put a pebble on r. A distribution

D is r-solvable (and r is reachable under D) if r has a pebble after some (possibly empty)

pebbling sequence starting from D. For a graph G, let Π (G, r) be the least k such that every

distribution of k pebbles on G is r-solvable. A distribution D is solvable if every vertex is

reachable under D. The pebbling number of a graph G, denoted Π (G), is the least k such that

every distribution of k pebbles on G is solvable; note that Π (G) = maxr∈V (G) Π (G, r). The

optimal pebbling number of G, denoted ΠOPT (G), is the least k such that some distribution

of k pebbles is solvable.

Graph pebbling originated in efforts of Lagarias and Saks to shorten a result in number

theory. Surveys by Hurlbert [7, 8] describe this history, early results, and recent directions.

At an early stage, the following generalization became useful (see Chung [4]). A distribution

D is m-fold r-solvable (and r is m-reachable under D) if r has at least m pebbles after some

(possibly empty) pebbling sequence. A distribution D is m-fold solvable if every vertex is

m-reachable under D.

Moews [11] developed several useful tools for computing pebbling numbers. (An unpub-

lished longer version of [11] appears on his webpage [13].) We call the first of these tools the

Weight Argument, which we express here for m-fold solvability. Given a root r and distri-

bution D, let at be the total number of pebbles on vertices at distance t from r. A pebbling

move cannot increase the sum
∑

t≥0 at2
−t. Therefore, m-fold r-solvability of D requires the

weight inequality
∑

t≥0 at2
−i ≥ m.

Another key tool is that when each pebbling move is represented by a directed edge from

the vertex losing pebbles to the vertex gaining a pebble, no directed cycle is needed. If r is

reachable using moves containing a cycle, then also r is reachable using a proper subset of

these moves. In particular, if a distribution is r-solvable, then r is reachable without moving

a pebble in both directions along any edge.

To make this precise, say that a directed multigraph H is orderable under a distribution

D if some linear ordering σ of the edges of H is a valid list of pebbling moves starting from

D. For such D and H , the balance of a vertex v is d−
H(v) + D(v) − 2d+

H(v), where d−
H(v)
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and d+
H(v) are the indegree and outdegree of v under H . When H is orderable under D (by

σ), the balance of any vertex v is nonnegative, since it is the number of pebbles at v after

applying σ. The No-Cycle Lemma states that if H is orderable under D, then it has an

acyclic subgraph H ′ that is orderable under D and gives balance to each vertex at least as

large as does H . The lemma was proved in [3] and in [11] and has a short proof in [10].

The pebbling number is known exactly for some graphs. Moews [13] observed that a

distribution on a path rooted at its end is solvable if and only if the weight inequality

holds. Thus Π (Pn) = 2n−1 for the n-vertex path Pn, since each pebble contributes weight at

least 2−(n−1) (Chung [4] earlier stated the value of Π (Pn).) The n-vertex cycle Cn is more

complicated; Pachter, Snevily, and Voxman [14] proved that Π (C2k) = 2k and Π (C2k+1) =

2
⌊

2k+1/3
⌋

+1. For the k-dimensional hypercube Qk, Chung [4] proved that Π (Qk) = 2k. For

a tree, Chung [4] showed how to calculate the pebbling number from the set of decompositions

into paths. For general graphs, Milans and Clark [10] showed that recognizing Π (G) ≤ k

is a ΠP
2 -complete problem, meaning that it is complete for the class of languages whose

complements are recognizable in polynomial time by nondeterministic machines.

Study of the optimal pebbling number began with the result of Pachter, Snevily, and

Voxman [14] that ΠOPT (Pn) = ⌈2n/3⌉. Moews [12] proved that (4/3)k ≤ ΠOPT (Qk) ≤

(4/3)k+O(logk) and proved a related result for ΠOPT on cartesian product graphs. Milans and

Clark [10] proved that computing ΠOPT is NP-hard on arbitrary graphs.

In this paper, we present several new results (mostly on optimal pebbling) and new

proofs for some previously-known results. We use lemmas that restrict the form of pebble

distributions that need to be considered. Our methods use a precise version of the following

intuition. For distributions with k pebbles, the hardest ones to make solvable are concen-

trated on one or two vertices, while the easiest ones are spread over many vertices. Thus

to determine Π (G) we consider concentrated distributions (via the “Squishing Lemma”),

while to determine ΠOPT (G) we consider “smooth” distributions. These simplifications are

particularly helpful when studying paths and cycles or graphs that can be reduced to them.

For the pebbling number, we give an alternative proof for its computation on a tree T

from decompositions into paths (Chung [4], Moews [11]), and we give a linear-time algorithm

for computing Π (T ). Also, we give short proofs of the results of Pachter, Snevily, and

Voxman [14] that Π (C2k) = 2k and Π (C2k+1) = 2
⌊

2k+1/3
⌋

+ 1.

For optimal pebbling, the “Smoothing Lemma” implies that for each graph a solvable

distribution of minimum size exists with at most two pebbles on each vertex of degree at

most 2. This leads to a simpler proof of the result of Pachter, Snevily, and Voxman [14]
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that ΠOPT (Pn) = ⌈2n/3⌉ and a proof that ΠOPT (Cn) = ⌈2n/3⌉. Recently, Friedman and

Wyels [6] found a short derivation of ΠOPT (Pn) different from ours, and like us they adapted

it to compute ΠOPT (Cn).

We also show that ΠOPT (T ) ≤ ⌈2n/3⌉ for every n-vertex tree T , which immediately

yields ΠOPT (G) ≤ ⌈2n/3⌉ for every connected n-vertex graph G, and we give a short proof

of the result of Moews [12] that ΠOPT (Qk) ≥ (4/3)k.

Let Gn,k be the family of connected n-vertex graphs with minimum vertex degree at

least k, and let an,k = maxG∈Gn,k
ΠOPT (G). Czygrinow [5] observed that an,k ≤ 4 n

k+1
.

We construct graphs to show that an,k ≥ 2
⌊

n
k+1

⌋

for n > k ≥ 2 and that an,k ≥ (2.4 −
24

15k+5
− 6k

5n
) n

k+1
when n ≥ k + 3 and k is a nontrivial multiple of 3 (that is, k = 3j with

j ≥ 2). These results use another lower-bound technique, the simplest version of which

is that if G is obtained from H by collapsing sets of vertices into single vertices, then

ΠOPT (H) ≥ ΠOPT (G).

We obtain tighter bounds when we further restrict G to have girth (minimum cycle length)

at least 2t + 1. Suppose that k = 3 and t ≥ 4 or that k ≥ 4 and t ≥ 2. Letting ck(t) =

1+ k
∑t

i=1(k− 1)i−1 and c′(t) = (4t − 2t+1) t
t−1

, we prove that ΠOPT (G) ≤ 4tn/(ck(t)+ c′(t))

for G ∈ Gn,k. When k ≥ 4 and G has girth at least 5, this yields ΠOPT (G) ≤ 16n
k2+17

.

We also show that ΠOPT (Cm K2) = ΠOPT (Pm K2) = m when m ≥ 3 (except that

ΠOPT (P5 K2) = 6), where denotes cartesian product (see Section 6). The same bound

holds also for the graph consisting of a 2m-cycle with chords added joining opposite vertices

(the so-called “Möbius ladder”). Except for C3 K2, these graphs all have girth 4.

We discuss the pebbling numbers of trees and cycles in Sections 2 and 3, respectively.

The final three sections treat optimal pebbling number. In addition to the results mentioned

above, we pose the question of whether every connected n-vertex graph with minimum degree

at least 3 has optimal pebbling number at most ⌈n/2⌉.

2 Pebbling Number of Trees

For a tree T , Chung [4] sketched a proof of a formula for Π (T, r) in terms of path decom-

positions, as a special case of a more general result computing the minimum t such that all

distributions of size t are m-fold r-solvable. This inductive proof considers the components

of T − r, rooted at the neighbors of r. Moews [11] presents another proof using various

auxiliary results. In this section, we give a new short proof using only a weight function

argument and then show how to perform the computation in linear time.
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A partition of the edge set of a tree is a path partition if each set in the partition is a

(directed) path when all edges are directed toward a root r. The length list of a path partition

is the list of lengths of its paths, in nonincreasing order. Path partition L majorizes path

partition L′ if the length list of L is larger than that of L′ in the first position where they differ

(distinct lists with equal sum differ in some position where both are nonzero). Majorization

is a linear (lexicographic) order on length lists, but distinct path partitions may have the

same length list. A path partition with root r is r-optimal if it is not majorized by any other

path partition with root r. It is optimal if it is not majorized by any other path partition

with any root. We use leaf to refer to a vertex of degree 1 in any graph.

Theorem 2.1 (Chung [4], Moews [11]). If the length list of an r-optimal path partition of

tree T with root r is (l1, . . . , lm), then

Π (T, r) =

(

m
∑

i=1

2li

)

− m + 1.

Proof. We have noted that r-solvability never requires moving pebbles in both directions

along an edge. Thus in T we may direct all edges toward r and assume that pebbles move

only toward r. Let L be an r-optimal path partition of T , with length list (l1, . . . , lm).

Lower Bound. We construct a non-r-solvable distribution with
∑m

i=1

(

2li − 1
)

pebbles. If

some path in L starts at a nonleaf vertex, then another path ends there, and they combine

to produce a path partition majorizing L. Hence in L each path begins at a leaf. For each

path of length li in L, put 2li − 1 pebbles on the starting leaf. Now no pebble can be the

first pebble to reach the end of the path in L on which it starts, so no pebble can reach r.

Upper Bound. Let M =
∑

i=1(2
li − 1). We show that a distribution D with |D| > M

is r-solvable, using a weight function based on L. Let Pi be the path in L corresponding to

length li. Let ai,t be the number of pebbles D has on Pi at distance t from the end. Let

wi(D) = 2li
∑li

t=1 ai,t2
−t, and let w(D) =

∑m
i=1 wi(D).

We claim that a pebbling move cannot decrease the weight w unless it reaches r. By

definition, a pebble on vertex v contributes weight only to the path containing the edge

leaving v. Hence a move along Pi that does not reach its end does not change the weight.

For a move to vertex v at the end of Pi, where the edge leaving v is in Pj, the weight

decreases by 2 · 2li−1 and increases by 2lj−t, where t is the distance from v to the end of Pj.

If li > lj − t, then Pi can replace the beginning of Pj to produce a path partition majorizing

L, contradicting the r-optimality of L. Hence li ≤ lj − t, and the weight does not decrease.

Since every pebble contributes at least 1 to w(D) and initially |D| > M , the total weight

starts above M . We have shown that it doesn’t decrease unless we move a pebble to r. While
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w > M , the pigeonhole principle yields a path Pi ∈ L such that wi ≥ 2li, which guarantees

two pebbles on some non-terminal vertex of Pi. Hence we can make a move along Pi.

Each move loses a pebble, so the process must terminate. It cannot terminate until the

weight decreases, which happens only when a pebble moves to r, so every sequence of moves

eventually brings a pebble to r.

The theorem easily yields Π (T ). We use V (G) for the vertex set of a graph G.

Corollary 2.2 ([4, 11]). If an optimal path partition of tree T has lengths l1, . . . , lm, then

Π (T ) =

(

m
∑

i=1

2li

)

− m + 1.

Proof. Appending a 0 to a length list does not change the formula on the right, since

20−1 = 0. This and the convexity of exponentiation imply that the formula is maximized by

an optimal path partition, which is r-optimal for some r. Also Π (T ) = maxr∈V (T ) Π (T, r).

Hence the claim follows from Theorem 2.1.

The difficulty in applying Corollary 2.2 is in finding an optimal path partition. Given a

root, a natural idea is to select a longest path greedily and iterate. Although this works, it

disconnects the tree, leaving awkward bookkeeping details. The inductive proof is simpler

if we peel away shorter paths first. A peripheral vertex in a tree is an endpoint of a longest

path. A branch vertex in a tree is a vertex of degree at least 3. An x, y-path in a graph is a

path with endpoints x and y.

Theorem 2.3. There is a linear-time algorithm to compute the pebbling number of trees. In

particular, if r is an endpoint of a longest path in T , then Π (T, r) = Π (T ), and any longest

path to r can be chosen as a path in an r-optimal path partition.

Proof. In a tree, the vertices at greatest distance from a vertex x are endpoints of a longest

path. Hence a single breadth-first search from an arbitrary vertex finds a peripheral vertex

r. Another breadth-first search from r finds a longest path R, ending at another vertex r′.

With R chosen, another breadth-first search computes distances from R. We find an

r-optimal path partition using these distances. The partition will have R as a path, and it

will be both r-optimal and r′-optimal. We view all edges off R as directed toward R.

Suppose that R is not all of T . Iteratively, we select a leaf x closest to R among the

leaves that remain in the tree. Let y be the branch vertex that is closest to x in T ; vertex
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y is well-defined. Since R is a longest path, y cannot be r or r′. Let P be the x, y-path in

T . Put P into the path partition and delete P from the tree, leaving only the endpoint y.

When the remaining tree is just R, it becomes the last path in the partition. (We can pause

the computation of distances from R each time a leaf is found and extract P then.)

We prove, by induction on the number of vertices outside R, that the path P deleted

at each step lies in an r-optimal path partition of the tree remaining at that step. By the

majorization criterion, the path P ′ containing x in an r-optimal path partition L contains

all of P . If P ′ continues past y, then some path Q in L ends at y. Since Q starts at a

leaf, Q is at least as long as P (if Q starts in {r, r′}, this holds because R is a longest path;

otherwise, it holds by the choice of x).

Let Q′ be the union of Q and the part of P ′ after y. Let L′ be the partition obtained from

L by replacing P ′ and Q with P and Q′. Now P and Q′ are shortest and longest, respectively,

among {P, P ′, Q, Q′}. If Q is longer than P , then L′ majorizes L, a contradiction. Otherwise,

L′ and L have the same length list.

Thus, P occurs in some r-optimal path partition L. The rest of L is an r-optimal path

partition of the remaining tree T ′. Distances from R are the same in T ′ as in T . By the

induction hypothesis, the remainder of the algorithm produces an r-optimal path partition

of T ′ that contains R. It combines with P to yield the desired path partition of T .

We show next that the procedure produces the same length list from each peripheral

vertex. When r and r′ are the endpoints of a longest path R, the r-optimal partition produced

is also r′-optimal, since the computation is the same when viewed from r′ (distances from R

are the same). Since lexicographic order is a linear order, all r-optimal path partitions have

the same length list. Therefore, to prove that all peripheral vertices have the same optimal

length list, it suffices to show that we can move from each peripheral vertex to any other via

traversals of longest paths.

Every longest path in a tree contains the center of the tree. If the path joining two

peripheral vertices is not a longest path, then each is an endpoint of a longest path to some

common other peripheral vertex. Hence one can move from one peripheral vertex to any

other by at most two instances of “move to the opposite end of a longest path”.

Since we find an r-optimal path partition containing a longest path, the length list of a

globally optimal path partition must include the longest path length. Hence Π (T ) equals

Π (T, r) for some peripheral vertex r. Since we obtain the same length list from any such

vertex, it suffices to run the algorithm from any longest path R.
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3 Pebbling Number of Cycles

Proving an upper bound on Π (G) requires showing that each of a large number of distribu-

tions is solvable. The following lemma restricts the distributions that need to be considered.

In this paper, a thread in a graph G is a path whose vertices have degree 2 in G.

Lemma 3.1 (Squishing Lemma). Let r be a vertex in a graph G. If p < Π (G, r), then there

is a non-r-solvable distribution of p pebbles on G such that on each thread not containing r,

all pebbles occur on just one vertex or on two adjacent vertices.

Proof. Let P be a thread in G. If a distribution has pebbles on only one vertex of P or

on only two adjacent vertices of P , then we say that P is squished.

Let D be a distribution that is not r-solvable. We transform D into a non-r-solvable

distribution of the same size such that every thread not containing r is squished. A squishing

move takes one pebble each from two vertices y and z on a thread P and adds two pebbles

to some vertex x between them on P . If P is not squished, then we can perform a squishing

move on P . Each squishing move reduces the value of
∑

p 2−b(p), where the sum is over the

set of pebbles on P and b(p) is the distance of pebble p from a fixed end of P . Thus a

sequence of squishing moves must end by squishing P .

Let D′ be obtained from D by a squishing move along a thread P not containing r,

moving pebbles from y and z to x. It suffices to show that if D′ is r-solvable, then D is

r-solvable. Let σ be a pebbling sequence from D′ that reaches r. If σ never moves pebbles

off x, then σ also reaches r from D. Hence we may assume that σ makes a first move from

x to a neighbor, which by symmetry is the neighbor x′ in the direction toward y along P .

By the No-Cycle Lemma, we may assume that σ makes no move from x′ to x. The two

pebbles removed from x to put one pebble on x′ thus produce no more benefit in D′ than the

corresponding one pebble that started on y in D; under D this pebble starts farther than

x′ in the only direction it can go in D′. Also it cannot hurt to have the extra pebble on z.

Thus D also is r-solvable.

The Squishing Lemma provides a short proof for the pebbling number of Cn. We use pile

to refer to the set of pebbles on a vertex.

Theorem 3.2 ([14]). Π (C2k) = 2k and Π (C2k+1) = 2
⌊

2k+1/3
⌋

+ 1.

Proof. By symmetry, it suffices to show for fixed r that Π (Cn, r) has the claimed value.
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Lower Bound. In C2k, a distribution with 2k − 1 pebbles on the one vertex at distance

k from r is not r-solvable. We show that in C2k+1, a distribution with
⌊

2k+1/3
⌋

pebbles on

each of the two vertices at distance k from r is not r-solvable. One pile alone cannot move

distance k to reach r. If we combine them first, moving half of one pile to the other, then

the resulting pile has at most 2k+1−1
3

+ 1
2

2k+1−1
3

pebbles, since 2k+1 is not divisible by 3. The

sum is less than 2k, so again the pile cannot reach r.

Upper Bound. A distribution having 2k pebbles on some path of length k ending at r is

r-solvable, since Π (Pk+1) = 2k. When studying non-r-solvable distributions, the Squishing

Lemma allows us to restrict attention to distributions using only one or two adjacent vertices.

In C2k, every two adjacent vertices lie together in a path of length k ending at r, and hence

all distributions with 2k pebbles are r-solvable.

The same observation holds in C2k+1 except when the two adjacent vertices are the two

vertices s and s′ at distance k from r. In this case, with all pebbles on {s, s′}, we move as

many as possible from the vertex with fewer pebbles to the vertex with more pebbles. With

m pebbles total, the new pile has at least (3m− 2)/4 pebbles. With m ≥ 2
⌊

2k+1/3
⌋

+ 1, we

obtain a pile of size at least
⌈

2k − 3
4

⌉

at distance k from r, which suffices.

4 Optimal Pebbling Number

For optimal pebbling numbers, upper bounds are generally easier than lower bounds. For

an upper bound, we give a distribution and show that it is solvable. For a lower bound, we

must show that every distribution up to a certain size is not solvable.

The Smoothing Lemma plays the role for ΠOPT that the Squishing Lemma plays for Π.

Again we want to restrict the form of distributions studied to determine the value. We want

to make solvability easy, so instead of squishing pebbles on a thread, we spread them out.

When D is a distribution on a graph with a vertex v of degree 2, and v has at least three

pebbles in D, a smoothing move from v changes D by removing two pebbles from v and

adding one pebble at each neighbor of v. The case m = 2 below will be used in Section 5.

Lemma 4.1. Let D be a distribution on a graph G with distinct vertices u and v, where v

has degree 2. If D(v) ≥ 3, and u is m-reachable under D, then u is m-reachable under the

distribution D′ obtained by making a smoothing move from v.

Proof. For any pebbling sequence σ starting from D, we form a sequence σ′ from D′. If σ
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never makes a move from v, then we may set σ′ = σ, since at each step there are at least as

many pebbles at each vertex other than v when starting with D′.

If σ makes a move from v, then let σ′ be the same as σ except that σ′ skips the first such

move. Having made that move, σ on D produces the same configuration as σ′ on D′, except

that σ′ on D′ has an extra free pebble on one neighbor of v. We complete σ′ using the rest

of σ and have the same number of pebbles at each vertex as under σ from D, plus an extra

pebble on one neighbor of v. (Since σ′ mimics σ, we never use that extra pebble.)

A distribution D is smooth if it has at most two pebbles on every vertex of degree 2 (so

no smoothing move is possible). A vertex D is unoccupied under D if D(v) = 0.

Lemma 4.2 (Smoothing Termination Lemma). For any distribution on a connected graph

G other than a cycle, any sequence of smoothing moves eventually terminates in a smooth

distribution. If G = Cn and there is no such termination, then a distribution with no

unoccupied vertices is reached.

Proof. Suppose first that G is not a cycle. Starting from any distribution on G, we show

that only finitely many smoothing moves can be made, using a weight function argument.

Every vertex v of degree 2 lies in a unique maximal thread P . Let Q be the trail obtained

by extending P along the other edge incident to each endpoint of P . If the two new edges

reach the same vertex u, then Q is a cycle and we view u as both “ends”; otherwise Q is a

path. When Q has length m and v has distance k from some end of Q, then each pebble

on v contributes weight k(m − k); it does not matter which end the distance is measured

from. Pebbles on a vertex with degree other than 2 contribute weight 0; this agrees with the

general formula, since in that case k = 0.

A smoothing move from v replaces weight totaling 2k(m − k) at v with weight totaling

(k − 1)(m− k + 1) + (k + 1)(m − k − 1) at its neighbors. The global total declines by 2. It

remains nonnegative, so we must reach a distribution with no move available.

When G is a cycle, we use induction on the number of unoccupied vertices. If D is not

smooth and some vertex u is unoccupied, then we view u as both endpoints of Q as above.

Using the same weight argument, with k measured as distance from u, each smoothing move

reduces the total weight by 2. Thus eventually the distribution becomes smooth or a pebble

moves to u. Since smoothing never uncovers a vertex, moving a pebble to u reduces the

number of unoccupied vertices. By the induction hypothesis, continuing the smoothing pro-

cess produces a distribution that is smooth or leaves no vertex unoccupied.
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We have separated Lemma 4.2 from Lemma 4.3 because it is used again in Lemma 5.6

and Theorem 6.5. We henceforth say that a distribution is optimal if it has ΠOPT (G) vertices

and is solvable; that is, it is a solvable distribution of minimum size.

Lemma 4.3 (Smoothing Lemma). If G is a connected n-vertex graph, with n ≥ 3, then G

has a smooth optimal distribution with all leaves unoccupied.

Proof. An optimal distribution has at most n pebbles. By Lemma 4.2, applying smoothing

produces a smooth optimal distribution, because when G = Cn a distribution with at most

n pebbles that occupies every vertex is smooth.

By Lemma 4.1, a smoothing move from v preserves the reachability of vertices other than

v. Since a smoothing move from v leaves a pebble at v, it remains reachable also. Therefore,

smoothing preserves solvability, and there is a smooth optimal distribution D. To eliminate

pebbles from the leaves of such a distribution, consider the cases below at each leaf v. Let

u be the neighbor of v, and suppose that D(u) = j and D(v) = k ≥ 1.

Case 1: j + k ≥ 3. Modify D by deleting the pebbles on v and adding k − 1 pebbles to

u instead. The resulting distribution D′ is solvable, since D′(u) ≥ 2 makes v reachable and

D′(u) ≥ D(u) + ⌊D(v)/2⌋ makes the other vertices reachable. Now |D′| < |D| contradicts

the optimality of D.

Case 2: j + k = 2. Modify D by putting both pebbles on u. The resulting D′ is smooth.

The two pebbles enable reaching v, and they help other vertices as much as in D.

Case 3: (j, k) = (0, 1). Move the one pebble to u; again D′ is smooth. Because D is

u-solvable and cannot use the pebble on v to reach u, we can now move another pebble to

u and use the two of them to reach v.

The Smoothing Lemma yields a short proof that ΠOPT (Pn) = ⌈2n/3⌉ (Pachter, Snevily,

and Voxman [14]), and it yields the same value also for cycles. Another short proof was

found by Friedman and Wyels [6]. We separate an observation useful in Section 6.

Lemma 4.4. In a path with a smooth distribution D having at most two pebbles on each

endpoint, let v be an unoccupied vertex. If v is an endpoint, then v is not 2-reachable under

D. If v is an internal vertex, then no pebbling sequence can move a pebble out of v without

using an edge in both directions.

Proof. The first claim follows from the case m = 2 of the Weight Argument, since each

vertex has at most two pebbles. For the second, moving a pebble off v without first moving

a pebble in from each neighbor would contradict the first claim on a smaller path.
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Theorem 4.5. ΠOPT (Cn) = ΠOPT (Pn) = ⌈2n/3⌉.

Proof. Let G be Cn or Pn.

Upper Bound. Partition G into ⌊n/3⌋ copies of P3 and possibly one or two leftover

vertices. Put two pebbles on the central vertex of each P3 and one pebble on each of the

leftover vertices (if any exist). This distribution is solvable and has size ⌈2n/3⌉.

Lower Bound. We use induction on n, checking n ≤ 5 exhaustively. By Lemma 4.3, it

suffices to consider a smooth solvable distribution D with no pebbles on leaves.

By the No-Cycle Lemma, we may assume that the directed edges representing moves in

a pebbling sequence to reach a target vertex form edge-disjoint paths, and no edge is used

in both directions. Since D is smooth and has no pebbles on leaves, Lemma 4.4 implies that

each such path has no unoccupied internal vertex.

Since ΠOPT (G) ≤ ⌈2n/3⌉ and n ≥ 6, at least two vertices of G are unoccupied. In fact,

there are at least three, since otherwise n ∈ {6, 7, 8}, no vertex has two pebbles, and D is

not solvable. From three unoccupied vertices, we can choose an unoccupied internal vertex

in Pn or nonadjacent unoccupied vertices in Cn; let S be this chosen set.

Since pebbles cannot be sent across an unoccupied vertex, S splits G into two paths,

each of which cannot contribute pebbles to help pebble a vertex on the other path. Since

the distribution is solvable, each vertex of S can be pebbled; we treat each vertex of S as

part of the path that pebbles it, choosing one such path if both can pebble it.

We now have paths of order l and n − l with 1 ≤ l ≤ n − 1, and D breaks into solvable

distributions for these two paths. By the induction hypothesis, the number of pebbles in D

is at least ⌈2l/3⌉ + ⌈2(n − l)/3⌉, which is at least ⌈2n/3⌉.

Next we show that the path is a hardest tree for optimal pebbling number. It is far from

unique; there are many n-vertex trees with optimal pebbling number ⌈2n/3⌉. We write d(v)

for the degree of a vertex v, and N(v) for the set of vertices adjacent to v.

Theorem 4.6. If T is an n-vertex tree, then ΠOPT (T ) ≤ ⌈2n/3⌉.

Proof. We use induction on n. For n ≤ 3, all trees are paths, which satisfy the bound. In

the induction step (n > 3), we delete three or more vertices near an end of a longest path

in T to obtain a subtree T ′. It suffices to add two pebbles to an optimal distribution D′ on

T ′ to form a solvable distribution D on T . When we add pebbles to D′, all vertices in T ′

remain reachable, so we need only show that the new vertices can be reached.

Let P be a longest path in T . Let z be an endpoint of P , let y be its neighbor, and let

x be the other neighbor of y on P . We consider four cases.
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Case 1: d(y) > 2. Since P is a longest path, all neighbors of y other than x are leaves.

Let T ′ = T − y − (N(y) − {x}). Form D from D′ by adding two pebbles on y; these make

leaf neighbors of y reachable.

Case 2: d(x) = d(y) = 2. Let T ′ = T −{x, y, z}. Form D from D′ by adding two pebbles

on y; these make x and z reachable.

Case 3: d(y) = 2 and x has a leaf neighbor u. Let T ′ = T − {u, y, z}. Form D from D′

by adding two pebbles on y. Now y and z are reachable. Also u is reachable by moving a

pebble to x using D′ on T ′ and then moving a second pebble to x from y.

Case 4: d(y) = 2, d(x) > 2, and x has no leaf neighbors. Let u be a neighbor of x

outside P . Since P is a longest path, every neighbor of u other than x is a leaf. Let v be a

leaf neighbor of u, and let T ′ = T − {v, y, z}. If x is 2-reachable under D′, then form D by

adding two pebbles on x, making v, y, and z reachable under D. If u is 2-reachable under

D′, then v is reachable; form D by adding two pebbles on y. If neither x nor u is 2-reachable

under D′, then no pebbling sequence starting with D′ uses the edge xu in either direction.

Hence from D′ we can reach x and u simultaneously. Now form D by adding two pebbles

on y, making v, y, and z reachable after moving pebbles to both x and u using D′.

Corollary 4.7. If G is a connected n-vertex graph, then ΠOPT (G) ≤ ⌈2n/3⌉, which is sharp.

Proof. Since G is connected, it has a spanning tree T , and T ⊆ G yields ΠOPT (G) ≤

ΠOPT (T ). Applying Theorem 4.6 to T gives the bound, with equality for Pn.

Finally, we give a short proof that ΠOPT (Qk) ≥ (4/3)k. The proof by Moews [12] used a

continuous relaxation of pebbling, but the standard weight function and expectation suffice.

Theorem 4.8 (Moews [12]). ΠOPT (Qk) ≥ (4/3)k, where Qk is the k-dimensional hypercube.

Proof. Let D be a solvable distribution on Qk; we show that |D| ≥ (4/3)k. Since D is

solvable, the standard weight inequality
∑

t≥0 ar,t2
−t ≥ 1 holds for each vertex r, where ar,t

is the number of pebbles at distance t from r in D.

Select a vertex r in Qk uniformly at random. Since the weight inequality holds for each r,

linearity of expectation yields
∑

t≥0 2−tE [ar,t] ≥ 1. For a fixed pebble under D, the proba-

bility it is distance t from r is
(

k
t

)

2−k, since Qk has 2k vertices and
(

k
t

)

of them have distance

t from this pebble. By linearity of expectation, E [ar,t] = |D|
(

k
t

)

2−k. Substituting and sim-

plifying now yields |D|
∑

t≥0

(

k
t

)

2−t ≥ 2k. ¿From the Binomial Theorem, |D|(1 + 1
2
)k ≥ 2k,

and hence |D| ≥ (4/3)k.
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A variation on pebbling is the cover pebbling number: the minimum t such that for every

distribution of size t on G, some sequence of pebbling moves produces a distribution with

no unoccupied vertex. Hurlbert and Munyan [9] recently proved that the cover pebbling

number of the hypercube Qk is 3k.

5 Bounds in Terms of Minimum Degree

We have proved that ΠOPT (G) ≤ ⌈2n/3⌉ for every connected n-vertex graph G, with equality

for paths and cycles. One would expect that tighter upper bounds hold for denser graphs.

How large can ΠOPT (G) be when G ∈ Gn,k (n vertices and minimum degree at least k)?

A dominating set in a graph G is a set S ⊆ V (G) such that every vertex not in S has

a neighbor in S. The domination number γ(G) is the minimum size of a dominating set.

Placing two pebbles at each vertex of a dominating set yields ΠOPT (G) ≤ 2γ(G). Thus

upper bounds on γ(G) yield upper bounds on ΠOPT (G).

For G ∈ Gn,k, Arnautov [2] and Payan [15] proved that γ(G) ≤ n1+ln(k+1)
k+1

; a short

probabilistic proof appears in Alon [1]. In a k-regular n-vertex graph, dominating sets have

size at least n
k+1

. For k-regular graphs, where k is fixed and the number n of vertices grows,

Alon [1] showed that γ(G) may be as large as (1+o(1))n1+ln(k+1)
k

. Hence we cannot improve

the bound using domination number alone.

Czygrinow [5] communicated to us an easy argument for a better upper bound when

k ≥ 3; we begin by presenting this. The distance-d neighborhood of a vertex v in a graph G

is the set of all vertices having distance at most d from v. A distance-d dominating set is a

set of vertices whose distance-d neighborhoods together cover V (G). The case d = 1 of the

following proposition is folklore in some circles but seems to be unknown in the subject of

graph domination. We will use the general result in Section 6.

Proposition 5.1. If c is the minimum size of a distance-d neighborhood in an n-vertex graph

G, then G has a distance-2d dominating set of size at most n/c.

Proof. We build such a set S. Initially, put one vertex in S. As we proceed, let T consist

of all vertices within distance d of S. If T is not a distance-d dominating set, then let v be a

vertex that is not within distance d of T . Add v to S; this adds the distance-d neighborhood

of v to T , none of which was in T before. Thus T grows by at least c vertices for each vertex

added to S. We therefore add at most n/c vertices to S by the time T becomes a distance-d

dominating set, at which point S is a distance-2d dominating set.
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Corollary 5.2 (Czygrinow). ΠOPT (G) ≤ 4n
k+1

when G ∈ Gn,k.

Proof. Distance-1 neighorhoods have size at least k+1, so Proposition 5.1 yields a distance-

2 dominating set S of size at most n/(k + 1). Put four pebbles at each vertex of S.

Corollary 5.2 improves the upper bound of ⌈2n/3⌉ from Corollary 4.7 when k ≥ 5. We

show that this easy bound is at most a factor of 2 from optimal by an easy construction of

n-vertex graphs with minimum degree k and optimal pebbling number 2
⌊

n
k+1

⌋

. Later we

present a better construction with optimal pebbling number near 2.4 n
k+1

.

We begin by introducing another technique for proving lower bounds. A graph H is a

quotient of a graph G if the vertices of H correspond to the sets in a partition of V (G),

and distinct vertices of H are adjacent if at least one edge of G has endpoints in the sets

corresponding to both vertices of H . In other words, each set in the partition of V (G)

“collapses” to a single vertex of H (we use “collapses” rather than “contracts” because the

set in V (G) need not induce a connected subgraph). If H is a quotient of G via the surjective

map φ : V (G) → V (H), and D is a distribution on G, then the quotient distribution Dφ is

the distribution on H defined by Dφ(u) =
∑

v∈φ−1(u) D(v).

Lemma 5.3 (Collapsing Lemma). Let H be a quotient of G via φ. If a distribution D′ on

G is obtainable from a distribution D on G via pebbling moves, then in H any vertex v is

D′
φ(v)-reachable under Dφ. In particular, ΠOPT (G) ≥ ΠOPT (H).

Proof. The sequence σ of pebbling moves that produces D′ from D in G collapses to a

sequence σφ in H . When a move in σ transfers a pebble from one part to another in the

partition under φ, the corresponding move is available for σφ in H (formally by induction on

the length of σ). When a move in σ is within a part of the partition under φ, we don’t need

to do anything in σφ and simply have an extra pebble available on the image of that part.

In particular, the quotient of a solvable distribution D on G is solvable on H , since some

vertex in each part of V (G) under φ is reachable from D.

Proposition 5.4. For n > k ≥ 2, there is an n-vertex graph G with minimum degree k such

that ΠOPT (G) ≥ 2
⌊

n
k+1

⌋

.

Proof. When k +1 ≤ n < 2(k +1), deleting edges at one vertex of Kn yields such a graph.

For n ≥ 2(k + 1), let r =
⌊

n
k+1

⌋

. Let J1, . . . , Jr be complete graphs, each with at least

k + 1 vertices, totaling n vertices. Choosing vertices xi, yi ∈ Ji, form a “ring of cliques”
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G from the disjoint union J1∪ · · · ∪Jr by deleting each edge xiyi and adding yixi+1 instead

(treating indices modulo r). Note that G has minimum degree k.

By Lemma 5.3, collapsing V (Ji) − {xi, yi} into one vertex cannot increase the optimal

pebbling number. Doing this in each Ji produces C3r. By Theorem 4.5, ΠOPT (G) ≥ 2r.

When k = 2 and 3 |n, the construction in Proposition 5.4 produces Cn, which by Corol-

lary 4.7 and Theorem 4.5 is the extremal graph for all n. For k = 3, it provides connected

n-vertex graphs with optimal pebbling number asymptotic to n/2; still the upper bound is

⌈2n/3⌉ (Corollary 4.7). As k grows, the coefficient on n in Proposition 5.4 decreases.

However, for k > 9 the optimal pebbling number of our next construction exceeds 2 n
k+1

asymptotically for large n. In particular, there is a sequence of graphs of minimum degree

k, with Gn having n vertices, such that ΠOPT (Gn) k+1
n

→ 2.4 − 24
5k+15

as n → ∞. This limit

exceeds 2 when k > 9. We present the construction only for k ≡ 0 (mod 3); slightly weaker

results hold for general k.

We will apply Lemma 5.3 to a graph that we will contract to a cycle. First we must

study 2-reachability of vertices.

Lemma 5.5. Let D be a distribution on a graph G, and let A be a subset of V (G) such that

each vertex in A has a neighbor in A. If each vertex in A is 2-reachable under D, then each

vertex in A is 2-reachable under any distribution produced from D by a smoothing move.

Proof. Let D′ be a distribution obtained from D by a smoothing move from v. Note

that D′(v) ≥ 1, by the definition of smoothing. By Lemma 4.1, every vertex of A − {v} is

2-reachable under D′. Hence we may assume that v ∈ A.

Let u be a neighbor of v in A, and let σ be a pebbling sequence under D′ after which

u has two pebbles. If σ has a move out of v, then truncating σ yields a pebbling sequence

showing that v is 2-reachable. Otherwise, v retains at least one pebble after executing σ,

and then a pebbling move from u to v gives it another.

Lemma 5.6. For n ≥ 3, if at least n− 1 vertices are 2-reachable under a distribution D on

Cn, then |D| ≥ n.

Proof. With at least n− 1 vertices 2-reachable, every 2-reachable vertex has a 2-reachable

neighbor. Letting A be the set of 2-reachable vertices, Lemma 5.5 implies that the hypothesis

here is preserved under smoothing. By the Smoothing Termination Lemma, we may assume

that D is smooth or has no unoccupied vertex. Since some vertex is 2-reachable, D has two
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pebbles on some vertex. This completes the proof if D leaves at most one vertex unoccupied.

Hence we may choose distinct unoccupied vertices u and v.

Let P and P ′ be the u, v-paths along the cycle. Since at least n−1 vertices are 2-reachable,

we may assume that u is 2-reachable. By Lemma 4.4, a pebbling sequence cannot move a

pebble out of v without using an edge in both directions. By the No-Cycle Lemma, some

pebbling sequence that moves two pebbles to u uses no edge in both directions. Lemma 4.4

also implies that u is not 2-reachable under the restrictions of D to P or P ′. Therefore,

2-reachability of u requires moving a pebble to u from each of P and P ′, independently.

Hence each path must have a vertex with two pebbles.

In particular, there is a vertex with two pebbles on each path of occupied vertices joining

two unoccupied vertices, and therefore |D| ≥ n.

Let V1, . . . , Vr be pairwise disjoint s-sets of vertices. For r, s ≥ 1, let Gr,s be the graph

defined on V1∪ · · · ∪Vr by letting V1, . . . , Vr be cliques and making each vertex of Vi adjacent

to s−1 vertices of Vi+1, for 1 ≤ i ≤ r−1 (the resulting graph is unique, up to isomorphism).

For r ≥ 3, let Hr,s be a graph obtained from Gr,s by making each vertex of Vr adjacent

to s − 1 vertices of V1 (nonisomorphic graphs may result). Here we compute the optimal

pebbling numbers of these graphs for s ≥ 3. For s = 2 the value is higher; see Theorem 6.6.

Theorem 5.7. If r, s ≥ 3, then ⌈4r/5⌉ ≤ ΠOPT (Hr,s) ≤ ΠOPT (Gr,s) ≤ 4 ⌈r/5⌉. The bounds

hold also for G1,s and G2,s.

Proof. Since Gr,s ⊆ Hr,s, it suffices to show the upper bound for Gr,s and the lower bound

for Hr,s (and G1,s and G2,s).

Upper Bound. By dividing V1, . . . , Vr into groups of five consecutive sets (the last has

fewer sets if 5 ∤ r) and placing four pebbles on one vertex in a set closest to the center of each

group, we obtain a solvable distribution that uses 4 ⌈r/5⌉ pebbles. It is solvable because s ≥ 3

implies that any two vertices in sets whose indices differ by two have a common neighbor in

the intervening set.

Lower Bound. The proof is by induction on r. When r ≤ 4, the claims are easily checked.

For r ≥ 5, consider an optimal distribution D on Hr,s. Let B = {i : Vi contains no vertex

that is 2-reachable under D}, viewing the indices modulo r. If |B| ≤ 1, then collapsing

each Vi to a single vertex yields a distribution on Cr under which at least r − 1 vertices are

2-reachable, by the Collapsing Lemma (5.3). Now Lemma 5.6 yields |D| ≥ r ≥ ⌈4r/5⌉.

Hence we may assume that |B| ≥ 2. For i ∈ B, suppose that B contains neither i − 1

nor i + 1 (modulo r). Let u ∈ Vi−1 and v ∈ Vi+1 be 2-reachable vertices. Let j be another
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index in B. Since i, j ∈ B, we cannot put two pebbles on a vertex in Vi ∪ Vj, and hence we

cannot move a pebble out of Vi ∪ Vj. Since u and v are separated by Vi ∪ Vj, we conclude

that u and v are 2-reachable simultaneously; that is, nothing used in moving two pebbles to

one of them is used in moving two pebbles to the other. Since s ≥ 3, u and v have a common

neighbor w in Vi. Now w is 2-reachable using pebbles from u and v, contradicting i ∈ B.

It follows that for i ∈ B, one of {i − 1, i + 1} also belongs to B. When i, i + 1 ∈ B, we

call the edges joining Vi and Vi+1 useless. Since we cannot move two pebbles to any vertex

in either clique, we cannot move a pebble along an edge joining them. Hence deleting these

edges does not affect the solvability of D.

Since for every member of B there is a neighboring index also in B, every Vi for i ∈ B is

incident to a useless set of edges. Hence there are at least |B|/2 such useless sets of edges.

If |B| ≥ 3, then there are at least two useless sets of edges; deleting them leaves a graph

whose components are Gt,s and Gr−t,s, and the restrictions of D to those two components

are solvable. Applying the induction hypothesis to the two components yields |D| ≥ ⌈4r/5⌉.

Otherwise, |B| = 2. Lemma 5.3 implies that collapsing each clique to a single vertex and

collapsing the two resulting vertices indexed by B to a single vertex v yields a distribution

on Cr−1 under which every vertex except v is 2-reachable. Since its size is |D|, Lemma 5.6

implies that |D| ≥ r − 1 ≥ 4r/5.

Corollary 5.8. Let k be a nontrivial multiple of 3. For n ≥ k + 3, there is an n-vertex

connected graph G with minimum degree k such that ΠOPT (G) ≥ (2.4 − 24
5k+15

− 6k
5n

) n
k+1

.

When n is a multiple of (k/3) + 1, the term − 6k
5n

can be dropped.

Proof. Given such n and k, let s = k/3 + 1 and r = ⌊n/s⌋. Since k ≥ 6, we have r, s ≥ 3.

The graph Hr,s is 3(s − 1)-regular, since each vertex has s − 1 neighbors in its own clique

and in each neighboring clique. If n is a multiple of s, then let G = Hr,s. Now

ΠOPT (G) (k + 1)

n
=

ΠOPT (Hr,s) (3s − 2)

rs
≥

4r

5

3s − 2

rs
=

12

5
−

8

5s
=

12

5
−

24

5k + 15
.

If n is not a multiple of s, then form G by adding to Hr,s a set of n − rs vertices whose

neighborhoods duplicate neighborhoods of vertices in Hr,s. Now G has n vertices and min-

imum degree at least k, and Hr,s is a quotient of G. Thus ΠOPT (G) ≥ ΠOPT (Hr,s), by

Lemma 5.3. Since n ≤ rs + s − 1, we can change rs to rs(1 + s−1
rs

) in the denominator of

the previous computation. Since (1 + s−1
rs

)−1 ≥ 1 − s−1
rs

≥ 1 − k
3n−k

≥ 1 − k
2n

, we complete

the computation using
(

12
5
− 8

5s

) (

1 − k
2n

)

≥ 12
5
− 24

5k+15
− 6k

5n
.
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Let Gn,k be the family of connected n-vertex graphs with minimum degree k. Let f(k) =

lim supn→∞ maxG∈Gn,k

ΠOPT (G)
n/(k+1)

. Corollary 5.2 yields f(k) ≤ 4, and Proposition 5.4 and

Corollary 5.8 yield f(k) ≥ max{2, 2.4− 24
15k+5

} when k is a multiple of 3. Given the simplicity

of Corollary 5.2, we believe that f(k) is bounded away from 4.

It should be possible to determine f(3). We can prove only 2 ≤ f(3) ≤ 8/3, using

the ring-of-cliques construction (Proposition 5.4) and the general upper bound ΠOPT (G) ≤

⌈2|V (G)|/3⌉ (Corollary 4.7). Theorem 6.6 provides another construction for the lower bound

whenever n is even.

Question 5.9. Is it true that ΠOPT (G) ≤ ⌈n/2⌉ whenever G is a connected n-vertex graph

with minimum degree at least 3? The bound would be sharp for even n.

When k = 4, Corollary 5.8 does not apply, but there may be other constructions needing

more pebbles than the 2n/5 in Proposition 5.4. We present a possible such construction

based on the “Sierpinski Triangle”. We have not determined the optimal pebbling number

for these graphs in Gn,4, but we conjecture that its ratio to n approaches 4/9 as n → ∞.

Example 5.10. Let G1 be a triangle; its three vertices are its corners {x, y, z}. For j >

1, given three copies of Gj−1 with corner vertices {xi, yi, zi} in the ith copy, form Gj by

collapsing the pairs {z1, x2}, {y2, z3}, and {x3, y1}. The remaining corner vertices {x1, y3, z2}

are the corners of Gj . Another way to construct Gj from Gj−1, starting with a layout of G1

in the plane, is to subdivide the edges of each bounded face that is a triangle and add edges

forming a triangle on each such set of three new vertices.

For j > 1, form Hj from Gj by adding three edges to make the corners pairwise adjacent.

Since the corners of Gj have degree 2 and all other vertices of Gj have degree 4, Hj is 4-

regular for j > 1. Letting nj = |V (Hj)| = |V (Gj)|, we have nj = 3nj−1 − 3 for j > 1, with

n1 = 3, so nj = (3j + 3)/2.

For j ≥ 3, we present a solvable distribution on Hj with 2 · 3j−2 pebbles (there are many

such distributions). If this is optimal, then ΠOPT (Hj) /nj → 4/9.

In Gj , there are three copies of Gj−1 and thus 3j−3 copies of G3. The number aj of

vertices of Gj that are corners of copies of G3 is nj−2, by the alternative construction. Since

the corners of G3 form a distance-2 dominating set of G3, we have ΠOPT (Hj) ≤ ΠOPT (Gj) ≤

4nj−2 = 2 · 3j−2 + 6.

For j ≥ 3, we can save six more pebbles on Hj. The distance between corners of Gj is

2j−1. In Hj, these corners are pairwise adjacent. Hence the four pebbles on one corner x

can satisfy the other corners y and z and the neighbors of y and z. Let P be the shortest
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y, z-path. If we delete the pebbles on P , then the unreachable vertices are within distance 1

of P . By putting two pebbles each on the corners of copies of G2 along P (except for y and

z), we have deleted 4(2j−3 + 1) pebbles and added 2(2j−2 − 1) pebbles, saving 6.

6 Girth and Minimum Degree

Forbidding short cycles restricts graphs in a way that improves upper bounds on the optimal

pebbling number. In particular, if G has minimum degree k and girth at least 5, then four

pebbles at a vertex v can take care of k2 + 1 vertices, because the neighborhoods of the

neighbors of v overlap only at v.

Proposition 6.1. If G is an n-vertex graph with minimum degree k and girth at least 2t+1,

then ΠOPT (G) ≤ 22tn/ck(t), where ck(t) = 1 + k
∑t

i=1(k − 1)i−1.

Proof. When G has minimum degree k and girth at least 2t + 1, every distance-t neigh-

borhood has size at least ck(t). Proposition 5.1 then applies.

Note that ck(t) > k(k − 1)t−1 > (k − 1)t for fixed k. Thus 22t/ck(t) → 0 as t → ∞

when k ≥ 6. A more detailed analysis further improves the upper bound. The idea is to

use 22t pebbles on a vertex of a distance-2t dominating set only when it is used to reach

substantially more than the ck(t) vertices guaranteed in its distance-t neighborhood.

Theorem 6.2. Let k and t be positive integers with k ≥ 3 and t ≥ 2 such that (k, t) /∈

{(3, 2), (3, 3)}. If G is an n-vertex graph with minimum degree k and girth at least 2t+1, then

ΠOPT (G) ≤ 22tn/(ck(t) + c′(t)), where ck(t) is defined as above and c′(t) = (22t − 2t+1) t
t−1

.

In particular, ΠOPT (G) ≤ 16n/(k2 + 17) when t = 2 and k ≥ 4.

Proof. We begin with a distance-2t dominating set S of size at most n/ck(t) as constructed

in the proof of Proposition 5.1, where ck(t) is defined as in Proposition 6.1. As each vertex

is added to S in the construction, its distance from all other vertices of S is at least 2t + 1.

To each v ∈ S, we assign a set R(v) of vertices in G; pebbles on v will be used to reach

the vertices of R(v), and these sets partition V (G). Grow the sets R(v) simultaneously for

all v ∈ S by a breadth-first search from S; each vertex of G goes into exactly one of these sets

when it is reached. Every vertex within distance t of v goes into R(v), since the distance-t

neighborhoods of vertices of S are disjoint. As R(v) grows, also grow a spanning tree T (v)
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of the subgraph induced by R(v); add each new vertex as a leaf whose neighbor is the vertex

from which it is reached. Since S is a distance-2t dominating set, the leaves of T (v) have

distance at most 2t from v in T (v).

Let R′(v) be the set of nonleaf vertices of T (v) that are not within distance t of v. Let

r′(v) = |R′(v)|. If r′(v) < 22t − 2t+1, then put 2t+1 pebbles on v and one pebble on each

vertex of R′(v). Otherwise, put 22t pebbles on v. This defines a distribution D.

When r′(v) ≥ 22t − 2t+1, the 22t vertices on v can reach all vertices at distance at most

2t from v. When r′(v) < 22t − 2t+1, the 2t+1 pebbles on v can reach vertices at distance

t + 1 from v, including the closest ones in R′(v). The rest of T (v) can then be reached by

pebbling along paths through R′(v). Hence D is solvable.

It remains to bound |D|. We claim first that for v ∈ S, at least r′(v) t
t−1

vertices lie in

T (v) that are not within distance t of v. Let p0 be the number of leaves of T (v). Say that

a vertex x of R′(v) has height i if a longest path in T (v) from v through x uses i edges

beyond x (ending at a leaf). For 1 ≤ i ≤ t − 1, let pi be the number of vertices in R′(v)

with height i, and consider the leaves to have height 0. For i ≥ 1, the vertices with height

i have distinct children with height i − 1, so p0 ≥ p1 ≥ · · · ≥ pt−1. Also, r′(v) =
∑t−1

i=1 pi,

and r′(v) + p0 is the number of vertices in T (v) that are not within distance t of v. We have
r′(v)+p0

r′(v)
= 1 + p0

r′(v)
≥ 1 + p0

(t−1)p0
= t

t−1
.

Now we count the pebbles and the vertices in each tree T (v). When r′(v) < 22t − 2t+1,

we use 2t+1 + r′(v) pebbles with T (v) having at least ck(t) + r′(v) t
t−1

vertices. When r′(v) ≥

22t − 2t+1, we use 22t pebbles with T (v) having at least ck(t) + c′(t) vertices.

Let S ′ = {v ∈ S : r′(v) < 22t − 2t+1}, and let s = |S|. Let r =
∑

v∈S′(22t − 2t+1 − r′(v)).

We have n ≥ s[ck(t) + c′(t)] − r t
t−1

, and we used 22ts − r pebbles. Thus

ΠOPT (G) ≤
22ts − r

s[ck(t) + c′(t)] − r t
t−1

n ≤
22t

ck(t) + c′(t)
n,

where the last inequality uses that sa−rb
sc−rd

≤ a
c

when ad ≤ bc. Thus we need 22t t
t−1

≤

ck(t) + c′(t), which simplifies to ck(t) ≥ 2t+1 t
t−1

. This inequality holds for k ≥ 3 and t ≥ 2

except when (k, t) ∈ {(3, 2), (3, 3)}.

For k = 5, with c′(t) ≥ 4t t
t−1

and c5(t) = 1 + (4t − 1)(5/3), the upper bound on

ΠOPT (G) /n in Theorem 6.2 tends to 3/8 as t → ∞. For k = 2, always ΠOPT (Cn) = ⌈2n/3⌉.

Thus it is natural to ask whether our observation for k ≥ 6 also holds for 3 ≤ k ≤ 5.

Question 6.3. For k ∈ {3, 4, 5}, does there exist fk(t) such that limt→∞ fk(t) = 0 and graphs

in Gn,k with girth at least 2t + 1 satisfy ΠOPT (G) /|V (G)| ≤ fk(t)?
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We have not constructed graphs to show that the bound in Theorem 6.2 is sharp, and

we do not believe that it is sharp. We discuss one more family to show that if an n-vertex

graph G has girth 4 and minimum degree 3, then ΠOPT (G) can be as large as n/2. This

improves the construction in Proposition 5.4 for k = 3 by showing that forbidding triangles

does not reduce the number of pebbles that may be needed. Before defining the candidate

graphs, we prove results needed to establish the lower bounds. We will need to characterize

the optimal 2-solvable distributions on paths; this uses the next lemma.

We previously defined “m-fold r-solvable” to mean that vertex r is m-reachable. For

convenience, we henceforth use 2-solvable distribution to mean a distribution in which every

vertex is 2-reachable. An optimal 2-solvable distribution is a 2-solvable distribution having

the minimum number of pebbles (by analogy with “optimal distribution”).

Lemma 6.4. In an optimal 2-solvable distribution, each leaf has at most two pebbles.

Proof. Given a leaf v with neighbor u, let D be a 2-solvable distribution with D(u) = j

and D(v) = k ≥ 3. Obtain D′ from D by setting D′(v) = 1 and D′(u) = j + k − 2; leave

other values unchanged.

Since |D′| < |D|, it suffices to show that D′ is 2-solvable. Since D′(u) ≥ D(u)+⌊D(v)/2⌋

and D is 2-solvable, vertices outside {u, v} are 2-reachable under D′.

Now consider {u, v}. If j + k ≥ 4, then D′(u) ≥ 2, which makes u 2-reachable and

provides a second pebble for v. Otherwise, (j, k) = (0, 3); now v can send only one pebble

to u under D, so the 2-solvability of D requires that another pebble can be moved to join

the pebble that D′ has on u; they then together provide a second pebble for v.

A longer case analysis ensures an optimal 2-solvable distribution with at most one pebble

on each leaf, but we will not need this.

Theorem 6.5. Every 2-solvable distribution on Pn has at least n + 1 pebbles. Furthermore,

the 2-solvable distributions with n+1 pebbles consist of “prime segments” separated by single

unoccupied vertices, where a prime segment is a path with either (1) two pebbles on one

vertex and one pebble on all other vertices, or (2) three consecutive vertices having 0, 4, 0

pebbles, respectively, and one pebble on all other vertices.

Proof. We use induction on n; when n ≤ 2 the optimal 2-solvable distributions have

n + 1 pebbles and are prime segments, as claimed. Consider n ≥ 3. A distribution with two

pebbles on one vertex and one on all others is 2-solvable, so n + 1 pebbles suffice.
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In a 2-solvable distribution, every vertex is 2-reachable, so every vertex has a 2-reachable

neighbor, and hence the result of a smoothing move is also 2-solvable, by Lemma 5.5. By

Lemma 4.2, only finitely many smoothing moves can occur, so we obtain a smooth 2-solvable

distribution D. If every vertex is occupied, then 2-solvability requires some vertex to have

two pebbles, and hence such distributions with n + 1 pebbles form a single prime segment.

Now consider the case where D is smooth and leaves a vertex v unoccupied. Since v

is 2-reachable, Lemma 4.4 implies that v is not an endpoint and that moving two pebbles

to v requires one to arrive from each side. Since two pebbles cannot arrive at v from the

same side, pebbles on one side of v cannot be used for 2-reachability of any vertex on the

other side. Hence Pn − v consists of two subpaths, and D is 2-solvable if and only if the

distributions inherited from D by the components of Pn−v are 2-solvable. With these paths

having j and n − 1 − j vertices, the induction hypothesis requires j + 1 + n − j pebbles in

D, and it also completes the decomposition into prime segments after the split at v. Since

D is smooth, these segments all have type (1): (2, 1, 1, 0, 2, 1) is an example.

Now let D be any 2-solvable distribution of size n + 1 on Pn, not necessarily smooth. By

Lemma 6.4, D has at most two pebbles on each leaf. Since smoothing preserves 2-solvability

and size, smoothing an optimal 2-solvable distribution cannot put three pebbles on a leaf.

Hence all optimal 2-solvable distributions arise by “unsmoothing” smooth ones, which consist

of prime segments of type (1) separated by single unoccupied vertices.

An “unsmoothing” move changes consecutive pebble values (i, j, k) to (i−1, j +2, k−1),

where i, j, k ≥ 1. Since i, j, k ≥ 1, unsmoothing cannot occupy an unoccupied vertex, so the

three positions must be within a single prime segment of the original smooth distribution.

If the first unsmoothing move changes (2, 1, 1) to (1, 3, 0), then the unoccupied vertex is no

longer 2-reachable. If it changes (1, 1, 1) to (0, 3, 0), then the unoccupied vertex on the side

farther from the vertex with two pebbles is not 2-reachable.

Hence the only way to produce a 2-solvable distribution by one unsmoothing move on a

prime segment of type 1 is to change the consecutive triple (1, 2, 1) to (0, 4, 0). This changes

a prime segment of type (1) to a prime segment of type (2). No further unsmoothing move

is possible within such a segment, by the reasoning for (1, 1, 1) above. Prime segments of

type (2) are 2-solvable, so this completes the description of optimal 2-solvable distributions.

For our final result we need the cartesian product G H of graphs G and H , the graph

with vertex set V (G) × V (H) such that (u, v) is adjacent to (u′, v′) if and only if (1) u = u′

and vv′ ∈ E(H) or (2) v = v′ and uu′ ∈ E(G), where E(F ) denotes the edge set of F .
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In particular, Cm K2 and Pm K2 are circular and linear “ladders”; two copies of the

cycle or path, with corresponding vertices from the two copies adjacent. We call the m copies

of K2 the rungs of the graph. In Cm K2, exchanging the matching joining two rungs for the

other possible matching joining them yields a graph isomorphic to the graph formed from a

2m-cycle by adding chords joining opposite vertices (those at distance m along the cycle).

This graph has been called the “Möbius ladder”, so we denote it by Mm.

The graphs Cm K2 and Mm are special cases of the construction in Theorem 5.7 with

m = r and s = 2, but the arguments there were not valid when s = 2. We take C2 to mean

P2, so that Cm K2 = Pm K2 = C4 when m = 2.

Theorem 6.6. ΠOPT (Pm K2) = ΠOPT (Cm K2) = ΠOPT (Mm) = m for m ≥ 2, except

that ΠOPT (P2 K2) = ΠOPT (C2 K2) = 3 and ΠOPT (P5 K2) = 6.

Proof. Upper bounds. Since both Cm K2 and Mm contain Pm K2, when m /∈ {2, 5} it

suffices to prove the upper bound for Pm K2 . Observe that three pebbles on one rung (with

neither vertex unoccupied) can reach all vertices on the two neighboring rungs. Similarly,

four pebbles on two adjacent rungs (two each on nonadjacent vertices) can reach all vertices

on the two neighboring rungs. Thus it suffices to express m as a sum of 3s and 4s, which

can be done unless m ∈ {2, 5}.

For m = 5, six pebbles suffice, since Pm has a 2-solvable distribution with m+1 pebbles.

We need smaller distributions for M5 and C5 K2, which we describe for general m. It

suffices to put a 2-solvable distribution of size m on a subgraph induced by a dominating

set. For Cm K2, assign 2, 0, 2, 0 pebbles to four consecutive vertices of an m-cycle and 1 to

each remaining vertex of that cycle. For Mm, view it as a 2m-cycle with chords and put one

pebble each on m− 1 consecutive vertices of the cycle, plus a second pebble on one of them.

For m = 2, actually M2 = K4 and two pebbles suffice, but C2 K2 and P2 K2 degenerate

to 4-cycles and need a third pebble, which suffices.

Lower bounds. The proof of ΠOPT (P5 K2) ≥ 6 is a case analysis that we omit. For

other cases, since Pm K2 ⊆ Cm K2 and since the argument for Cm K2 (when m ≥ 3) is

valid also for Mm, it suffices to prove ΠOPT (Cm K2) ≥ m. We use induction on m. Since

Cm K2 = Pm K2 for m ∈ {1, 2}, we can take {1, 2} as the basis. Now consider m ≥ 3.

Let D be a solvable distribution on Cm K2 with |D| ≤ m; we show that equality holds.

If some pebbling sequence from D results in a rung having two pebbles, we say that the rung

is 2-reachable under D. If at least m− 1 rungs are 2-reachable, then collapsing each rung to

a vertex yields a distribution D′ on Cm under which m − 1 vertices are 2-reachable, by the

Collapsing Lemma. Lemma 5.6 then yields |D| = |D′| ≥ m.
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Now suppose that at least two rungs R and R′ are not 2-reachable under D. The pebbles

that arrive in pebbling sequences to reach the two vertices of R arrive from the same direction;

otherwise, since no pebble can ever emerge from R′, the two pebbling sequences could be

performed independently and R would be 2-reachable.

Since pebbles can only reach R from one side, and no pebble can traverse an edge joining

R to the rung on the other side (because R is not 2-reachable), D remains solvable on

the graph obtained by deleting the edges from R to that other rung. If there are two

nonadjacent rungs that are not 2-solvable, then doing this for those two rungs splits D into

solvable distributions on Pi K2 and Pm−i K2, for some i with 1 ≤ i ≤ m−1. The induction

hypothesis applies to each subgraph, and we obtain |D| ≥ m.

In the remaining case, any two rungs R and R′ that are not 2-reachable are consecutive.

In the special case m = 3, we may have all three rungs not 2-reachable, but then each rung

has at most one vertex and D is not solvable. Otherwise, we have exactly two such rungs

R and R′, consecutive. A rung that is not 2-reachable is unoccupied, because if there is one

pebble on it, then the sequence to reach the other vertex requires bringing another pebble to

the rung. Furthermore, the pebbling sequences that move two pebbles to other rungs cannot

use vertices in R or R′, since those rungs are not 2-reachable.

Therefore, deleting R and R′ and collapsing the remaining rungs yields a 2-solvable

distribution D′ on Pm−2, by the Collapsing Lemma. If |D′| ≥ m, we have the desired result.

Otherwise, D′ is a 2-solvable distribution of size m − 1 on Pm−2. We use the description of

all such distributions obtained in Theorem 6.5.

Let S be the rung other than R′ that neighbors R. In the collapsed path, S is an endpoint.

The prime segment of D′ ending at S has i vertices at S, for some i ∈ {0, 1, 2}. If i = 2,

then each other rung in the segment has one pebble and S cannot receive another pebble. If

i = 1, then S can receive one additional pebble from the neighboring rung S ′, which exists.

If i = 0, then S can receive two pebbles from S ′. Thus S can never acquire a third pebble.

Furthermore, if S is able to have two pebbles, then the vertices of S are not both 2-

reachable in D. This is clear if i ≥ 1, since at least one pebble starts at a fixed vertex of S,

and it is not possible to get two pebbles to the other vertex of S. If i = 0 and S can acquire

two pebbles under D′, then S ′ starts with four pebbles and acquires no others. ¿From any

distribution of four pebbles on S ′, the vertices of S are not both 2-reachable.

Since the vertices of S are not both 2-reachable under D (and neither is 3-reachable),

it follows that the vertices of R are not both reachable. Hence Cm K2 has no solvable

distribution of size m − 1.
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