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Abstract

We present algorithms and hardness results for three resource allocation problems. The first
is an abstract admission control problem where the system receives a series of requests and wants
to satisfy as many as possible, but has bounded resources. This occurs, for example, when al-
locating network bandwidth to incoming calls so the calls receive guaranteed quality of service.
Algorithms can have performance guarantees for this problem either with respect to acceptances or
with respect to rejections. These types of guarantees are incomparable and algorithms having dif-
ferent types of guarantee can have nearly opposite behavior. We give two procedures for combining
one algorithm of each type into a single algorithm having both types of guarantee simultaneously.
Specifically, if we combine an algorithm that is c4-competitive for acceptances with an algorithm
that is cr-competitive for rejections, the combined algorithm is O(cy4)-competitive for acceptance
and O(cgcg)-competitive for rejections. If both the input algorithms are deterministic, then so is
the combined algorithm. In addition, one of the combining procedures does not need to know the
value of ¢4 and neither needs to know the value of cg.

The second problem we consider is scheduling with rejections, a combination of scheduling
and admission control. For this problem, each job comes with a rejection cost in addition to the
standard scheduling parameters. The system produces a schedule for a subset of the jobs and the
schedule quality is its total flow time added to the cost for all rejected jobs. We show that, even
if all jobs have the same rejection cost, no online algorithm has a competitive ratio better than
(2 4+ +/2)/2 ~ 1.707 in general or e/(e — 1) ~ 1.582 if all jobs have the same processing time. We
also give an optimal offline algorithm for unit-length jobs with arbitrary rejection costs. This leads
to a pair of 2-competitive online algorithms for unit-length jobs, one when all rejection costs are
equal and one when they are arbitrary. Finally, we show that the offline problem is NP-hard even

when each job’s rejection cost is proportional to its processing time.
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Our third problem is power-aware scheduling, where the processor can run at different speeds,
with its energy consumption depending on the speeds selected. This results in a bicriteria problem
with conflicting goals of minimizing energy consumption and giving a high-quality schedule. If
schedule quality is measured with makespan, we give linear-time algorithms to compute all non-
dominated solutions for the general uniprocessor problem and for the multiprocessor problem when
every job requires the same amount of work. We also show that the multiprocessor problem becomes
NP-hard when jobs can require different amounts of work. If schedule quality is measured with
total flow time, we show that the optimal schedule corresponding to a particular energy budget
cannot be exactly computed on a machine supporting arithmetic and the extraction of roots. This
hardness result holds even when scheduling equal-work jobs on a uniprocessor. We do, however,

give an arbitrarily-good approximation for scheduling equal-work jobs on a multiprocessor.
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Chapter 1

Introduction

This dissertation considers the problem of how to share a limited resource. One paradigm for
this problem is scheduling, in which different users are assigned different times to use the resource.
In computer science, scheduling problems are typically presented in terms of processor scheduling,
where a list of jobs must be executed on one or more machines. Other types of scheduling problems
can be translated into this framework, with the resources becoming machines and the requests from
different users becoming jobs. The specific problem depends on the requirements of each job as well
as the metric used to measure schedule quality. There are many different types of job requirements
and metrics, so there are far more scheduling problems than we address here; the reader is refered
to surveys by Lawler et al. [60], Pruhs et al. [71], Sgall [79], and Pinedo [68].

Another paradigm for resource sharing is admission control. As in scheduling, the input to an
admission control problem is a resource to be scheduled and a list of requests for access to that
resource. Unlike in the scheduling problem, however, the requests are time-dependent so it may not
be possible to satisfy all of them. The admission control algorithm must therefore choose a subset
of the requests to satisfy and reject the rest. For particular applications, the algorithm may also
schedule the chosen subset of requests, but the focus of admission control problems is on selecting
a subset of requests to satisfy. Again, admission control is too large an area to be covered in a

single dissertation. Interested readers are refered to surveys by Cottet et al. [34] and Plotkin [69].

1.1 Problems considered

Since both scheduling and admission control are huge research areas, we begin by describing

the three problems addressed in this dissertation.



1.1.1 Combining admission control algorithms

Our first problem involves admission control. A typical application occurs in computer net-
working. Networks normally allow any machine on the network to send packets to any destination
at any time. The network cannot necessarily handle all the traffic this generates, but performance
typically degrades more or less evenly for all participants as packets are dropped or time out due
to network congestion. This egalitarian treatment of different types of traffic causes problems for
applications like streaming video, which must receive data in a timely manner to maintain picture
quality. Since video frames are displayed at a fixed rate, streaming video applications essentially
place a deadline on each packet of data. Packets missing their deadline might as well be dropped
by the network, but not too many deadlines can be missed or the video becomes unwatchable.
Requirements like the timely delivery of some percentage of an application’s packets are called
Quality of Service (QoS).

To guarantee QoS for networking traffic, bandwidth must be allocated to specific applications.
This gives the call control problem, in which an allocation system receives requests to establish
connections between pairs of machines in the network. Depending on the problem, each request
either specifies a specific path through the network or just a pair of machines to be connected.
Network bandwidth is limited so it may be necessary to reject some of these requests, but doing
so allows the accepted requests to receive a bandwidth guarantee. In the discussion below, we
assume that schedule quality is measured either by the number of calls accepted or the number of
calls rejected, though some applications weight the calls by bandwidth or some other measure of
importance.

Call control problems typically receive the connection requests over time and must decide to
accept or reject each request as it arrives. Problems like this where the algorithm must make
decisions based on partial information are called online problems, as opposed to offline problems,
where all the input is available before any decision must be made. Many online problems cannot be
solved exactly because the algorithm must commit to some decisions before knowing which choice
is correct. Therefore, algorithm quality is typically measured by comparing its performance to the

performance of the optimal offline algorithm.!

1Section 1.2.1 describes this technique in more detail.



OPT | Algorithm A | Algorithm R
98% 49% 96%
50% 25% 0%

Table 1.1: Incomparability of approximations with respect to acceptances and rejections. Shows
percentage of requests guaranteed to be accepted by algorithms A and R depending on the per-
centage accepted in the optimal solution OPT. Algorithm A always accepts at least half as many
requests as optimal and an algorithm R that always rejects no more than twice as many requests
as optimal.

Call control algorithms can be compared to the optimal algorithm in two ways, depending on
how the problem is phrased. In the benefit problem, the objective is to maximize the number of
accepted requests, while the objective in the cost problem is to minimize the number of rejected
requests. The optimal solution is the same for both versions of the problem, but approximations
for the versions are not comparable. For example, consider an algorithm A that always accepts at
least half as many requests as optimal and an algorithm R that always rejects no more than twice
as many requests as optimal. If the optimal solution OPT accepts 98% of the requests, algorithm
R accepts at least 96%, but algorithm A may accept only 49%. However, if OPT accepts 50%
of the requests, algorithm A accepts at least 25%, but algorithm R may accept nothing. This is
illustrated in Table 1.1.

In the offline setting, having a different algorithm for each measure is not a problem; given any
problem instance, simulating both algorithms and taking the best solution found gives a solution
good under both measures simultaneously. However, in the online setting, it is not clear how to
achieve both types of guarantee simultaneously since the algorithm needs to make decisions over
time. We consider this problem and give two ways to merge one algorithm of each type to get a
combined algorithm having both types of guarantees.

This result is surprising since the algorithms being combined can have nearly opposite behavior.
For example, consider the instance depicted in Figure 1.1, with three requests arriving for a linear
network where each edge has the bandwidth to satisfy only two requests. Since each requested
connection uses the edge between machines 3 and 4, at least one request must be rejected. In
this situation, the algorithm of Blum et al. [22], which guarantees to reject no more than twice as

many requests as optimal, rejects the two “outside” requests (those between machines 1 and 4 and



Figure 1.1: Instance where call control algorithms have opposite behavior. Dotted lines denote
requested calls. Each link has bandwidth for 2 calls. The algorithm of Blum et al. [22] rejects the
call between machines 1 and 4 and the call between machines 3 and 6, while the algorithm of Adler
and Azar [1] rejects the call between machines 2 and 5.

machines 3 and 6). Meanwhile, the algorithm of Adler and Azar [1], which guarantees to accept at

least a quarter as many requests as optimal, rejects the middle request (the one between machines

2 and 5).

1.1.2 Scheduling with rejections

Our second problem combines aspects of admission control with scheduling. In classical schedul-
ing problems, the input is a stream of jobs, all of which must be completed. Scheduling with rejec-
tions adds a flavor of admission control by allowing the scheduling algorithm to reject some jobs.
Unlike in pure admission control problems, however, the solution is not evaluated strictly by how
many of the jobs are accepted. Rather, the accepted jobs must be scheduled and the measure of
solution quality is a combination of the number of jobs accepted and the quality of the resulting

schedule.

Outsourcing

One application of scheduling with rejections is planning a production schedule with outsourc-
ing. Consider the job of a company’s head of manufacturing. He receives a list of production
requirements, based on either actual orders or a sales forecast. His responsibility is seeing that
the required production is completed. The traditional way to do this is to schedule all the pro-
duction on the company’s own manufacturing equipment. Modern companies have another option,
however, because some production can be outsourced to companies that operate manufacturing
equipment on a contract basis. (Extreme examples of this are fabless semiconductor companies,

which design chips but outsource all of their production and do not own manufacturing facilities.)
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Since the company to which the work is outsourced also makes a profit, outsourcing production
is probably more expensive than completing it “in house”. Nevertheless, outsourcing can be ben-
eficial if the company’s own equipment would be overwhelmed by producing everything. In this
case, the improvement in schedule quality may compensate for the additional cost. Thus, the head
of manufacturing’s task is to balance the criteria of schedule quality against the additional cost of

outsourcing production.

Managing “To Do” list

Another application of scheduling with rejections is delegation. Throughout the day, you receive
tasks from coworkers. Each comes with two (potentially unknown) parameters. The first is how
long you will need to spend on the task to complete it. The second parameter is how long the
task will take someone else, including both the time they will spend working on the task and how
long before they can begin. This second parameter is the job’s rejection cost, the penalty that
must be paid if you delegate the task. The time until each task is completed is the amount of time
before you either complete it or delegate it, plus the rejection cost for jobs that you delegated. If
the objective is to minimize the total time your coworkers wait for their tasks, you again need to

balance your own responsiveness with the number of tasks delegated.

1.1.3 Power-aware scheduling

Our third problem is motivated by reducing the energy consumption of computer systems. This
is obviously important for battery-powered mobile devices such as laptops, where designers would
like to build small devices with long battery lives. Battery life is already a problem and is likely
to become more so since processor power consumption is growing at a faster rate than battery
capacity [59].

Even systems that do not rely on batteries can benefit from reducing energy consumption.
Computers have been estimated to use between 2% and 13% of total US electricity production [54,
50]. This is a wide range, but even the value at the low end represents a lot of money spent
on electricity. Another reason to reduce computer energy consumption is that nearly all of this

energy is released as heat. Modern processors are becoming harder to cool; adding a Watt of power



Speed (MHz) | Power consumed (W)

2000 89
1800 66
800 35

Table 1.2: AMD Athlon 64 power consumption at different speeds [2].

consumption to modern Intel chips adds $1-2 in packaging costs per chip [81]. The heat is also a
potential health hazard since the heat generated by a processor is sufficient to fry an egg [82]. Heat
generation is particularly problematic when large numbers of processors are in close proximity,
such as in a supercomputer or a server farm. In fact, one study estimated that 38% of the power
consumed in a data center is used for cooling [64].

Because of the importance of reducing computer power consumption, a variety of techniques
have been applied to this problem [52, 65, 23, 81]. We focus on one of the more prominent

approaches, speed scaling, the idea of conserving energy by operating more slowly.

Dynamic voltage scaling

The processor itself is the most obvious target for speed scaling. Processor speed is determined
by the system clock’s frequency. When the clock frequency is lowered, the processor can run at a
lower voltage, which reduces the amount of energy it consumes per cycle. Because of the relationship
between clock frequency and required voltage, this energy-saving technique is often called dynamic
voltage scaling. Many modern processors implement some version of dynamic voltage scaling. For
example, the AMD Athlon 64 is designed so it can run at three different frequencies, as shown in

Table 1.2.

Dynamic rate scaling

Speed scaling can also be used when scheduling transmissions of a wireless device. Wireless
transmissions are susceptible to noise, causing the message recipient to receive a slightly different
message than the sender sent. To combat this, the different possible messages must be represented

with substantially different signals so they remain distinguishable in the presence of interference.



The way to select a signal for each possible message is called an encoding scheme. The rate of the
encoding scheme is the number of bits per transmission it achieves. Encoding schemes with lower
rates cause the message to be sent more slowly. The energy savings come because a low rate code

makes the transmission more resistant to noise, allowing transmission power to be reduced.

1.2 Definitions

Before being able to formally describe our results, we must first define some terms and concepts.
For reference, an alphabetical list of definitions (including those from other sections) is provided

in Appendix A.

1.2.1 Competitive analysis and approximation algorithms

Many of our results concern online algorithms. As mentioned above, online problems cannot
always be solved exactly. The standard technique to measure the quality of a non-optimal online
algorithm is competitive analysis. This involves calculating the ratio between the algorithm’s per-
formance to the performance of the offline optimal algorithm on the input instance that results in
the worst ratio. Specifically, let ALG (o) denote the quality of the solution generated by algorithm
ALG on input instance o. Then, depending on whether the problem is a minimization problem,
meaning the goal is to minimize the metric, or a mazimization problem, meaning the goal is to

maximize the metric, we say an algorithm A has competitive ratio p if

minimization problem: p = sup, 0’2(7;()0) (1.1)
maximization problem: p = sup, OIIZ(TJ()J ) (1.2)

The definition is split into cases so that a lower competitive ratio always denotes a better guarantee.
An optimal algorithm has competitive ratio 1. We say that an algorithm A is p-competitive if its
competitive ratio is at most p. To calculate the competitive ratio of a randomized algorithm,
replace A(o) with E'[A(0)], where the expectation is over the random bits used by the algorithm.

To show that an algorithm is p-competitive, typically one bounds its performance in terms

of parameters of the input and then bounds the optimal algorithm’s performance in terms of



those same parameters. To establish a lower bound on the competitive ratio of any deterministic
algorithm, one constructs a family of problem instances such that any deterministic algorithm
performs poorly on at least one of them. To establish a lower bound for randomized algorithms, a
powerful tool is Yao’s Lemma [90], which allows one to convert a lower bound for a deterministic
algorithm on randomized input into a lower bound for a randomized algorithm.

An approximation algorithm is an offline algorithm whose performance is bounded as a ratio
of the optimal algorithm’s performance. These are often used when the problem to be solved is
NP-hard [46, 36]. An algorithm’s approzimation ratio p is defined in the same way as a competitive
ratio, using Equations 1.1 and 1.2. Similarly, we say an algorithm is a p-approximation if its
competitive ratio is at most p. The best type of approximation is a polynomial-time approximation
scheme (PTAS), an algorithm parameterized by e that is a (1 4 €)-approximation with running

time polynomial in the input size and 1/e.

1.2.2 Call control

Since call control problems are both minimization problems (minimizing the number of rejected
requests) and maximization problems (maximizing the number of accepted requests), we use specific
terminology to discuss their competitive ratios. We say that an algorithm is c-reject-competitive
if it is c-competitive for rejections, meaning it rejects at most ¢ times the number of requests
rejected by the optimal algorithm OPT. Similarly, we call an algorithm c-accept-competitive if it
is c-competitive for acceptances, meaning it accepts at least 1/c times as many requests as OPT.

Another term we use when discussing call control algorithms is preemption. This is the ability
to reject a request that has previously been accepted. An algorithm that uses this ability is called
preemptive and an algorithm that does not is called nonpreemptive. There are both preemptive
and nonpreemptive call control algorithms that are competitive with respect to acceptances, but
preemption is necessary for any non-trivial competitive ratio with respect to rejections. For exam-
ple, consider call control on a network of n nodes organized along a line, where node i is connected
to nodes i — 1 and ¢ + 1 (if they exist) and each edge having bandwidth to satisfy a single request.
Suppose the first request is for the pair 1 and n. Unless the algorithm accepts this request, the

input could stop, giving the algorithm an infinite competitive ratio. If the algorithm accepts this



request, however, the input can continue with requests for pairs ¢ and i+1 fori =1,2,...,n—1. A
nonpreemptive algorithm must reject all of these requests, but the optimal solution rejects the first
request and accepts these. Thus, an nonpreemptive algorithm for this problem has competitive
ratio at least n — 1, which can be achieved by the trivial algorithm that accepts the first request

and rejects all others.

1.2.3 Scheduling

Traditional scheduling problems in computer science are phrased in terms of scheduling jobs on
processors. A problem is specified by giving three sets of parameters. The first gives the number of
processors and the relationship between them. A uniprocessor problem involves scheduling a single
processor while a multiprocessor problem involves scheduling more than one. We use m to denote
the number of processors. Throughout this dissertation, we assume identical processors, meaning
that each job takes the same amount of time on any processor. The cases where some processors
are faster than others (uniform processors) and where jobs take arbitrarily-different amounts of
time on different processors (unrelated processors) have also been considered in the literature, as
have the problems where jobs need to be run on several processors either in a particular order (flow
shop scheduling) or in any order (open shop scheduling).

The second set of parameters specifying a scheduling problem gives the type of input. A
uniprocessor scheduling problem takes as input a set of n jobs {.J1, Ja, ..., Jy}, each of which must
exclusively occupy the processor for its processing time p;. In this dissertation, all jobs are serial
jobs, meaning each runs on a single processor. The other possibility is parallel jobs, each of which
must run on several processors simultaneously.

Other information is associated with each job in different scheduling problems. We consider
scheduling problems that assign a release time r; to each job .J;, meaning that job J; cannot run
before time r;. For online problems, r; is the time when the scheduling algorithm becomes aware
of job J;. Some scheduling problems also assign a weight w; to each job, indicating its relative
importance, or a deadline d;, the time by which job J; should (or must) be finished. Another input
considered in the literature is a partial order < of precedence constraints, where J; < J; means

that job J; must be completed before job J; can be started.



Also included as an attribute of the jobs is whether they can be preempted.? By default, the
jobs are nonpreemptive, meaning that a job must run to completion once it is started. Scheduling
problems with greater flexibility involve preemptive jobs, which can be “paused” and resumed
without penalty. Intermediate in flexibility between these is a job that allows restarts, meaning it
can be stopped and then started from the beginning at a later time.

The last set of parameters used to specify a scheduling problem is the metric used to measure
performance. Generally the problem’s objective is to minimize this metric, though some exceptions

exist [6]. The following are the metrics mentioned in this dissertation:

o Makespan, max; CZ-A, where C’ZA is the time when job J; is finished in the schedule generated
by algorithm A. The quantity C’ZA is called the completion time of job J; (in the schedule

generated by algorithm A). The makespan is the time when the last job is finished.
e Total completion time, ), CZ-A. This metric is equivalent to average completion time.3

o Total weighted completion time, ), wiCiA. This metric is equivalent to average weighted
completion time. It is the same as total completion time except that different jobs are given

different relative importance.

e Total flow time, ), FA, where FA = CA — r; is the flow of job J;. This metric is equivalent

to average flow time.3

o Total weighted flow time, ), wiFZ-A. This metric is equivalent to average weighted flow time.

It is the same as total flow time except different jobs are given different relative importance.

e Lateness, max; L, where L = C# —d, is the lateness of job J;, the amount after its deadline

it completes.

e Tardiness, max; TiA, where TZ-A = max{LlA, 0} is the tardiness of job J;, essentially the same

as its lateness but restricted to be non-negative.

2In practice, whether jobs can be preempted generally depends on the hardware, but preemptibility is considered
a property of the jobs for historic reasons.

3Both total completion time and total flow time have been called “response time” in the literature. We avoid this
terminology to prevent confusion.

10



The focus of this dissertation is on makespan and total flow; the other metrics are defined because
they appear in related work.

The three sets of problem parameters are typically represented compactly using the o3|y
notation of Graham et al. [47], with extensions by Blazewicz et al. [21], Veltman et al. [85], and
Drozdowski [37]. In this notation, a describes the processors, 5 describes the jobs, and v gives the
performance metric. For example, 1|r;| ), F; denotes uniprocessor nonpreemptive total flow with
release times, while m|r;, pmtn| ), w; F; denotes preemptive total weighted flow with release times
on M Processors.

In addition to the terms defined above, some notation is useful for discussing scheduling algo-
rithms. We use Sf to denote the time algorithm A starts job J; and pf (t) to denote the processing
time remaining for job J; at time ¢ when scheduled by algorithm A. We call a job active at some
time if it has been released and not yet completed and use 64 (t) to denote the number of active
jobs at time t for algorithm A. Let P denote (max; p;)/(min; p;), the ratio between the largest and
smallest processing times. Similarly, for problems involving weighted jobs, we use W to denote
(max; w;)/(min; w;), the ratio between the largest and smallest weights. Finally, let OPT denote
the optimal algorithm. Table 1.3 summarizes the symbols used in scheduling problems.

Some of our results require the assumption that all processing times are the same and each
arrival time is a multiple of this value. We call this special case unit-length jobs and assume the
processing times are 1 and job arrival times are integers. This corresponds to an application with
events occurring on clock ticks and/or extremely short jobs. Focusing on unit-length jobs allows

us to assume that any job that starts is completed before another job arrives.

1.2.4 Scheduling with rejections

For problems where jobs can be rejected, each job J; comes with a rejection cost ¢; that is
incurred if it is rejected. We use C' to denote (max; ¢;)/(min; ¢;), the ratio between the largest and
smallest rejection costs. We say that a job is handled once it is either completed or rejected and use
C’ZA to denote the handling time of job J; under algorithm A. The reuse of C’iA, which denotes the
completion of of job J; in traditional scheduling problems, is deliberate since CiA is the time when

the job leaves the system in both settings. Terms from traditional scheduling based on completion
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pi(t)

The number of jobs active at time ¢ in the schedule created by algorithm A.
In power-aware scheduling, the speed job J; runs at in the schedule created
by algorithm A.

In power-aware scheduling, the work requirement of job J;.

The job rejection cost when all jobs have the same rejection cost.

The ratio between the largest and smallest job rejection costs.

(C = (max; ¢;)/(min; ¢;))

The rejection cost of job J;. Problems involving rejection are discussed in
Section 1.2.4.

The completion time of job J; when scheduled by algorithm A. For problems
involving rejection (see Section 1.2.4), C#! is the handling time, the time when
the job is either completed or rejected by algorithm A.

The deadline of job J;.

The flow time of job J; when scheduled by algorithm A, the amount of time
it spends in the system between arrival and completion. (F* = CA — r;)
The i*" job. Jobs are numbered from 1 to n.

The lateness of job J; when scheduled by algorithm A, the amount after its
deadline that this job is completed, i.e. CZA — d;. Note that negative values
are allowed. (77! is the non-negative version.)

The number of processors available.

The number of jobs in the input.

The ratio between the largest and smallest job processing time.

(P = (max; p;)/(min; p;))

The processing time of job J;, the time it must run before being completed.
The remaining processing time of job J; at time ¢ when scheduled by algorithm
A.

The release time of job J;, the time it appears in the system.

The start time of job J; in schedule A.

The tardiness of job J; when scheduled by algorithm A. This is a non-negative
version of lateness and is calculated as T/' = max{L:, 0}.

The ratio between the largest and smallest job weights.

(W = (mazx;w;)/(min; w;))

The weight of job J;.

Table 1.3: Symbols used in scheduling
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time, such as flow FZA = CZA — r; and makespan max; CZA are then derived from handling time.
The following are translations of traditional scheduling metrics into the scheduling with rejections

setting:
e Makespan, max; C’lA + cost of rejections.
e Total handling time,* )", C# + cost of rejections.
e Total weighted handling time, ), wiClA + cost of rejections.
e Total flow time, >, F/* + cost of rejections, where FA = CA — 7.
e Total weighted flow time, ), wiFiA + cost of rejections.
e Lateness, max; L{! + cost of rejections, where L = C# — d;.

e Tardiness, max; T/ + cost of rejections, where T/ = max{L#,0}.

1.2.5 Power-aware scheduling

Power-aware scheduling differs from the traditional scheduling problems discussed above in that
the processing time of each job is no longer part of the input since the processing times are not
known until the schedule is constructed. Instead, each job J; comes with a work requirement ~;.
A processor running continuously at speed o completes ¢ units of work per unit of time so job
J; would have processing time ~; /0. In general, a processor’s speed is a function of time and the
amount of work it completes is the integral of this function over time.

Our results concern power-aware scheduling to minimize makespan or total flow. Either of
these metrics can be improved by using more energy to speed up the last job so the goals of low
energy consumption and high schedule quality are in opposition. Thus, power-aware scheduling is a
bicriteria optimization problem and our goal becomes finding non-dominated schedules. These are
schedules such that no schedule simultaneously has better quality and uses less energy. A common
approach to bicriteria problems is to fix one of the parameters. In power-aware scheduling, this
gives two interesting special cases. Fixing energy gives the laptop problem, which asks “What is

the best schedule achievable using a particular energy budget?”. Fixing schedule quality gives

4Some literature calls this total completion time as in traditional scheduling.
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Power

Processor speed

Figure 1.2: Curve power = speed®. The dashed line demonstrates the definition of strict convexity
since its interior lies above the curve.

the server problem, which asks “What is the least energy required to achieve a certain level of
performance?”. Our work in power-aware scheduling initially focused on the laptop problem, but
this dissertation presents algorithms that find all non-dominated schedules.

The specification of a power-aware scheduling problem must also include the relationship be-
tween power consumption and speed. Most of our results do not assume a specific relationship
between these quantities. Except where otherwise stated, we just assume that power is a con-
tinuous, strictly-convex function of processor speed. Formally, strict convexity means that the
line segment between any two points on the power/speed curve lies above the curve except at its
endpoints, as shown in Figure 1.2. Intuitively, strict convexity means that power increases super-
linearly with speed so the “law of diminishing returns” applies to speeding up the processor to

complete jobs more quickly.

Relationship between CPU power and speed

To justify these assumptions, we discuss the specific power functions corresponding to the
applications described in Section 1.1.3. We begin with dynamic voltage scaling.

The specifications of processors that support dynamic voltage scaling give a list of speeds and
corresponding power levels similar to Table 1.2. Since the first work on power-aware scheduling
algorithms, however, researchers have assumed that the processor can run at an arbitrary speed
within some range [87]. The justification for allowing a continuous range of speeds is twofold.
First, choosing the speed from a continuous range is an approximation for a processor with a large

number of possible speeds. Second, a continuous range of possible clock speeds is observed by
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individuals who use special motherboards to overclock their computers.

Most power-aware scheduling algorithms use the model proposed by Yao et al. [91], in which
the processor can run at any non-negative speed and power = speed® for some constant o > 1.
(The requirement that oz > 1 makes the power function strictly convex.) This relationship between
power and speed comes from an approximation of a system’s switching loss, the energy consumed

by logic gates switching values.

Relationship between transmission power and code rate

To demonstrate the relationship between the transmission power of a wireless device and the
code rate it can use, we focus on a simple scenario where the sender can transmit at discrete times.
Each signal is a real value and the noise added to this signal comes from a Gaussian distribution.
The range of values that can be transmitted depends on the power so increasing the transmission
power increases the information content of each signal. Specifically, if the transmission power is P

and the noise has power N, the optimal information capacity of this channel is

C— %lg <1+§> (1.3)

bits per transmission [35, pg. 242]. There are encodings to send any amount of information less
than this with any desired error bound. Therefore, the energy per transmission for an optimal

channel® is

P=N (229 -1).

Figure 1.3 plots this relationship, which is clearly both continuous and strictly convex. Uysal-

Biyikoglu et al. [84] show that several other coding paradigms give qualitatively similar curves.

5The capacity given in Equation 1.3 is only achieved asymptotically so a real system would use a transmission
rate R = (1 — ¢)C for some small € > 0 instead of transmitting at the optimal capacity as assumed here. This does
not change the shape of the curve.

15



Power
(energy/transmission)

Channel capacity (bits/transmission)

Figure 1.3: Relationship between transmission power and speed for an optimal discrete time channel
with additive white Gaussian noise.

1.3 Contributions and overview of dissertation

Now we are ready to formally state our results. Our focus throughout the dissertation is on
finding algorithms with provable performance bounds. To support this effort, we also give lower
bounds and NP-hardness results to indicate the limits of possible performance. Our results are

organized as follows:

e In Chapter 2, we talk about procedures to combine admission control algorithms. We give two
procedures to combine a c4-accept-competitive algorithm and a cgr-reject-competitive algo-
rithm into a single preemptive algorithm that is simultaneously O(c4)-accept-competitive and
O(cacg)-reject-competitive. Our procedures do not use randomness to make their decisions,
so the combined algorithm is deterministic unless one of the input algorithms is randomized.
Also, although the original motivation of this work and its known applications are to call
control, the results apply in a very general model. The only assumption made about the
resource being managed is that if it can satisfy a set S of requests, then it can also satisfy

any subset of S. Thus, our procedures can be applied to other admission control problems.

Another nice feature of our combining procedures is that they require minimal knowledge
about the input algorithms, which are treated as black boxes. Neither combining procedure
needs to be given the value of cg and only one of them needs to be given the value of c4.
This ignorance of ¢4 and cgr gives the added benefit of making the combined algorithm’s
performance depend only on the behavior of algorithms A and R on the specific input se-

quence. For example, if algorithms A and R have log-factor competitive ratios, but happen
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to be constant-competitive on the actual input sequence, then the combined algorithm is

constant-competitive overall (for that input sequence).

e In Chapter 3, we discuss minimizing total flow with rejections. We give an optimal offline
algorithm for the special case of unit-length jobs and show that the problem is NP-hard
when jobs have varying processing times, even if the rejection cost of a job is proportional
to its processing time. For the online problem with unit-length jobs, we give a 2-competitive
algorithm and a family of algorithms we believe to have better performance, though we have
not been able to prove a competitive ratio better than 2. We also show that, even when
every job has the same rejection cost, no algorithm has a constant competitive ratio below
e/(e — 1) ~ 1.582 if all jobs have unit length or (2 4+ v/2)/2 ~ 1.707 if distinct processing

times are allowed.

e In Chapter 4, we discuss power-aware scheduling for makespan and total flow. We completely
solve the offline uniprocessor makespan problem by giving an algorithm to find all non-
dominated schedules. Its running time is linear once the jobs are sorted by arrival time.
Although our results show that this is an “easy” problem in an algorithmic sense, we also
show that slight variations of it are quite hard. In particular, we prove the multiprocessor
version is NP-hard, even when all jobs arrive immediately. In addition, we prove that there
is NO exact algorithm for uniprocessor total flow, even in the special case of equal-work jobs
with power = speed®. Despite these hardness results, we show how to extend uniprocessor
algorithms to the multiprocessor setting when all jobs require equal work for a large class of
“reasonable” metrics that includes both makespan and flow. Using this technique, we give
an exact algorithm for multiprocessor makespan of equal-work jobs and an arbitrarily-good

approximation for multiprocessor total flow of equal-work jobs.

Following the presentation of these results, Chapter 5 provides discussion and a summary of possible

future work.
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Chapter 2

Combining online algorithms

This chapter gives our two procedures to combine a cg-accept-competitive algorithm and
a cp-reject-competitive algorithm into a single algorithm that is simultaneously O(c4)-accept-
competitive and O(cacpr)-reject-competitive. Section 2.1 discusses the main idea behind our pro-
cedures and also describes the previous work. Section 2.2 describes call control problems to which
our combining procedure can be applied. Section 2.3 formally defines the model we use for our
results. Sections 2.4 and 2.5 give our combining procedures. Finally, Section 2.6 concludes and
discusses future work in combining online algorithms.

The results in this chapter were published jointly with Azar, Blum and Mansour [10]. That
paper is based on conference papers by Azar et al. [11] and Bunde and Mansour [28]. In addition
to the results stated here, the combined paper [10] discusses ways to combine algorithms of the

same type.

2.1 Main idea and previous work

Throughout the chapter, we will use A to denote the c¢,-accept-competitive algorithm and R to
denote the cg-reject-competitive algorithm. At the high level, the combining procedure uses the
following simple intuitive notion: On the one hand, if the optimal solution O PT rejects only a small
fraction of the requests, the reject-competitiveness of algorithm R guarantees that it accepts a large
fraction of requests and thus it is accept-competitive as well. On the other hand, if OPT rejects
many requests, being reject-competitive is trivial (even rejecting all requests is fine), so algorithm
A is competitive by both measures. Thus, by internally simulating both algorithms, and switching
between them at just the right time, we might hope to perform well in both measures. The difficulty

is showing that requests rejected by one algorithm do not adversely affect the competitive ratio of
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the other.

This basic idea was first used by Azar et al. [11], who gave a procedure to combine algorithms
A and R into an algorithm that is simultaneously O(c%)-accept-competitive and O(cacp)-reject-
competitive. Their procedure explicitly uses the values of both c4 and cg, tying the combined
algorithm’s performance to the analysis of algorithms A and R in addition to their performance.
The procedure of Azar et al. [11] also requires finding optimal solutions to the corresponding
offline admission control problem at each step, a potentially-problematic requirement since many
admission control problems are NP-hard. Thus, our work qualitatively improves the previous

combining procedure in addition to improving its accept-competitive ratio by a factor of c4.

2.2 Applications

Our combining procedures can be applied to several problems. One, which motivated this work,
is call control on the line graph. Requests are intervals on the line and each edge in the graph
has a capacity, which is the maximum number of accepted requests that can use that edge. Adler
and Azar [1] give a constant accept-competitive algorithm for the problem and Blum et al. [22]
give a constant reject-competitive algorithm for the same problem. We conclude that there is a
combined algorithm that is simultaneously constant competitive for both measures. As discussed
in Section 1.1.1, this is surprising since algorithms A and R can have nearly opposite behavior.

Our result can also be applied when the graph is a tree and accepted requests must be disjoint.
Awerbuch et al. [8] and Awerbuch et al. [9] give O(log d)-competitive randomized (nonpreemptive)
algorithms for maximizing the number of accepted requests when d is the diameter of the tree. Blum
et al. [22] show a constant competitive algorithm for the number of rejected requests in this case.
By combining these two, we get an algorithm that is simultaneously O(logd)-accept-competitive
and O(log d)-reject-competitive.

Another application is the admission control problem on general graphs where each edge is
of logarithmic capacity and each request is for a fixed path. Awerbuch et al. [7] provide an
O(log n)-accept-competitive nonpreemptive algorithm and Blum et al. [22] provide an O(logn)-
reject-competitive (preemptive) algorithm. We conclude there are algorithms simultaneously

O(log n)-accept-competitive and O(log? n)-reject-competitive.
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We should remark that for many natural online problems it is impossible to achieve competi-
tiveness in the rejection measure and hence in both measures. For example, if the online algorithm
can be forced to reject a request while the offline might have not rejected any requests, then the

algorithm has an unbounded competitive ratio.

2.3 Model

We assume an abstract model where one request arrives at every time unit. Either the request
is served (with benefit one and cost zero), or the request is rejected (with benefit zero and cost
one). A request can also be preempted, in which case its benefit is set to zero and its cost is
set to one. In this abstract model, the only assumption we make about the resource constraints
(which are what prevent us from accepting every request) is monotonicity: if F' is a feasible set
of requests, then any subset of F' is feasible as well. Given a sequence o and algorithm ALG,
let BENEFITAYY (o) be the number of requests served by ALG and cosT4%(s) be the number of
requests rejected by ALG. By definition, the sum of benefit and cost is always the number of time
steps, i.e. BENEFITALC (0) 4 cosTALC (0) = |o| for all algorithms ALG.

An optimal algorithm OPT can either maximize the benefit BENEFIT??7 () or minimize the
cost cosT?PT(5). Note that for any input sequence, the optimal schedule is identical for both
maximizing benefit and minimizing cost.

We are given two algorithms. The first is a possibly randomized preemptive algorithm A that

guarantees a competitive ratio of c4 > 1 for benefit. That is, for any sequence o

1
E [BeNEFIT?(0)] > —BENEFIT? T (0) .

CA

In addition, we are given a possibly randomized preemptive algorithm R that has a guarantee

of cg > 1 for cost. That is, for any sequence o
OPT(O_) )

E [cost(0)] < cgoosT

Notation: Given an input sequence o, denote by o; the requests arriving by time ¢t. As a
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convention, the first request is number 1.

2.4 Algorithm S2

Now we describe S2, our first combining algorithm.! Internally, S2 simulates algorithms A and
R on the input o¢. That is, S2 keeps track of what requests would have been accepted or rejected
had it followed algorithm A from the start, and which would have been accepted or rejected had
it followed algorithm R from the start. If either algorithm is randomized, then the simulation is
just of a single execution (not an average over multiple runs), and our definition of quantities such
as cosTf(o) (e.g., Lemma 1 and Lemma 2 below) are with respect to the execution observed.
At any time, S2 is in either an A phase or an R phase. We call the algorithm corresponding to
the current phase the phase algorithm. Algorithm S2 accepts, rejects, and preempts requests in
exactly the same way as the phase algorithm. Algorithm S2 is in an R phase if cosTf(oy)/t < T,
where 7 = 1/(8¢c4), and in an A phase otherwise. Whenever S2 switches phases, it preempts any
accepted requests that the new phase algorithm did not accept. Thus, the requests accepted by S2

are feasible since they are a subset of the requests accepted by the phase algorithm.

2.4.1 Analysis of rejections

We define requests rejected because of algorithm A to be the requests rejected or preempted
during an A phase (including those rejected when switching to an A phase) and denote their

number at time ¢ with R4 (o). Thus, cost5?(0;) < RA(0y) + cost!(oy).
Lemma 1 At any time t, R*(0y) < cost®(oy) /7.

Proof: If S2 is in an A phase at time ¢, cosTf(o;) > 7t. Since algorithm A cannot reject more
than ¢ requests, R (o) <t < cost®(ay)/7.

Now consider the case that S2 is in an R phase at time ¢. Let T be the last time when S2 was
in an A phase. By the reasoning above, R4(o7) < cosT®(or)/7. Since S2 has been in an R phase
since time T 4 1, R4(0;) = R4(o7). Also, since the number of rejections of R is a non-decreasing

function of time, cosT®(or) < costf (o). Thus, R4 (o;) < cosT®(ay) /7. m

'We call the algorithm S2 because it is based on and improves over a previous algorithm “SWITCH” [11].
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Since cosT%%(0;) < R4(0y) + cosT?(0y), Lemma 1 implies that

cosT®?(0y) < (1 +1/7)cost?(0y) .

Note that if algorithm R is randomized, then the above holds for the specific execution simulated
by algorithm S2. Now, using the fact that algorithm R is cg-reject-competitive, we can bound the

reject-competitive ratio of S2 by

Bleost(o)] _ (1+2) B[cos(oy)]

costOPT ()  — cosTOPT (gy) T

< <1+1> cr = O(cacn) .

2.4.2 Analysis of acceptances

We define requests rejected because of algorithm R to be the requests rejected or preempted

during an R phase and denote their number at time ¢ with Rf(oy).
Lemma 2 At any time t, R®(0;) < BENEFITOTT (04)/(Tcy4).

Proof: If time t is during an R phase, the lemma follows from
BENEFITYTT (0) > BENEFITR (0y) > (1 — 7)t > 7t/8

and RE(o;) < costf(oy) < 1t =t/(8ca).
Consider time ¢ in an A phase. If S2 has not had an R phase, R*(s;) = 0 so the lemma holds.

Otherwise, let ¢’ be the time at which the latest R phase ended. By the argument above,
RE (o) < BENEFITOPT (04) /(Tca) .
Since S2 was in an A phase since time ¢/,
RE(0y) = R®(0y) < BENEFITOP T (04) /(Tea) .

Since optimal benefit is non-decreasing with the input length, Rf(c;) < BENEFITOTT (0y)/(Tca).

a
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Now we can prove that S2 is O(cy4)-accept-competitive. We do this by bounding the number of
requests accepted by both algorithms, which is a lower bound on the number of requests accepted
by S2. Since algorithm A is cq-accept-competitive, E [BENEFITA ()] > BENEFITOPT (5) /ca. By

Lemma 2, algorithm R causes R%(0;) < BENEFIT?TT (0)/(7c4) additional rejections. Thus,

E [BENEFIT®?(0)] > BENEFIT?!? (0) /ca — BENEFITOTT (0) /(Tca) = (6/(Tca))BENEFITOT (o)

and the accept-competitive ratio of S2 is at most (7/6)ca = O(ca).

2.5 Algorithm RO

Now we define RO, our second combining algorithm.? One problem with our previous algorithm
52 is that, while simple, it required knowing c4 in advance. Algorithm RO is a bit more complicated
but does not need to be given either of the competitive ratios as input. Internally, algorithm RO
keeps times t4 and tg, plus input prefixes 04 and ogr of these lengths. It maintains simulations
of algorithms A and R on inputs o4 and op respectively. Whenever either of these algorithms
decides to reject a request, that request is marked. Times t4 and tp advance in phases, pausing
and resuming the simulations as necessary so that max{t4,tgr} = t at time ¢. Specifically, phase
k > 0 has an R subphase, during which time ¢t advances until COSTR(O'R) = 4F, followed by an
A subphase, during which time ¢4 advances until BENEFITA(c4) = 8 - 4¥ (note that a subphase
may correspond to an empty set of requests). When a new request arrives, RO accepts it if the
resulting set of accepted requests is feasible. While the resulting set is not feasible, RO preempts
an arbitrary marked request (some such request must exist since max{t4,tg} = t). The idea of

using marks to delay rejections as long as possible is called lazy rejection.

2.5.1 Analysis of rejections

To analyze rejections, we first show that the algorithm maintains the invariant that BENEFITA (0 4)
< 32cosT®(oR). (If either A or R is randomized, then this statement is with respect to the spe-

cific execution of each algorithm performed by RO.) During the first R subphase, the inequality

%We call this algorithm RO for Ratio Oblivious because it does not need to know the competitive ratios of the
input algorithms.
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holds vacuously because BENEFITA(c4) = 0. During the first A subphase, cosT®(sz) = 1 and
BENEFIT? (04) < 8. Finally, during phases after the first, cosT?(og) > 4*~! and BENEFITA(04) <
8- 4k,

Using the above inequality, we can bound cosT# (o 4) from above by

OPT( OPT(

04) + BENEFIT

cosT(04) < ta = COST o4)

< cosT?PT(

04) + caE [BENEFIT? (0 4)]

IN

costO" (0 4) + 32¢4E [cosT?(oR)] .

Thus, the rejection competitive ratio of RO is at most

E [cosT?(04) + cosTR(oR)] _ . 32caE [costf(op)]

=0 .
cosTOPT (gy) - cosTOPT (g) TR (cacr)

2.5.2 Analysis of acceptances

To show that algorithm RO is O(c4)-accept-competitive, we show
BENEFITT (0) > (1/2)BENEFIT (0})

for all times ¢, all inputs, and all sequences of random bits. The desired result then follows from
the competitiveness of algorithm A.

Since RO does not reject requests during the first R subphase, it is optimal and BENEFITTC (5;) =
BENEFIT? (o). The first A subphase begins when algorithm R rejects (or preempts) a request
C. Algorithm RO accepts the same requests as algorithm A except possibly for C'. However,
BENEFITTO (;) > 1 since RO uses lazy rejection. (This is the only part of the argument in which
we use lazy rejection, but this property is necessary since otherwise RO may reject every request
when it begins the first A subphase.) Thus, BENEFIT'C (0;) > (1/2)BENEFITA (0¢). After the first

subphase, cosT?(og) < (1/2)BENEFITA (0 4) since cosT?(og) < 4% and BENEFITA (04) > 8-4F1 =
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2. 4%, Using this, we get

BENEFITO (0) > t— cosT?(04) — cosTR(0R)

> (t—t4) + BENEFIT?(04) — cosTR(0R)

> (t—ta)+ (1/2)BENEFITA(04) .

Since BENEFIT? cannot increase faster than requests arrive, BENEFITTC (g;) > (1/2)BENEFITA (0y).

2.6 Discussion

We have described procedures that take an algorithm A with competitive ratio c4 for benefit,
and an algorithm R with competitive ratio cg for cost, produce an online algorithm that simulta-
neously achieves competitive ratio O(cy4) for benefit and O(cacg) for cost. We do not know if it is
possible in general to do better. In particular, an ideal result in this direction would achieve O(c4)
for benefit and O(cg) for cost simultaneously. There are no known lower bounds for this problem,

so any lower bound better than the trivial ¢4 and benefit and cg for cost would be interesting.
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Chapter 3

Flow with rejections

This chapter contains our results on scheduling to minimize total flow time with rejections.
Section 3.1 discusses previous work on minimizing total flow time in the traditional scheduling
setting. Section 3.2 discusses the previous work on scheduling with rejections. Section 3.3 gives our
lower bounds on the competitive ratio of online algorithms. Section 3.4 gives our algorithms for
unit-length jobs. Section 3.5 shows that the problem is NP-complete even when each job’s rejection
cost is proportional to its processing time. Finally, Section 3.6 concludes with a discussion of open
problems.

This chapter is based on a previously-published conference paper [26]. The results are the
same as in that paper, but they are presented with more background information and improved

explanations.

3.1 Previous work on minimizing total flow time

We begin our survey of previous work by discussing algorithms to minimize total flow time
without rejections. This metric is related to total completion time, but by subtracting the release
times for each job, it more accurately reflects the user’s experience of the system; the flow time of
a job is exactly the amount of time the user waits between submitting it and getting the result.

Another desirable feature of the total flow time metric is that it incrementally increases by the

number of active jobs. In other words,

> = /(5A(t) dt,

where 64(t) is the number of active jobs at time ¢ for algorithm A. Thus, a natural idea for
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Figure 3.1: Instance where SRPT falls behind in number of jobs completed

minimizing total flow time is to finish a job as soon as possible by to running the job with least
processing time. When preemption is allowed, one can follow this idea precisely, an algorithm called
Shortest Remaining Processing Time (SRPT'). Schrage [76] and Smith [80] show that SRPT has
always finished at least as many jobs as any other algorithm on a uniprocessor. (Note that this
claim is not true on a multiprocessor, as demonstrated in Figure 3.1.) Since the total completion
time is the sum over time of the number of jobs not completed by that time, this implies that
SRPT is optimal for total completion time on a uniprocessor.

If preemption is not available to run S RPT total flow time becomes a much harder problem, even
on a single processor. Kellerer et al. [55] show that all online deterministic algorithms are Q(n)-
competitive and Vestjens [86] shows that even randomized algorithms are Q(y/n)-competitive.t
Epstein and van Stee [41] show that the latter bound holds even when the processor is allowed
to restart jobs. Even offline, although Kellerer et al. [55] give an O(y/n)-approximation algorithm
based on removing preemptions from the SRPT schedule, they show that it cannot be approximated
to within a factor of n'/2=¢ for any ¢ > 0 unless P=NP. Bunde [24] strengthens the lower bounds
to n'=¢ if the processor can only be idle when there are no active jobs. (This type of schedule is
called busy.)

The strong inapproximability bounds in terms of n make it natural to consider approximations
in terms of other parameters. One choice is P, the ratio between the largest and smallest processing
times. Epstein and van Stee [42] show that Shortest Processing Time (SPT), the nonpreemptive
version of SRPT that just starts the shortest available job whenever the processor becomes free, is

a P41 approximation. They also give an Q(min{n, P}) lower bound for deterministic algorithms.?

!The proof presented by Vestjens [86] seems to be incorrect [24]. The result is correct, however, as shown by
Epstein and van Stee [41].

®The actual approximation result by Epstein and van Stee [42] was that an algorithm called Revised Levels
running on Im processors could get a solution with at most O(min{P'/!,n'/'}) times the total flow time of the
optimal algorithm running on m processors. The lower bound was Q(min{n'/!, PY/'}/(121)!) in the same setting.
The quoted results follow by plugging in [ = 1 and noticing that Revised Levels on a single processor is SPT.
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Bunde [25] improves these results by showing that SPT is (P+1)/2-competitive for nonpreemptive
total flow time and that no nonpreemptive algorithm can achieve a constant ratio better than this.
Even with randomization and the ability to restart jobs, Epstein and van Stee [41] show that any
algorithm is Q(v/P)-competitive.> When a randomized algorithm is required to be busy, Bunde [24]
shows that it cannot have a constant competitive ratio better than (P+6)/8. Even offline, Kellerer
et al. [55] shows that total flow time cannot be approximated to within a factor of P/3~¢ for any
constant ¢ > 0 unless P=NP.*

Minimizing total flow time on a multiprocessor is hard even with preemption. Leonardi and Raz
[63] show that any online algorithm is Q(log(n/m))-competitive and Q(log P)-competitive using
the idea in Figure 3.1. They also show that SRPT is O(log(n/m))-competitive and O(log P)-
competitive, meaning is it still within a constant factor of being the best algorithm. (Leonardi [62]
gives a simpler version of the upper bound.) Phillips et al. [67] show that SRPT becomes optimal
for the multiprocessor case when given processors that are (2 — 1/m) times as fast.

When preemption is not allowed, Epstein and van Stee [42] show that every deterministic
multiprocessor algorithm is Q(P/m)-competitive.®

In the offline setting, many total flow problems are NP-hard since the equivalent total comple-
tion problem is known to be NP-hard. (Note that the optimal solution is the same for these two
metrics.) In particular, both minimizing either metric is NP-hard on a multiprocessor [38], without
preemptions [61], and with weighted jobs [58]. Unlike with total completion time, where Afrati et
al. [3] give a PTAS for all these problems, however, total flow time is also hard to approximate.

/4 can-

Leonardi and Raz [63] show that nonpreemptive multiprocessor total flow time with m <n
not be approximated within a factor of n!/3=¢ or P1/3=¢ for any ¢ > 0 unless P=NP.% Bunde [24]
strengthens these lower bounds to n'!~¢ and P'~¢ if the schedules are required to be busy.

The best known algorithm for multiprocessor total flow time without preemptions is due to

3This result is not specifically claimed by Epstein and van Stee [41]; it is achieved by a slight modification of their
proof that every randomized algorithm is Q(y/n)-competitive even with restarts.

“This result is mnot specifically claimed by Kellerer et al. [55]; it is achieved by noticing that
P =0(r?g) = O(r®k?) = O(n®/?) in their n'/>~¢ lower bound argument.

5This result is not specifically claimed by Epstein and van Stee [42]; it is achieved by noticing that P = 2n/m in
their Q(n/m?) lower bound argument.

5The result in terms of P is not specifically claimed by Leonardi and Raz [63]; it is achieved by noticing that
P = O(mr?g) = O(mr®k®) = O(r®k®) = O(n) in their argument that no algorithm can achieve a approximation
factor of Q(nl/37).
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preemptive nonpreemptive

Q(v/n) [86, 41]
QUVP) [41]

online < % [25]

deterministic alg.: Q(n) [55]

1 1 [Sc68,Sm78|

O(vn) (5]

offtine w(n'/2=€) if P # NP

online | O(logmin{P,n/m}) [63] deterministic alg.: Q(n/m?) [42]
m O(v/n/mlog(n/m))

offline | O(log min{P,n/m}) [63] w(nl/3=€) if P # NP [63]

w(P'/3=¢) if P # NP

Table 3.1: Approximibility of total flow time

Leonardi and Raz [63]. It is an O(y/n/mlog(n/m))-approximation and is based on removing the
preemptions from the SRPT schedule using techniques similar to those applied by Kellerer et
al. [55] in the uniprocessor setting.

Table 3.1 summarizes the known results on total flow time.

3.1.1 'Weighted total flow time

Unlike total flow, weighted total flow time cannot be solved optimally in the online setting
even with preemption. Epstein and van Stee [41] show that deterministic preemptive algorithms
cannot be better than 2-competitive and that randomized preemptive algorithms cannot be better
than 4/3-competitive. (The 4/3 bound was independently discovered by Chekuri et al. [31].) When
preemption is not allowed, Epstein and van Stee [41] show that every algorithm is 2(n)-competitive.
They also show that every algorithm is Q(\/W )-competitive when restarts are not allowed. In
the multiprocessor setting, Chekuri et al. [31] show that randomized preemptive algorithms are
Q(min{v/P, VW, {/n/m})-competitive.

As with total flow time, it is useful to think about the incremental increase in weighted flow over
time when designing algorithms. An algorithm is said to be locally c-competitive if the weight of
its active jobs is at most ¢ times the optimal weight of active jobs at all times. Becchetti et al. [20]

show that local c-competitiveness is a necessary and sufficient condition for an algorithm to be ¢-
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preemptive nonpreemptive
> 4/3 [41, 31
O(log W) [15]
1 | O(logn +logP) if n,P, and W known [15]
O(log? P) if P known [31]
deterministic alg: > 2 [41]

m Q (min{\/]_D, VW, {L/n/—m}> 31]

Table 3.2: Competitiveness of online weighted total flow time

Q(n) [41]
QW) [41]

competitive. Bansal and Dhamdhere [15] use this idea to give a k-competitive algorithm, where k is
the number of distinct weights. By rounding job weights to powers of two, their algorithm becomes
O(log W)-competitive. If the values of n, P, and W are known, Bansal and Dhamdhere [15] also
give an O(log n+log P)-competitive preemptive algorithm. If only the value of P is known, Chekuri
et al. [31] give an O(log? P)-competitive preemptive algorithm.

Table 3.2 summarizes the known results on the competitiveness of online algorithms for total
weighted flow.

In the offline setting, Chekuri et al. [31] give a (2 + €)-approximation algorithm that runs in

nOUos®n) time assuming that the processing times are polynomial in n. Chekuri et al. [30] give a

PTAS when P = O(1) and an (1+€)-approximation algorithm with running time O(n©(lcg W log P/e*)y,

3.2 Previous work on scheduling with rejections

Scheduling with rejections is a relatively new research area. The work most relevant to our
results is by Bansal et al. [14], included in Bansal’s dissertation [13], who pose the problem of
minimizing total flow time with rejections. They show that no randomized algorithm is better
than /n or v/C-competitive when the rejection costs are arbitrary. (Recall that C' is the ratio
between the largest and smallest rejection costs.) Therefore, the bulk of the paper focuses on the
case when all rejection costs are the same. For this case, they give a 2-competitive algorithm and a
lower bound of 3/2 that holds even for unit-length jobs. They also mention a (1 €)-approximation

Ologn/e*) for the offline problem.

with running time n
Bansal et al. [14] also consider the weighted problem. Using ideas of Bansal and Dhandhere [15],

they generalize their 2-competitive algorithm to the weighted problem by rounding weights to
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powers of 2. This leads to an O(log2 W)-competitive algorithm if all jobs in a weight class have the
same rejection cost. (Recall that W is the ratio between the largest and smallest weights.) They
also give an algorithm for general rejection costs that is O(1(log W +log C)?)-competitive if it runs
on a processor that is (1 + €) times faster than the optimal solution’s processor.

Engels et al. [40] consider offline algorithms to minimize a related metric, weighted handling
time. They give optimal algorithms for some special cases when all jobs arrive at time 0 on a
single machine and approximation algorithms for scheduling multiple unrelated machines. They
also show that minimizing weighted handling time is NP-complete even when all jobs arrive at time
0, have weight equal to their processing time, and have the same rejection cost. This implies that
minimizing weighted flow time is NP-complete under the same conditions.

Scheduling with rejections was introduced by Bartal et al. [19], who tried to minimize makespan
on a nonpreemptive multiprocessor. Seiden [77] gives better bounds by allowing preemption and
Hoogeveen [48] considers the offline problem with preemption. Sengupta [78] considers scheduling

with rejections to minimize lateness and tardiness.

3.3 Lower bounds

Now we give lower bounds on the competitive ratio when all jobs have the same rejection cost,
which we denote with ¢. In our proofs, we use OPT to refer to the optimal algorithm and ALG to

refer to a hypothetical algorithm whose competitive ratio is better than our bounds.

3.3.1 When all jobs have unit length

Our first lower bound applies to unit-length jobs. It is a generalization of 3/2-competitiveness
bound due to Bansal et al. [14]. The instance in their bound has two parts. The first is a stream
of jobs, one released at each unit time. The second is a single “extra” job, released at time 0. The
stream continues until the algorithm rejects a job, which we may assume to be the extra one. Their
lower bound of 3/2 comes from the tradeoff between rejecting the extra job quickly, in which case
OPT finishes all jobs quickly and there is little to amortize the rejection cost against, and rejecting
the extra job later, in which case OPT rejects it immediately and the algorithm’s flow time is too

large.
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Our lower bound instance consists of a stream of jobs arriving one per time unit and k extra
jobs released at time 0. We will show that the algorithm cannot achieve a competitive ratio better
than e/(e — 1) because it must wait until a time 73 ;c to make the i'! rejection, but that delaying

the rejections to these times yields the same competitive ratio. We define 7y, ; recursively as follows:

Tk70 =0

i+ T T — (= )Ty
Thi = (Jk jr 1)]/(6 T (3.1)

Subtracting 74 ;1 from 75 ; and solving for the difference gives the following alternate definition:

i

1
L D= DG &2

Jj=1

In this paper, we use the following observations about 7 :
Lemma 3 For all values of k, 1,3, < 1.
Lemma 4 limj_,o 7 = 1.

These lemmas have technical and unenlightening proofs, which appear in Appendix B. Instead,

we proceed with the lower bound:

Theorem 5 No deterministic algorithm for flow time with rejections is (e/(e — 1) — €)-competitive

for any constant € > 0 even when all jobs have unit length and the same rejection cost.

Proof: Suppose to the contrary that ALG is (e/(e — 1) —€)-competitive. Choose k large enough so
T,k > 1 —€/2, which is possible by Lemma 4. We consider the instance described above consisting
of a stream of jobs, one released at each unit time, and k extra jobs released at time 0. All jobs
have unit length and rejection cost ¢ = 6k /e.

Let time ¢; be when ALG makes its i rejection, assuming the stream continues until time ¢;.
We consider two cases. The first is ¢; < 7, ;¢ for some smallest value 4. In this case, the last job
of the stream arrives at time ¢;. ALG has cost at least ic + 23‘21 ti+(k—i+1)t; + (k+217") >

ic+ Z;zl tj+ (k—1i+41)t;. OPT has cost at most (k+1)t; + (kgl) If i = 1, the competitive ratio
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is at least ec/((e — 1)c + k?) > e/(e — 1) — € and we are done.  If i > 1, the cost of OPT is at
most (k+ 1)t; + ("11) < (b + Dt; + k% < (k+ Dt;(1+¢/(3(e — 1)) < (k+ 1)t;(1 + (e — 1) /e).

Algebraic manipulation of the ratio between these bounds leads to a contradiction:

e+t (k—i+ 1)t 1 ie+ Yt - - )ty
G+ )b tele—1)je)  ~ 1t+ee—Dje  htrDt(l+ee—1)/e)
1 ic+ Y0y Thje— (i — D7g e
2 1+e(e—1)/e + (k+ 1)1y ic(1+€(e —1)/e)
T (e—D(1+e(e—1)/e)
> eil — €.

In the second case, t; > 7y ;c for each ¢. In this case, the last job of the stream arrives at time
ti. The cost of ALG is kc + Zle ti+tp+1>ke+ Zf:ll TiC + 2ty + 1. OPT can immediately
reject all k extra jobs, so its cost is at most kc + t; + 1. Again, manipulation of the ratio between

these bounds leads to a contradiction:

kC+Z§:1Tk7i+tk+1 S kC—l—Zf:lTk,iC-l-Tk’kC—i-li n ZleTk,i

ke+t, +1 - ke+ 1 pe+ 1 - ke+ mpp + 1
k k

> 1+7Z":1T’” > 1+ 2zt Thi
k+1+1/c (k+1)(1+¢/6)

S 14 1 _ ke

- (e—1)(1+¢/6) 2(k+1)(1+¢/6)
1_

> 14 1B
e_

> e
— €.

e—1

3.3.2 When jobs have arbitrary processing times

For jobs with arbitrary processing times, we prove the following stronger lower bound:

Theorem 6 When jobs have uniform rejection cost and arbitrary processing time, no deterministic

online algorithm has a constant competitive ratio better than (2 +v/2)/2 ~ 1.707.
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Again, the best previously-known lower bound was 3/2, due to Bansal et al. [14], which applied
to unit-length jobs with uniform rejection costs.
Proof: Let & = (2 + v/2)/2. Suppose to the contrary that a deterministic algorithm ALG is
(& — €)-competitive. Without loss of generality, we assume 1/€ is an integer. Let ¢ = 2§ /e.

Using these values, we give an input instance on which ALG has competitive ratio worse than
& —e. At time 0, release a job with processing time ¢/§ = 2/e. Starting at time ¢/& — 1, release a
job with processing time 1 every unit time until ALG rejects a job at some time ¢. If t < ¢/§ — 1,
the instance has only one job and the competitive ratio is at least ¢/(¢/§) = & > £ — €. Otherwise,

the competitive ratio is
2% —(c/&—1)+c+1
min{t+ 1,c} +t+1—(c/E—1)

This is minimized when ¢t = ¢ — 1, so this ratio is at least

3c—c/E
2c—c/E+ 1

Since the ratio is at most 2, this is greater than

3c—c/E—2

Se—cJE >E—2/c>E&—e

a

Intuitively, the bound is improved by the flow time incurred before ALG rejects the long job.

3.4 Algorithms for unit-length jobs

Now we give algorithms for the special case of unit-length jobs. By restricting ourselves to
this case, we give an optimal offline algorithm and a 2-competitive online algorithm for jobs with
arbitrary rejection costs. The only previously-known algorithm for arbitrary rejection costs was
the online algorithm of Bansal et al. [14] that is O(2(log W + log C)?)-competitive if it runs on a

processor that is (1 4 €) times faster than the optimal solution’s processor.
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3.4.1 Optimal offline algorithm

We begin by observing which jobs an offline optimal algorithm rejects. We call r; 4+ ¢; the rank

of job J; and denote it with rank(J;).

Lemma 7 If OPT rejects some job J; when scheduling unit-length jobs, then no job with rank

lower than rank(J;) is active any time during the interval [r;,r; + ¢;).

Proof: Suppose to the contrary that OPT rejects some job J; but completes a job J; during
[ri, 7 + ¢i), with 7 + ¢; < 7 + ¢;. Consider schedule OPT" that is identical to OPT except that
OPT' rejects J; at time r; and runs J; in the time freed up, i.e. starting at time CJ-OPT — 1 and
ending at CJOPT. Jobs J; and J; contribute ¢; + C]OPT —7rj to OPT and CZOPT/ —1r;+¢; to OPT.
By construction, Cio PT" — CJ-OP T and the cost of every job other than J; and Jj is the same. Thus,
cost(OPT") — cost(OPT) = —rj+c¢; — (¢; —1j) = 1j+¢j — (1:+¢;) < 0. Therefore, schedule OPT"
is strictly better than OPT, a contradiction. O

Implicit in the proof of this lemma is that a rejected job can be swapped for a job of equal rank
without affecting the total cost. Let a normalized optimal solution be an optimal solution that
rejects the fewest number of jobs and always runs the active job with highest rank, breaking ties
with the job number. Such an optimal solution always exists because the order in which unit-length
jobs are run does not affect the flow.

Lemma 7 leads us to the algorithm Offline Highest Rank First (HRF-OFF). At all times, HRF-
OFF runs the active job with highest rank, again using job numbers to break ties. It rejects any

job whose flow time equals its rejection cost, i.e., any job not completed by time equal to its rank.

Each of HRF-OFF’s rejections occurs at the rejected job’s arrival time.
Theorem 8 Algorithm HRF-OFF is optimal for unit-length jobs with arbitrary rejection costs.

Proof: Let OPT be a normalized optimal solution. By construction, OPT and HRF-OFF can
only differ if they reject different jobs. Consider the first time this occurs. Since both algorithms
always reject jobs when they arrive, this time is the arrival time r; of some job J;.

Suppose HRF-OFF rejects job J; and OPT does not. This is the first difference between the

schedules so OPT and HRF-OFF have the same active jobs just prior to time r;. Also, Lemma 7
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implies that OPT does not reject jobs ranked above J; arriving between times r; and Cio PT Since
both OPT and HRF-OFF run jobs in order of decreasing rank, they have the same higher-ranked
active jobs throughout this interval. HRF-OFF is busy with higher-ranked jobs until time r; 4+ ¢;
because it rejects job J;. Thus, the flow time of job J; in OPT is greater than ¢;, a contradiction.

Now suppose OPT rejects job J; and HRF-OFF does not. Let t = C’iHRF’OFF — 1 be the time
HRF-OFF starts job J;. At time ¢, HRF-OFF has completed all jobs ranked above J; that have
arrived because it runs jobs in order of decreasing rank. (None are rejected since a job is rejected
exactly when it cannot be completed by time equal to its rank and ¢ < rank(J;) < “higher” rank.)
OPT also runs jobs in order of decreasing rank so it has also completed these jobs. By Lemma 7,
OPT has no lower-ranked active jobs at time ¢ since r; < t < rank(J;) = r; + ¢;. Thus, it has
no active jobs at time ¢ and running job J; then instead of rejecting it is a valid schedule. This

schedule has fewer rejections than O PT and no worse cost, a contradiction. O

3.4.2 2-competitive online algorithm

HRF-OFF makes most of its decisions online, but is an offline algorithm since running it online
requires the ability to reject jobs retroactively. We call the algorithm that rejects jobs when their
flow time equals their rejection cost Online Highest Rank First (HRF-ON) since it can run online.

By Theorem 8, HRF-ON is optimal if each rejection is made retroactively at the job’s release

time. Since each rejected job J; accumulates flow time ¢; before rejection, we get the following:
Theorem 9 HRF-ON is 2-competitive for unit-length jobs having arbitrary rejection costs.

In fact, HRF-ON is not (2 — €)-competitive for any constant ¢ > 0 even if we assume it rejects
jobs once it is clear their flow time will exceed their rejection cost. Consider the following instance
where all jobs have rejection cost ¢: /c jobs (the main group) arrive at time 0 and another job
arrives at each time 7 for i = 0,...,c—1 (the stream). The algorithm keeps all the main group jobs
until time ¢ — /¢, at which point it rejects them one at a time, one per unit time. Thus, these jobs
incur cost v/c(c—+/c)+ (‘éz) +ey/e = 2632 —¢/24/¢/2. Jobs in the stream run as they arrive, for
combined flow time and cost ¢. Thus, the total cost is 2¢3/2 4 ¢/2 + \/c/2. The optimal algorithm
rejects the main group immediately and runs the stream as it arrives, for total cost ¢¥/2 4 ¢. Thus,

the competitive ratio approaches 2 as ¢ increases.
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3.4.3 Online algorithm when all jobs have rejection cost ¢

Let the pseudoschedule of a schedule be the modification created by keeping each rejected job J;
active for ¢; time units. Intuitively, these jobs wait until being instantly finished or rejected for free.
Note that the pseudoschedule’s total flow is the cost of the schedule from which it is made. When
this schedule is an optimal schedule, we call the result an optimal pseudoschedule. The optimal
pseudoschedule can be generated by an online simulation of HRF-OFF since HRF-OFF is optimal
and decides whether to reject each job .J; within time ¢; of its release.

Using this simulation, we define a family of algorithms called ratio rejecting. A member of this
family is denoted RR(p) for a constant p > 1, though we omit p when discussing a general property
of the family or when its value is clear from context. Let cOsT(FOPT,t) and COST(RR(p),t) be
the costs incurred up to time ¢ by the simulation and RR(p), respectively. RR(p) always runs the

most recently-arrived job. It rejects the active job with earliest arrival time whenever

COST(RR(p),t) + ¢
cosT(EOPT,t) —

(3.3)

Since COST(FOPT,t) is a lower bound on the optimal cost, this condition ensures that the com-
petitive ratio is at most p when RR(p) makes a rejection. This observation quickly leads to the

following lemma:
Lemma 10 RR(p) is p-competitive if it handles each job within time c of its release.

Proof: Let OPT be an optimal pseudoschedule. We claim that each job is active in OPT at least
as long as in RR. For jobs that OPT rejects, this follows immediately from our assumption on
job handling times since these jobs are active in OPT for time c after their release. Suppose to
the contrary that there exists a job that OPT runs before RR. Let J; be the job with earliest
completion time in RR having this property. Let J; be the job RR completed immediately before
Ji. Because RR runs the job with latest arrival time, r; > r;. OPT does not reject job J; since
it does not reject job J;. Also, because it uses the same criteria to select which job to run, OPT
must have completed job J; before running job J;. Thus, CJ-OP T < C’iOP T < CJRR, contradicting

our assumption that job .J; was the first job that OPT runs before RR.
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Now the lemma follows by considering how the ratio COST(RR, t)/cosT(EOPT,t) changes over
time. Since each job is active in OPT at least as long as in RR, COST(EOPT,t) increases at least
as fast as COST(RR,t) except when RR rejects a job. Thus, the ratio declines toward 1 except
when RR rejects a job. By definition, however, RR only rejects a job when doing so does not raise
the ratio above p. Therefore, the ratio lies between 1 and p at all times. Since this ratio at the end
of the input is exactly the competitive ratio, the competitive ratio of RR(p) is at most p. O

Using this, we can show that RR(2) is 2-competitive:
Theorem 11 RR(2) is 2-competitive for unit-length jobs all having rejection cost c.

Proof: Call all jobs that RR(p) does not run within time ¢ of their release eztra jobs. (Note that
this includes all jobs RR rejects.) We show that all extra jobs are rejected within time ¢ of their
release; the result then follows from Lemma 10. First we consider the simple case when all extra
jobs arrive at a single time. Without loss of generality, assume this time is 0. Let k& be the number
of extra jobs and let OPT be a normalized optimal solution.

Let t; be the time of RR’s i*h rejection. For notational convenience, we define g = 0. We show
that the time between t;_; and t; is at most ¢/(k + i). The result then follows from Lemma 3
since the i*h rejection occurs before 7, as defined in Equation 3.2. Consider how the ratio
COST(RR,t)/cosT(EOPT,t) changes between times ¢;_; and ¢;. All k extra jobs contribute to
the denominator since they remain active in the pseudoschedule even if OPT rejects them. Only
k—(i—1) =k+1—1i of them contribute to the numerator since i — 1 have already been rejected.
In addition to the extra jobs, there is at least one other job active at all times or RR would work
on extra jobs. This job and any other non-extra job contributes equally to the numerator and
denominator since OPT and RR process jobs in the same order. Thus, the rejection occurs latest
if k4 2 — 7 jobs contribute to the numerator and k£ 4 1 contribute to the denominator. Therefore,
if RR has not made the i*" rejection before time t; 1 + ¢/(k + i), the largest possible value of the

ratio in Equation 3.3 is

COST(RR,ti—1) + (k+2—1i)c/(k+1i)+c
COST(EOPT,ti—1)+ (k+ 1)c/(k +1)

and RR makes the i*" rejection at that time.
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It remains to show that each extra job is rejected within time c of its release when extra jobs
arrive at several times. Suppose to the contrary that an input instance exists in which some job
J is not handled within time c of its release. Since extra jobs arriving after job J only hasten its
rejection, we assume the extra jobs arriving with J are the last extra jobs and the only ones not
rejected within time ¢ of their arrival. We also assume that non-extra jobs arrive one per unit time
since deviations from this also hasten rejections. Call each set of extra jobs arriving concurrently a
group. We give a modification of the instance that reduces the number of groups in such a way that
every rejection after the arrival of the second group occurs no earlier. This suffices since repeatedly
applying this transformation to our initial instance creates an instance with a single group of extra
jobs that are not all rejected within time ¢, which we have already shown cannot occur.

Suppose the first two groups of extra jobs arrive at times 0 and ¢, respectively. Let k be the size of
the first group and let i be the number of these jobs rejected by time t. Our transformation removes
all jobs arriving before time ¢ and adds k& — ¢ jobs to the second group. We show the rejections
occur later in this modified instance by showing that COST(RR,t) grows at least as quickly and
coST(EOPT,t) grows more slowly. The value of COST(RR,t) grows at least as quickly at time ¢
since exactly the same number of jobs are active in RR. The faster growth continues after time
t because slower growth of cOST(EOPT,t) delays RR’s rejections. To show that cosT(EOPT,t)
grows more slowly, consider how the first group of extra jobs contribute to it after time ¢ in the
original instance. We showed above that an extra group with k jobs causes ¢ rejections by time
Z§'=1 c/(k+j) < ci/k after its arrival. Thus, ¢t < c¢i/k. Since the first group has k jobs contributing
to cOST(FOPT,t) until time ¢, their total contribution after time ¢ is at least ck(1—i/k) = c(k—1).
This is exactly the total contribution of the £ — ¢ jobs we replaced them with. In addition, the
replacement jobs contribute until time ¢ + ¢ rather than stopping at time c. Since the contribution
of the replacement jobs is no larger and it is more dispersed, cOST(EOPT,t) grows more slowly.

a

3.5 NP-completeness of minimizing flow with rejections

Turning to the offline problem, we show that a restricted version of the problem is NP-complete.

This is the first offline hardness result for the unweighted problem, answering an open question
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posed by Bansal [13].

Theorem 12 Minimizing total flow time with rejections is NP-complete even when the cost of

rejecting a job is proportional to its processing time.

Note that this theorem implies that minimizing the sum of completion times with rejection is
also NP-complete since the same schedule is optimal for total flow time and sum of completion
times. In fact, our proof uses ideas of Du et al. [38], who proved that it is NP-complete to find a
multiprocessor preemptive schedule minimizing the sum of completion times. Rejected jobs in our

schedule are equivalent to jobs running on a second processor in theirs.

Proof: The problem is in NP because once the jobs to reject are specified, the others are run using

SRPT [14]. To show hardness, we give a reduction from PARTITION [46]:

PARTITION: Given a multiset A = {aj,as9,...,a,}, does there exist a partition of A

into A; and As such that Za¢€A1 a; = ZaieAQ a;?

Let B =)"" , a;. We assume B is even since otherwise such a partition cannot exist. We also
assume n > 5 since small instances of PARTITION can be quickly decided. We create a scheduling
instance with n+ 2 jobs where each job’s rejection cost is 5/2 times its processing time. The first n
jobs are small jobs, each created from a member of A. These are released periodically. In addition,
one large job is released immediately and another arrives later. The instance is constructed so
that a solution to PARTITION corresponds to a schedule rejecting the jobs created from members
of A; and completing all other jobs by the arrival time of the second large job. Specifically, we
create job J; created from a;, where r; = 2(i — 1)B, p; = 2a;, and ¢; = 5a;. For the large jobs,
Dn+l = Pny2 = 2nB, che1 = Cpyo = B, rpe1 = 0, and 142 = 2nB + B. We ask for a schedule
with cost at most (4n + 9/2)B. Figure 3.2 illustrates the instance.

Given a solution to PARTITION, we construct a schedule having this cost exactly as described
above. We reject the jobs created from elements of A; and run the other small jobs as they arrive.
Job J,41 runs interspersed with these, completing at time 2nB + B so job J, 42 runs as soon as it
arrives. This gives a total cost of exactly (4n + 9/2)B.

It remains to show how to construct sets A; and As from a schedule with cost at most (4n +

9/2)B. Clearly, the schedule does not reject job Jy, 41 or job Jy,4+2. Let A; contain the elements of A
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Figure 3.2: Instance showing that minimizing flow with rejections is NP-hard. Depicts the release
time of every job and shows each small job running at its release time.

that created rejected jobs and As contain the other members of A. We assume that each accepted
small job J; runs immediately after arriving since otherwise doing so produces a schedule with no
greater cost. Similarly, we assume that job J,1 completes before job J, o starts. If > aeA, Gi >
B/2, then job J,41 completes after the arrival of J,42 and so the cost is at least 52%,6 A, @i+
2 pea, i+ (2nB+230, (4 ai) + (2nB+2Y, (4, 0i— B) =4nB+ 4B+ Y, 4, ai > (4n+
9/2)B. (Recall that 3, 4, @i+ ,.c4,a = B.) However, if 37, a; < B/2, then the cost is at
least 5, ca, Git2Y 4 ca, 6it(2nB +23, ca, i) +2nB = 4nB+5B=Y", 4 a; > (4n+9/2)B.

Thus, the elements of 41 and A each sum to B/2. O

3.6 Discussion

Although we have made progress on several parts of this problem, there remain areas for further
work. We are most interested in closing the gap between the lower bound of e/(e — 1) ~ 1.582
and the various 2-competitive algorithms for unit-length jobs with rejection cost c. We believe
that RR can be better than 2-competitive; certainly there is slack for a single group of extra jobs,
which RR(2) finishes by approximately 0.7¢c. There is also still a gap between our lower bound of
(2 4+ /2)/2 ~ 1.707 and the 2-competitive algorithm of Bansal et al. [14] for jobs with arbitrary
processing times and rejection cost ¢. In addition, it would be interesting to know if randomized
algorithms can beat the competitive ratios given in Theorems 5 and 6. In the offline setting, we
have shown that one form of the problem is NP-complete, but it is not known whether the problem
remains NP-complete when all jobs have rejection cost c. Another open question is whether either

the full problem or this special case admit a PTAS.
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Chapter 4

Power-aware scheduling

The chapter contains our results on power-aware scheduling. Section 4.1 describes previous work
in power-aware scheduling. Section 4.2 gives our uniprocessor algorithm to find all non-dominated
schedules for makespan. Section 4.3 shows that the laptop problem cannot be exactly solved for
total flow time. Section 4.4 extends the uniprocessor results to give our multiprocessor algorithms
for equal-work jobs and shows that the general multiprocessor laptop problem is NP-hard for
makespan. Finally, Section 4.5 discusses future work.

A conference paper with the results of this chapter will appear subsequent to the publication

of this dissertation [27].

4.1 Previous work on power-aware scheduling

The work most closely related to ours is due to Uysal-Biyikoglu, Prabhakar, and El Gamal [84],
who consider the problem of minimizing the energy of wireless transmissions. As with our work, the
only assumption required by their algorithms is that the power function is continuous and strictly
convex. They give a quadratic-time algorithm to solve the server version for makespan. Thus,
our algorithm represents an improvement by running faster and also finding all non-dominated
schedules rather than just solving the server problem.

Several variations of the wireless transmission problem have also been studied. El Gamal et
al. [44] consider the possibility of packets with different power functions. They give an iterative
algorithm that converges to an optimal solution. They also show how to extend their algorithm to
handle the case when the buffer used to store active packets has bounded size and the case when
packets have individual deadlines. Keslassy et al. [56] claim a non-iterative algorithm for packets

with different power functions and individual deadlines when the inverse of the power function’s
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derivative can be represented in closed form. (Their paper gives the algorithm, but only a sketch
of the proof of correctness.)

Another transmission scheduling problem, though one that does not correspond to a processor
scheduling problem, is to schedule multiple transmitters. If we require that only one transmitter
operate at a time, another extension of the iterative algorithm of Uysal-Biyikoglu and El Gamal [83]
converges to the optimal solution. In general, however, there may be a better solution in which
transmitters sometimes deliberately interfere with each other. Uysal-Biyikoglu and El Gamal [83]
give an iterative algorithm to find this solution.

In the processor scheduling literature, the work most closely related to the results in this
chapter is due to Pruhs, van Stee, and Uthaisombut [73]. They consider the laptop problem
version of minimizing makespan for jobs having precedence constraints where all jobs are released
immediately and power = speed®. Their main observation, which they call the power equality, is
that the sum of the powers of the machines is constant over time in the optimal schedule. They use
binary search to determine this value and then reduce the problem to scheduling on related fixed-
speed machines. Previously-known [33, 29] approximations for the related fixed-speed machine
problem then give an O(log1+2/ “m)-approximation for power-aware makespan. This technique
cannot be applied in our setting because the power equality does not hold for jobs with release
dates.

Minimizing the makespan of tasks with precedence constraints has also been studied in the
context of project management. Speed scaling is possible when additional resources can be used
to shorten some of the tasks. Pinedo [68] gives heuristics for some variations of this problem.

A special case of precedence constraints is periodic synchronization barriers. Kappiah et al. [53]
describe a system to slow down lightly-loaded processors, with the goal of eliminating idle time
caused by synchronization.

The only previous power-aware algorithm to minimize total flow time is by Pruhs, Uthaisombut,
and Woeginger [72], who consider scheduling equal-work jobs on a uniprocessor. In this setting,
they observe that jobs can be run in order of release time and then prove the following relationships

between the speed of each job in the optimal solution:

Theorem 13 ([72]) Let Ji, Ja, ..., Jy be equal-work jobs ordered by release time. In the schedule
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Figure 4.1: Non-dominated schedules for power-aware total flow time scheduling instance with
r=0,rg=1,1r3=3, 7 =7 =73 = 1, and power = speed?, taken from Pruhs et al. [72].

OPT minimizing total flow time for a given energy budget where power = speed”, the speed o; of

job Ji (for i # n) obeys the following:
° IfC'iOPT < Tit1, then o; = oy,
o IfCOPT > iy, then 0@ = 04 + 0%,

o IfCOPT =riq, then 0% < 0@ < o2 | + 0%,

These relationships, together with observations about when the schedule changes configuration,
give an algorithm based on binary search that finds an arbitrarily-good approximation for either
the laptop or the server problem. Figure 4.1, reproduced from Pruhs et al. [72], shows the optimal
configurations for an instance with 3 jobs. The configurations are labeled with strings of symbols
<, >, and =. Each symbol gives the relationship between the completion time of a job and the
release of its successor. For example, a < in the first position means that job J; completes before
time 7.

The algorithm of Pruhs et al. [72] actually gives more than the solution to a single problem. It

can be used to plot the exact tradeoff between total flow time and energy consumption for optimal
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Figure 4.2: Relationship between energy and total flow time for instance with r; = 0, ro = 1,
r3 =3, 71 =72 =73 = 1, and power = speed?, taken from Pruhs et al. [72].

schedules in which the third relationship of Theorem 13 does not occur. Figure 4.2, also reproduced
from Pruhs et al. [72], shows this tradeoff for configurations without one job arriving exactly as
another is released, i.e. those for which the third relationship of Theorem 13 does not occur. Our
impossibility result in Section 4.3 shows that the difficulty caused by the third relationship cannot
be avoided.

Albers and Fujiwara [4] propose a variation of the problem with the objective of minimizing
the sum of energy consumption and total flow. When power = speed®, they show that every online
nonpreemptive algorithm is Q(nl_l/ “)-competitive using an input instance where a short job arrives
once the algorithm starts a long job. Their main result is an online algorithm for the special case of
equal-work jobs whose competitive ratio is at most 8.3e(1 + ¢)®, where ¢ = (14 1/5)/2 ~ 1.618 is
the Golden Ratio. This competitive ratio is constant for any fixed a, but very large; for a = 3, its
value is approximately 405. They also give an arbitrarily-good approximation for the offline problem
with equal-work jobs and suggest another possible online algorithm. Bansal, Pruhs, and Stein [18]
analyze this suggested online algorithm using a potential function and show it is 4-competitive.
They also show that a related algorithm has a competitive ratio around 20 for weighted jobs.

The idea of power-aware scheduling was proposed by Weiser et al. [87], who use trace-based
simulations to estimate how much energy could be saved by slowing the processor to remove idle
time. Yao et al. [91] formalize this problem by assuming each job has a deadline and seeking the

minimum-energy schedule that satisfies all deadlines. They give an optimal offline algorithm and
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propose two online algorithms. They show one is (2~ !a®)-competitive, i.e. it uses at most 2~ !a®
times the optimal energy. Bansal et al. [16] analyze the other, showing it is a®-competitive. Bansal
et al. [16] also give another algorithm that is (2(a/(a — 1))%e®)-competitive.

Power-aware scheduling of jobs with deadlines has also been considered with the goal of min-
imizing the CPU’s maximum temperature. Bansal et al. [16] propose this problem and give an
offline solution based on convex programming. Bansal and Pruhs [17] analyze the online algo-
rithms discussed above in the context of minimizing maximum temperature.

A different variation is to assume that the processor can only choose between discrete speeds.
Chen et al. [32] show that minimizing energy consumption in this setting while meeting all deadlines
is NP-hard, but give approximations for some special cases.

Another algorithmic approach to power management is to identify times when the processor or
parts of it can be partially or completely powered down. Irani and Pruhs [52] survey work along

these lines as well as approaches based on speed scaling.

4.2 Makespan scheduling on a uniprocessor

Our first result is an algorithm to find all non-dominated schedules for uniprocessor power-
aware makespan. We begin by solving the laptop problem for an energy budget E. Let OPT be
an optimal schedule for this problem, i.e. OPT has minimum makespan among schedules using

energy F.

4.2.1 Algorithm for laptop problem

To find OPT, we establish properties it must satisfy. Our first property is due to Yao, Demers,
and Shenker [91], who observed that the speed does not change during a job or energy could be

saved by running that job at its average speed.
Lemma 14 ([91]) Each job runs at a single speed in OPT.

We use alA to denote the speed of job J; in schedule A, omitting the schedule when it is clear
from context.

The second property allows us to fix the order in which jobs are run.
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Lemma 15 Without loss of generality, OPT runs jobs in order of their release times.

To simplify notation, we assume the jobs are indexed so 1 < 19 <713 < ... <71y
Proof: We show that any schedule can be modified to run jobs in order of their release times
without changing the energy consumption or makespan. If schedule A is not in this form, then
A runs some job J; followed immediately by some job J; with j < 7. We change the schedule by
starting job J; at time SlA, the time schedule A starts job J;, and job J; after job J; completes
at time SZA + p;‘. The speed of each job is the same as in schedule A so the energy consumption
is unchanged. The interval of time when jobs J; and J; are running is also unchanged so the
transformation does not affect makespan. The resulting schedule A’ is legal since each job starts
no earlier than its release time. In particular, r; < r; < SZA = SJA/ and r; < SZA < SZAI. O

The third property is that OPT is not idle between the release of the first job and the completion

of the last job.

Lemma 16 OPT is not idle between the release of job J1 and the completion of job J,

Proof: Suppose to the contrary that there is an interval of time between times r; and Cg Pr

during which O PT specifies idle time. If OPT is idle before running job Ji, modify the schedule to
start the first job at its release, finishing it at the same time as in OPT. Otherwise, there is a job
J; running before the idle time. In this case, slow job J; so that it completes at the end of the idle
time. In either case, our modification means some job runs more slowly. This change saves energy,
which can be used to speed up job J, and lower the makespan, contradicting the optimality of
OPT. O

Stating the next property requires a definition. A block is a maximal substring of jobs such that
each job except the last finishes after the arrival of its successor. For brevity, we denote a block
with the indices of its first and last jobs. Thus, the block with jobs J;, Jiy1,...,J;j—1,J; is block

(7,7). The fourth property is the analog of Lemma 14 for blocks.
Lemma 17 In OPT, jobs in the same block run at the same speed.

Proof: If the lemma does not hold, we can find two adjacent jobs J; and J;y1 in the same block

of OPT with o; # 0;4+1. Let € be a positive number less than the amount of work remaining in
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job J; at time 7;11. Consider changing the schedule by running e work of J; at speed ;41 and
€ work of J;11 at speed o;. Since the block contains the same amount of work at each speed,
the makespan is unchanged and the same amount of energy is used. By construction, this change
does not cause the schedule to violate any release times. Job J; does not run at a constant speed,

however, contradicting Lemma 14. |

Lemma 17 shows that speed is a property of blocks. In fact, if we know how OPT is broken
into blocks, we can compute the speed of each block. The definition of a block and Lemma 16
mean that block (4, j) starts at time r;. Similarly, block (4, j) completes at time ;41 unless it is
the last block. Thus, any block (4,7) other than the last runs at speed ( i:i Y&)/(rj+1 —ri). To
compute the speed of the last block, we subtract the energy used by all the other blocks from the
energy budget E. We choose the speed of the last block to exactly use the remaining energy.

Using the first four properties, an O(n?)-time dynamic programming algorithm can find the
best way to divide the jobs into blocks. To improve on this, we establish the following restriction

on allowable block speeds:
Lemma 18 The block speeds in OPT are non-decreasing.

Proof: Suppose to the contrary that OPT runs a block (i, 7) faster than block (j+1,k). Let € > 0
be less than the amount of work in either block. We modify the schedule by running e of the work
in each block at the other block’s speed. This does not change when the pair of blocks complete or
how much energy they consume since the same amount of work is run at each speed. The modified
schedule is valid since no job starts earlier than in OPT. Thus, we have created another optimal

schedule, but it runs block (7, j) at two speeds, contradicting either Lemma 14 or Lemma 17. O
It turns out that OPT is the only schedule having all the properties given by Lemmas 14-18.

Lemma 19 For any energy budget, there is a unique schedule having the following properties:
1. Fach job runs at a single speed
2. Jobs are run in order of release time

3. It is not idle between the release of job J1 and the completion of job J,
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4. Jobs in the same block run at the same speed

5. The blocks speeds are non-decreasing

Proof: Suppose to the contrary that A and B are different schedules obeying all five properties
and consuming the same amount of energy. Since each schedule is determined by its blocks, A and
B must have different blocks. Without loss of generality, suppose the first difference occurs when
job J; is the last job in its block for schedule A but not for schedule B. We claim that every job
indexed at least ¢ runs slower in schedule B than in schedule A. Since energy consumption increases
with speed, this implies that schedule B uses less energy than schedule A, a contradiction.

In fact, we prove the strengthened claim that every job indexed at least ¢ runs slower and
finishes later in schedule B than in schedule A. First, we show this holds for job J;. Job J; ends
its block in schedule A but not in schedule B so CP > r;41 = CZA. Since each schedule begins the
block containing job J; at the same time and runs the same jobs before job J;, job J; runs slower
in schedule B than schedule A.

Now we assume that the strengthened claim holds for jobs indexed below j and consider job
Jj. Since each job J;,...,J;j_1 finishes no earlier than its successor’s release time in schedule A,

each finishes after its successor’s release time in schedule B. Thus, none of these jobs ends a block

in schedule B and schedule B places jobs J; and J; in the same block, which implies O'JB = O’iB .
Speed is non-decreasing in schedule A so 0'{4 < 034. Therefore, 0;5 = O'iB < UZA < 034 so job J; runs

slower in schedule B than in schedule A. Job J; also finishes later because job J;_; finishing later
implies that job J; starts later. O

Because only OPT has all five properties, we can solve the laptop problem by finding a schedule
with the properties. For this task, we propose an algorithm IncMerge. This algorithm maintains
a tentative list of blocks, initially empty. Each block knows its speed, calculated as described
above from the release time of the next job (including jobs not yet added to the schedule) or the
energy budget. Jobs are added to the schedule one at a time in order of their release times. When
a new job is added, it starts in its own block. Then, while the last block runs slower than its
predecessor, the last two blocks are merged. Assuming the input jobs are already sorted by release

time, IncMerge runs in O(n) time since each job ceases to be the first job of a block once.
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Figure 4.3: Relationship between energy and makespan in non-dominated schedules for instance
with r1 =0, 71 =5, 79 =5, 72 = 2, 3 = 6, 73 = 1, and power = speed?.

4.2.2 Finding all non-dominated schedules

A slight modification of IncMerge finds all non-dominated schedules. Intuitively, the modified
algorithm enumerates all optimal configurations (i.e. ways to break the jobs into blocks) by starting
with an “infinite” energy budget and gradually lowering it. To start this process, run IncMerge as
above, but omit the merging step for the last job, essentially assuming the energy budget is large
enough that the last job runs faster than its predecessor. To find each subsequent configuration
change, calculate the energy budget at which the last two blocks merge. Until this value, only
the last block changes speed. Thus, we can easily find the relationship between makespan and
energy consumption for a single configuration and the curve of all non-dominated schedules is
constructed by combining these. The curve for an instance with three jobs and power = speed? is
plotted in Figure 4.3. The configuration changes occur at energy 8 and 17, but they are not readily
identifiable from the figure because the makespan/energy curve is continuous and has a continuous
first derivative for this power function. Higher derivatives are discontinuous at the configuration

changes. Figures 4.4 and 4.5 show the first and second derivatives.
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Figure 4.4: Relationship between energy and 1st derivative of makespan in non-dominated schedules
for instance with r1 = 0,71 =5, 79 = 5, 72 = 2, 13 = 6, 43 = 1, and power = speed?.
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Figure 4.5: Relationship between energy and 2nd derivative of makespan in non-dominated sched-
ules for instance with 71 =0, v =5, 7o = 5, 7 = 2, 3 = 6, 73 = 1, and power = speed?.



4.3 Impossibility of exactly minimizing total flow time

We have completely solved uniprocessor power-aware makespan by showing how to compute
all non-dominated schedules, forming a curve such as Figure 4.3. We have already observed that
the analogous figure from previous work on power-aware scheduling for total flow time (reproduced
as Figure 4.2) was plotted with gaps where the optimal configuration involves one job completing

exactly as another is released. We now show that these gaps cannot be filled exactly.

Theorem 20 If power = speed®, there is no exact algorithm to minimize total flow time for a given
energy budget using operations +, —, X, /, and the extraction of roots, even on a uniprocessor with

equal-work jobs.

Proof: We show that a particular instance cannot be solved exactly. Let jobs J; and .Jo arrive at
time 0 and job J3 arrive at time 1, each requiring one unit of work. We seek the minimum-flow

schedule using 9 units of energy. Again we use o; to denote the speed of job J;. Thus,

o} + 03+ 05=09. (4.1)

For energy budgets between approximately 8.43 and approximately 11.54, the optimal solution

finishes job Jy at time 1. Therefore,

1 1
—+—=1 (4.2)
01 g9
and Theorem 13 gives us that
o} = o5 + 3. (4.3)

Substituting Equation (4.2) into Equations (4.1) and (4.3), followed by algebraic manipulation

gives

2042 — 12041 + 6040 + 10809 — 15905 — 73803 + 241509

102605 — 594005 + 1215005 — 1044903 + 437409 — 729 = 0.

According to the GAP system [45], the Galois group of this polynomial is not solvable. This implies

the theorem by a standard result in Galois theory (cf. [39, pg. 542]). We owe the idea for this type
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of argument to Bajaj [12]. |

Since an arbitrarily-good approximation algorithm is known for total flow time, one interpreta-
tion of Theorem 20 is that exact solutions do not have a nice representation. For most applications,
the approximation is sufficient since finite precision is the normal state of affairs in computer science.
Certainly, it could be used to draw an approximate curve for the gaps in the Figureflow-energy-fig.
Only an exact algorithm such as IncMerge can give closed-form solutions suitable for symbolic

computation, however.

4.4 Multiprocessor scheduling

Now we consider power-aware scheduling of serial jobs on a multiprocessor where all the proces-
sors use a shared energy supply. This corresponds to scheduling a laptop with a multi-core processor
or a server farm concerned only about total energy consumption and not the consumption of each
machine separately.

In a non-dominated schedule, the processors are related by the following observations:

1. For makespan, each processor must finish its last job at the same time or slowing the proces-

sors that finish early would save energy.

2. For total flow time, each processor’s last job runs at the same speed or running them at the

average speed would save energy.

Using these observations, slight modifications of IncMerge and the total flow time algorithm of
Pruhs et al. [72] can solve multiprocessor problems once the assignment of jobs to processors is
known.

We show how to assign equal-work jobs to processors for scheduling metrics with two properties.
A metric is symmetric if it is not changed by permuting the job completion times. A metric is
non-decreasing if it does not decrease when any job’s completion time increases. Both makespan
and total flow time have these properties, but some metrics do not. One example is total weighted
flow time, which is not symmetric.

To prove our results, we need some notation. For schedule A and job .J;, let proc? (i) denote

the index of the processor running job .J; and succ(i) denote the index of the job run after J;
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on processor proc(i). Also, let after!(i) denote the portion of the schedule running on processor
proc?(i) after the completion of job .J;, i.e. the jobs running after job J; together with their start
and completion times. We omit the superscript when the schedule is clear from context.

We begin by observing that job start times and completion times occur in the same order.

Lemma 21 If OPT is an optimal schedule for equal-work jobs under a symmetric non-decreasing

metric, then SOTT < SjOPT implies COPT < C]-OPT.

Proof: Suppose to the contrary that SiOPT < S]-OPT and C’iOPT > C]-OPT. Clearly, jobs J; and J;
must run on different machines. We create a new schedule OPT’ from OPT. All jobs on machines
other than proc(i) and proc(j) are scheduled exactly the same, as are those that run before jobs
J; and J;. We set the completion time of job J; in OPT” to C]-OPT and the completion time of job
Jj in OPT’ to COPT. We also switch the suffixes of jobs following these two, i.e. run after(i) on
processor proc(j) and run after(j) on processor proc(i). Job J; still has positive processing time
since SZ»OPT/ = SZOPT < SJOPT < CjOPT = CZ-OPT/. (The processing time of job J; increases so it
is also positive.) Thus, OPT" is a valid schedule. The metric values for OPT and OPT’ are the
same since this change only swaps the completion times of jobs J; and J;.

We complete the proof by showing that OPT’ uses less energy than OPT. Since the power
function is strictly convex, it suffices to show that both jobs have longer processing time in O PT”
than job J; did in OPT. Job J; ends later so its processing time is clearly longer. Job J; also has

longer processing time since runs throughout the time OPT runs job J;, but starts earlier. O

Using Lemma 21, we prove that an optimal solution exists with the jobs distributed in cyclic

order, i.e. job J; runs on processor (i mod m) + 1.

Theorem 22 There is an optimal solution for equal-work jobs under any symmetric non-decreasing

metric with the jobs distributed in cyclic order.

Proof: Suppose to the contrary that no optimal schedule distributes the jobs in cyclic order. Let
1 be the smallest value such that no optimal schedule distributes jobs Ji, Js, ..., J; in cyclic order
and let OPT be an optimal schedule that distributes the first ¢ — 1 jobs in cyclic order. To simplify

notation, we create dummy jobs J_ (1), J_(m—2), - - -, Jo, With job J_(,, ;) assigned to processor .
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By assumption, succ(i —m) # i. Let J; be the job such that succ(l) = i, i.e. the job preceeding job
Ji. Since the first i — 1 jobs are distributed in cyclic order, if we assume (without loss of generality)
that jobs starting at the same time finish in order of increasing index, then Lemma 21 implies that
COPT < COPT,

To complete the proof, we consider 3 cases. In each, we use OPT to create an optimal schedule
assigning job J; to processor (i mod m) + 1, contradicting the definition of i.

Case 1: Suppose no job follows job J;_,,. We modify the schedule by moving after() to follow
Ji—m on processor (i mod m)+ 1. Since CPTT < COPT and after(l) was able to follow job .Jj,
it can also follow job J;_,,. The resulting schedule has the same metric value and uses the same
energy so it is also optimal.

Case 2: Suppose J;_,, is not the last job assigned to processor proc(i — m) and C’IOPT <
Tsuce(i—m)- We extend the cyclic order by swapping after(/) and after(i —m). This does not change
the amount of energy used. To show that it gives a valid schedule, we need to show that jobs J; and
Ji—m complete before after(i —m) and after(l). Job .J; ends by time SOF T(Z.f by the assumption

succ(i—m)

that CZOPT < Tsuce(i—m)- JOb Ji—m ends by time SSOllﬁtjEl) since CZO_%T < CZOPT.

Case 3: Suppose J;_,, is not the last job assigned to processor proc(i — m) and C’IOPT >
Tsuce(i—m)- 11 this case, we swap the jobs Jgcc(i—m) and Jsec(r), but leave the schedules the same.

In other words, we run job Jgcc(i—m) from time Ss?li:{l) to time Cs%ﬁ:{l) on processor proc(l) and

we run job Jyueo(y from time Ss(l)lfc T(’k) to time Csoufc F‘fk) on processor proc(k). The schedules have the

same metric value and each uses the same amount of energy. To show that we have created a valid

schedule, we need to show that jobs Jgce(i—m) and Jgyec(;) are each released by the start time of

the other. Job Jyucc(i—m) Was released by time Ss?lj; :fl) since C’IOP T > Tsuce(i—m)- JOD Jguce(ry Was
released by time Ssouf C@_m) since Tguee(t) < Tsuce(i—m)- (Recall that a job with index greater than i
follows job Ji—m 80 75 = Tsuce(l) < Tsucc(i—m)-) O

A simpler proof suffices if we specify the makespan metric since then OPT has no idle time.
Thus, Tsuec(i—m) < C’iq I;T < CZO PT and case 2 is eliminated.
Theorem 22 allows us to solve multiprocessor makespan for equal-work jobs. Unfortunately,

the general problem is NP-hard.
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Theorem 23 The laptop problem is NP-hard for nonpreemptive multiprocessor makespan, even

when all jobs arrive immediately.
Proof: We give a reduction from PARTITION [46]:

PARTITION: Given a multiset A = {ai,as,...,a,}, does there exist a partition of A

into A; and A, such that Zaiefh a; = ZU,Z'EAQ a;?

Let B = > "' ;a;. We assume B is even since otherwise no partition exists. We create a
scheduling problem from an instance of PARTITION by creating a job J; for each a; with r; = 0
and 7; = a;. Then we ask whether a 2-processor schedule exists with makespan B/2 and a power
budget allowing work B to run at speed 1.

From a partition, we can create a schedule where each processor runs the jobs corresponding
to one of the A; at speed 1. For the other direction, the convexity of the power function implies

that all jobs run at speed 1 so the work must be partitioned between the processors. O

Pruhs et al. [73] observed that the special case of all jobs arriving together has a PTAS based

on a load balancing algorithm of Alon et al. [5] that approximately minimizes the L, norm of loads.

4.5 Discussion

The study of power-aware scheduling algorithms is just beginning so there are many possible
directions for future work. We consider the most important to be finding online algorithms with
performance guarantees for makespan or total flow time. No such algorithms are currently known,
but many scheduling applications occur in the online setting. Our results on the structure of
optimal solutions may help with this task, but the problem seems quite difficult. If the algorithm
cannot know when the last job has arrived, it must balance the need to run quickly to minimize
makespan if no other jobs arrive against the need to conserve energy in case more jobs do arrive.

Another open problem is how to handle jobs with different work requirements while minimizing
multiprocessor makespan. Theorem 23 shows that finding an exact solution is NP-hard, but this

does not rule out the existence of a high-quality approximation algorithm. As mentioned above,

56



there is a PTAS based on load balancing when all jobs arrive together. It would be interesting to
see if the ideas behind this PTAS can be adapted to take release times into consideration.

We would also like to find an approximation for uniprocessor power-aware scheduling to mini-
mize total flow time when the jobs have different work requirements. It is not hard to show that
the relationships of Theorem 13 hold even in this case. Preemptions can also be incorporated with
the preempted job taking the role of job J;4+1 in the second relationship of that theorem. Thus,

the problem reduces to finding the optimal configuration.
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Chapter 5

Conclusions

This dissertation has given algorithms and lower bounds for problems in a number of related ar-
eas. First, we discussed admission control, giving two procedures to combine an accept-competitive
algorithm and a reject-competitive algorithm into an algorithm having both types of guarantees.
Then we discussed scheduling with rejections, a hybrid area that combines admission control and
scheduling. Finally, we turned to power-aware scheduling, giving algorithms and hardness results
for the bicriteria problems combining energy with makespan and flow.

We conclude with some high-level observations. First, in Section 5.1, we observe some connec-
tions between our work in different areas. Then, Section 5.2 discusses possible directions for future

work.

5.1 Common techniques

All three problem areas considered in this dissertation fall under the general category of resource
management. In addition, our results in scheduling with rejections and power-aware scheduling

share some techniques.

5.1.1 Normalizing and structural properties

One shared technique we did not consciously use is identifying a normal form so there is a
unique optimal schedule having this form and then determining its structure. In scheduling with
rejections, the normal form required schedules to reject as few jobs as possible and run jobs in order
of nondecreasing rank, with ties broken by job number. With these restrictions, we devised the
offline optimal algorithm HRF-OFF. They also provided the framework for the online algorithms
HRF-ON and RR.
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In power-aware scheduling, the normal form is simply to run jobs in order of release time. We
were then able to identify a list of necessary properties for an optimal schedule and prove there
was a single normal schedule having these properties. Then IncMerge and its multiprocessor
generalization just need to find a normal schedule having these properties.

The idea of a normal form also appears in our other scheduling work, in the proof that SPT
is (P + 1)/2-competitive for total flow time [25]. That work assumes that SRPT and SPT run
jobs in the same order, easily achieved if ties in job length are broken with job number, and then

identifies a block structure shared by these schedules.

5.1.2 Looking at special cases

The other technique that recurs in our work is focusing on special cases. We deliberately applied
this technique, inspired by the quote “If there is a problem you cannot solve, there is an easier
problem you can solve: find it.”, attributed to Polya.! For scheduling with rejections, we used this
technique after showing that scheduling general jobs is NP-hard and finding ourselves unable to
make progress approximating it. Instead we looked at unit-length jobs, for which we were able to
give an offline algorithm and some online approximations. For power-aware scheduling, we used

the technique for the multiprocessor problem, restricting our attention to equal-work jobs.

5.2 Directions for future work

We conclude by discussing possible directions for future work. The last section of each chapter
gives specific problems (see Sections 2.6, 3.6, and 4.5) so we focus our remarks here on more general

problem areas.

5.2.1 Combining planning and scheduling

The overall goal of scheduling with rejections is to integrate planning and scheduling problems.
All the previous work on these problems (including mine) has formalized this goal as trying to

minimize a scheduling metric plus a term for rejection cost, but that is not the only way to approach

!The closest quotation I have been able to find in his writings is “If you cannot solve the proposed problem, try
to solve first some related problem” [70, pg. 10].
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this goal. One alternative is to look at the scheduling metric and rejection cost as two aspects of a
bicriteria problem. This raises the questions “What is the best schedule achievable with rejection
cost at most k77 and “What is the smallest rejection cost achievable for a schedule with metric
at most k7”. Even better would be finding an algorithm that gives all non-dominated solutions.
Nothing is known about these questions for any scheduling metric; the existing algorithms just give
a single non-dominated solution.

More generally, we believe that work on scheduling with rejections would benefit from having a
specific application in mind. Only then will it be possible to determine reasonable rejection costs

and how to make the tradeoff between schedule quality and rejection cost.

5.2.2 Other models for power-aware scheduling

We also believe that more interaction between theory and application would benefit theoretical
power-aware scheduling. We expect to keep our emphasis on provably-good algorithms and lower
bounds, but also want our work to say something about real systems. Obviously, there is a tradeoff
between how much complexity is incorporated into a model and how easy it is to use that model
to prove theorems, but we believe the standard power = speed® model is too simple. With this in
mind, we have been considering ways in which the model differs from real systems that implement
dynamic voltage scaling and how other features of real systems could be modeled.

The following are some of the differences:

e As discussed in Section 1.1.3, real processors supporting speed scaling typically allow the
speed to be selected from a set of specific values rather than being a continuous variable.
Chen et al. [32] show that scheduling jobs with deadlines in this setting is NP-hard because
the existence of a maximum speed can be used to severely restrict the schedule; the re-
duction for 3-PARTITION creates jobs that must run at maximum speed as soon as they
arrive as “dividers”. This trick cannot be used without deadlines and scheduling to minimize
makespan or flow, however. Our properties of optimal schedules no longer hold in the discrete
setting, however, beginning with the property that each job runs at a single speed in OPT
(Lemma 14).

Two models intermediate between allowing unbounded continuous speeds and restricting
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speed to values from a finite set are allowing the speed to be selected from an infinite set of
discrete values (like powers of 2) or allowing it to take continuous values within some range.

Qu [74] gives some experiments in the latter model.

Another feature of real systems is that slowing down the processor has less effect on memory-
bound sections of code since part of the running time is caused by memory latency. This
observation has led to research in the compiler community on how to profile programs and
insert speed-modifying instructions to slow the processor during memory-bound sections of
code [89, 49]. That problem can be phrased by dividing jobs into segments, each with a time
spent waiting for memory latency and an amount of work. The algorithm is then asked for
a speed for each segment, which is the speed the processor runs throughout that segment.
Freeh at al. [43] give a heuristic for this problem. Another way to phrase this problem
is as scheduling jobs with different power functions, which corresponds to the problem of

transmitting packets with different power functions studied by El Gamal et al. [44].

A fairly complicated difference between our model and reality concerns battery behavior.
Throughout this dissertation, we have treated batteries as stores of energy with a particular
amount of energy that can be delivered in any way desired. In reality, the capacity of a
battery depends on how its energy is consumed because the rate of consumption affects the
chemical reactions that power the battery. Chemical batteries consist of two bars of material
connected to the terminals and suspected in a liquid. The bars connected to the + and —
terminals are called the cathode and anode respectively, and the liquid is called the electrolyte.
This is illustrated in Figure 5.1. Current from the battery takes the form of electrons leaving
the anode and flowing out the — terminal. This creates positive ions, which diffuse through
the electrolyte. These react with the surface of the cathode, where the electrons flowing into
the positive terminal create negative ions. This reaction gradually coats the cathode with a
non-reactive material, eventually blocking the reaction. The energy remaining in the battery

is a function of how much of the cathode has been covered.

Lahiri et al. [59] show how battery chemistry leads to two deviations from the vision of a

battery as a store for a particular amount of energy. The first deviation concerns capacity as
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Figure 5.1: Parts of a battery

a function of the rate of power consumption. At very high rates of consumption, reactions
occur unevenly on the cathode, causing the non-reactive material to deposit in a way that
blocks access to some of the reaction sites. Thus, at high rates of power consumption,
the battery has lower capacity. The second effect is that batteries can slightly recharge by
“resting”. This effect occurs because the positive ions created at the anode take time to diffuse
through the electrolyte to reach the cathode. When the battery is being discharged quickly,
their concentration near the cathode decreases, cutting into the reaction rate and potentially
causing the battery to appear discharged even when reaction sites remain available. If the
discharge rate drops for a period of time, however, the concentration of positive ions becomes

uniform throughout the electrolyte, allowing the reaction to proceed.

After describing the chemical basis of these effects, Lahiri et al. [59] give a survey of work
on battery modeling and how system design should be changed to incorporate these effects.
Another effect, observed by Krintz et al. [57] and Wen et al. [88], is that batteries drain
non-linearly, with voltage dropping faster as the battery is drained. Pedram and Wu [66] give
a more thorough discussion of how to model battery performance and describe simulations
to compute battery capacity under different usage profiles. They conclude that steady power

consumption is the most efficient.

A final difference between our model and real processors supporting speed scaling is that real
processors must stop while their voltage is changing. Thus, they incur overhead for switching
speeds. For example, Xie et al. [89] predict a transition time of 12 microseconds to go from

600MHz to 200MHz and cite published values [51] to show this corresponds well to the actual
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value for Intel’s XScale core. This overhead is fairly small provided that transitions are only

made occasionally, but it discourages algorithms requiring frequent speed changes.

We expect to continue working on power-aware scheduling and will keep these differences in
mind. Our goal is to find a model incorporating enough features of real systems to be useful, but

remaining simple enough to make analysis practical.
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Appendix A

Glossary of terms

This appendix gives a short definition for many of the terms used in the dissertation. For the

meaning of scheduling notation, refer to Table 1.3 on page 12.

accept-competitive The competitive ratio of an admission control algorithm when the metric is
the number (or value) of requests accepted. For example, an algorithm is 2-accept-competitive

if it always accepts at least half as many requests as the optimal algorithm.
active job A job that has been released, but not yet completed.

admission control A type of resource management problem in which the algorithm has a limited
pool of resources and must select a subset from an incoming sequence of requests that can

be satisfied.
anode The material in a battery connected to the negative terminal.

approximation algorithm An algorithm whose performance is near optimal in the following
sense: If the objective is to minimize the metric, then the algorithm achieves a value at most
some multiple of the optimal solution’s value. If the objective is to maximize the metric, then
the algorithm achieves a least some fraction of the optimal solution’s value. For example, a 2-
approximation gives a solution whose value is no more than twice as much for a minimization
problem and at least one half as much for a maximization problem. Used when no fast

algorithm that solves the problem exactly is known.

approximation ratio The value giving the quality of an approximation algorithm. For example,

a 2-approximation has approximation ratio 2.
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benefit problem The version of an optimization problem with the objective of minimizing cost.

The other version, with the objective of maximizing benefit, is called the benefit problem.

block The analysis of scheduling algorithms often divides the jobs into blocks, the definition of
which varies by context. In Chapter 4, it is used to mean a maximal substring of scheduled

jobs such that each job except the last finishes after the arrival of its successor.

busy A type of schedule in which the processor is never idle unnecessarily; it will always run a job

if one is available. Also used to describe algorithms that always give busy schedules.

call control A special case of admission control in which the resource being managed is bandwidth

in a network and requests are communication paths called calls.

capacity For call control problems, the capacity of an edge is the number of requests that can use

that edge.
cathode The material in a battery connected to the positive terminal.

competitive analysis A concept similar to approximation, but applied to online algorithms. For
example, a 2-competitive online algorithm gives a solution whose value is at most twice

optimal for a minimization problem or at least one half as much for a maximization problem.

competitive ratio The value giving the quality of an algorithm according to competitive analysis.

For example, a 2-competitive algorithm ha competitive ratio 2.

completion time The completion time of a job is the time at which it has exclusively occupied
the processor for an amount of time equal to its processing time. When used to refer to a
schedule, it denotes the metric total completion time, which is equal to the sum of completion

times of each job. The completion time of job J; scheduled by algorithm A is denoted CZA.

cost problem The version of an optimization problem with the objective of maximizing benefit.

The other version, with the objective of minimizing cost, is called the cost problem.

cyclic order A distribution of jobs to m processors defined in Chapter 4 in which job J; runs on

processor (¢ mod m) + 1.
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deadline A job parameter giving the time at which the job should (or must) be completed. The
deadline of job J; is denoted d;.

dynamic voltage scaling Another name for speed scaling specifically when the adjustable value

is processor speed. Comes from the fact that a slower processor can be run at lower voltage.
electrolyte The liquid part of a battery between the anode and the cathode.

encoding scheme Used for sending transmissions in the presence of interference. The encoding
scheme tells the transmitter what to send for each possible message. Also called an error

correcting code.

Euler’s constant The limit as n approaches infinity of H,, — Inn, where H, = Y ; 1/i is the
n'" Harmonic number. Denoted v and having value approximately 0.577. See Rudin [75] for

more information.

feasible In admission control, a feasible set of requests is one whose requests can all be simulta-

neously satisfied.

flow The flow of a job is its completion time minus its release time, i.e. the time is spent in the
system. As a metric, refers to the sum of job flows. The flow of job J; when scheduled by

algorithm A is denoted FiA.

flow shop scheduling A scheduling model in which jobs must be run on multiple processors,

representing different stations, in a particular order. See also open shop scheduling.
FPTAS see PTAS

handled In scheduling with rejections, we say a job is handled when it is either rejected or com-

pleted.

handling time The analog of completion time for scheduling with rejections; the time when a
job is either rejected or completed. Also denoted CZ-A and used instead of completion time to

derive metrics like flow.

Harmonic number The n'® Harmonic number is > 7, 1/i.
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identical processors A multiprocessor setting where all processors are equivalent.

idle time The time a job is active but not assigned to a processor. The idle time of a schedule is

the sum of the job idle times. Also called waiting time.

laptop problem A special case of power-aware scheduling with the objective of maximizing sched-

ule quality while operating with a specific energy budget.

lateness The lateness of a job is is the amount after its deadline that it completes. If the job fin-
ished before its deadline, its lateness is negative. As a metric, lateness refers to the maximum

job lateness. The lateness of job J; when scheduled by algorithm A is denoted by L{‘.

lazy rejection As used in Chapter 2, the attempt to delay rejections as long as possible when
combining simulations of two admission control algorithms. When one of the simulated
algorithms wants to reject a job, that job is instead marked. Marked jobs are only rejected

when the set of jobs is not feasible with them.

locally competitive A concept only meaningful for metrics whose value increase over time, like
flow. An algorithm is locally c-competitive if its value’s rate of increase is always at most
¢ times as much as optimal. For flow and weighted flow, this is equivalent to being c-

competitive [20].
makespan A scheduling metric equal to the latest job completion time.
maximization problem An optimization problem where the goal is to maximize the objective.
minimization problem An optimization problem where the goal is to minimize the objective.

multiprocessor A scheduling problem in which several processors must be scheduled. If the
processors are identical, the processing time of a job is unaffected by which processor it is
assigned to. If the processors are uniform, then each processor has a speed and job processing
times vary linearly with speed. Finally, if the processors are unrelated, then the processing
time of each job is an unrestricted function of the processor to which it is assigned. This this
proposal, we assume the processors are identical. Jobs in the multiprocessor setting can be

serial or parallel. Related models are open shop scheduling and flow shop scheduling.
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non-decreasing A non-decreasing scheduling metric is one that does not decrease when any job’s

completion time increases.

non-dominated solution A solution to a bicriteria problem such that any other solution at least

as good as it in terms of one of the objectives is inferior in terms of the other objective.

nonpreemptive Scheduling setting where jobs must be run to completion without interruptions

once started.

normalized optimal solution As used in Chapter 3, an optimal solution that rejects the fewest
number of jobs and always runs the active job with highest rank, breaking ties with the job

number.
offline A problem in which all input is available before the algorithm makes any decisions.

online A problem in which the input arrives over time and the algorithm makes decisions based

only on the input so far.

open shop scheduling A scheduling model in which jobs must be run on multiple processors,
representing different stations, where the runs can occur in any order. See also flow shop

scheduling.
OPT Used to denote the optimal algorithm or its solution.

parallel job A job that must be assigned to several processors simultaneously. One type of job in
parallel scheduling problems. (Serial jobs run on a single processor.) Special types of parallel

jobs are malleable and moldable.
power Energy per unit time. Used for power-aware scheduling.

preemption In a scheduling setting, the act of pausing a job, which can later be resumed without

penalty. For admission control, the act of rejecting a job that had previously been accepted.
preemptive A type of algorithm using preemption.

pseudoscheudle An assignment of jobs to processors and times in a way that is not necessarily

a legal schedule.
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PTAS An acronym for Polynomial-Time Approximation Scheme. This is an algorithm that is a
(1 + €)-approximation for any value of € > 0 where the running time is polynomial in n for
any fixed e. A special type is the Fully-Polynomial-Time Approximation Scheme (FPTAS),

whose running time is polynomial in both n and 1/e.
rate When talking about an encoding scheme, the rate is the number of bits encoded per message.

reject-competitive The competitive ratio of an admission control algorithm when the metric is
the number (or value) of requests rejected. For example, an algorithm is 2-reject-competitive

if it always rejects no more than twice as many requests as the optimal algorithm.

rejection cost The penalty for rejecting a job in scheduling problems where this is possible. The
rejection cost of job J; is denoted ¢;. When all rejection costs are the same, this value is

denoted c.

release time The time at which is job becomes available to run. In online problems, this is the
time at which the algorithm becomes aware of the job. The release time of job J; is denoted

.

restart Scheduling setting where jobs can be stopped before completion, but must then be run from

the beginning. Intermediate in power between the preemptive and nonpreemptive settings.

scheduling A type of resource management problem in which the algorithm must decide when to

run each of a list of incoming jobs.

scheduling with rejections A combination of scheduling and admission control. The algorithm

must either reject or schedule each job.

serial job A job that runs on a single processor. One type of job in parallel scheduling problems.

(Parallel jobs must be assigned to several processors simultaneously.)

server problem A special case of power-aware scheduling with the objective of minimizing energy

consumption while achieving a specific schedule quality.

speed scaling The ability to conserve energy by operating more slowly. Examples discussed in

this dissertation include processors that can run at different frequencies (also called dynamic
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voltage scaling) and transmitters that can use lower power if they switch to an encoding

scheme with a lower rate.

SPT An acronym for Shortest Processing Time. It is the nonpreemptive scheduling algorithm

that starts the job with least processing time whenever a processor becomes free.

SRPT An acronym for Shortest Remaining Processing Time. It is the preemptive scheduling
algorithm that always runs the job(s) with least remaining processing time. Known to be

optimal for sum of completion times and total flow in the uniprocessor setting [76, 80].

stream A common element in instances for lower bound constructions. A stream consists of a
sequence of short jobs arriving as quickly as they can be processed on a processor that does
nothing else. For example, a stream of k£ unit-length jobs starting at time ¢ arrive at times

tt+ 1,642, t+k—1.

SWITCH Procedure by Azar, Blum, and Mansour [11] to combine a c4-accept-competitive al-
gorithm and a cr-reject-competitive algorithm into a single algorithm that is simultaneously

O(c?)-accept-competitive and O(cacg)-reject-competitive.

symmetric A symmetric scheduling metric is one whose value is unchanged if the job completion

times are permuted.

tardiness The amount a job finishes after its deadline, but defined to be 0 if the job finishes
before its deadline. A non-negative version of lateness. As a metric, tardiness refers to the

maximum job tardiness. The tardiness of job J; when scheduled by algorithm A is denoted

by TiA.

throughput In call control, this refers to the amount of link capacity that is used, the sum of
each accepted request’s duration and bandwidth requirement. Also used in scheduling, but

with various meanings.

total completion time Scheduling metric whose value is the sum of job completion times, i.e.

e
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total flow time Scheduling metric whose value is the sum of each job’s flow, the time between

)

its release and completion. In other words, Y, FA = 3".(CA — ;).

total weighted completion time Scheduling metric similar to total completion time except that

the completion time of each job is multiplied by its weight. In other words, ), wiCZ-A.

total weighted flow time Scheduling metric similar to total flow time except that the flow of

each job is multiplied by its weight. In other words, ", w; FA = 3, w;(C4 — ry).

uniform-length jobs A special case of scheduling problems when all jobs have the same process-

ing time. Slightly more general than unit-length jobs.

uniform processors A multiprocessor setting where some processors can be faster than others,

but the relative speed is independent of the job being run.

unrelated processors A multiprocessor setting where the completion time of a job is an arbitrary

function of the processor running it.
uniprocessor A scheduling problem in which only a single processor is scheduled.

unit-length jobs A special case of scheduling problems when all jobs have the same processing
time and each job arrival time can be expressed as a multiple of this value. We normalize

this length to one so that job arrival and processing times are restricted to be integers.
waiting time See idle time.

weight A job parameter identifying the relative importance of this job. The weight of job J; is

denoted w;.

weighted completion time A version of the completion time metric in which the completion

time of each job is multiplied by its weight before being summed.

weighted flow The weighted flow of a job is its flow (completion time minus release time) multi-

plied by a job-specific weight. As a metric, refers to the sum of job weighted flow.

work The measure of job size and processor accomplishment in power-aware scheduling. The work

done by a processor is the integral over time of the processor speed.
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work requirement In power-aware scheduling, the amount of work that must be done on a job

in order to complete it. The work requirement of job J; is denoted ~;.
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Appendix B

Proof of Lemmas 3 and 4

This appendix gives proofs for the following properties of 73 1, originally stated in Chapter 3:
Lemma 3 (restated) For all values of k, 71, < 1.
Lemma 4 (restated) limy .o 71 = 1.

Before proving these results, we show the following technical lemma:

Lemma 24 Consider the axis-aligned rectangle with corners (i,1/i) and (i +1,1/(i + 1)). The

proportion of its area above the function f(x) = 1/z is at most 1/2 4+ 1/(2i).

Proof: The area of the box is 1/i —1/(i+ 1) = 1/(i(¢ + 1)). The area within the box and under

the curve is

/”1 dv 1 i+1 1
— = =In———-
i T t+1 ) 141
Thus, the proportion of area under the curve is 1 —i(i+1)In((i+1)/i)+i = 14+i—i(i+1) In(1+1/7).

Using the first two terms of the Taylor series expansion for In(1 + z), this is at most

i 22

L+i— (3% +14) (l—i) =1/2+1/(2i)

This allows us to prove the first of our lemmas about 7y .

Proof of Lemma 3: For the value of 7 5, we use Equation 3.2:

b 1 dx

k+1
Tk’k:Z<k+1)/(e—1>+j—1 :/1 (k+1)/(e—1)+ |z] -1

Jj=1

We want to remove the floor from this integral, but doing so decreases the value. We bound the

difference by considering the total area in the axis-aligned rectangles with corners along the curve
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y=1/zatz=(k+1)/(e—1)+ifori=0,1,...,k. These boxes have total area

(k+1)/(e—=1)+k

Z <1_ 1 )_e—l_e—l
(bt T (e=1) 1 1+1 kE+1 ke+1

When k > 10, the proportion of this area that is part of the error is at most

+e—1:e—|—10< 1

+ 22 22 T e—-1

<

N =

1
23

N =

by Lemma 24. Thus, 74 for £ > 10 obeys

B /k:-i-l dx N 1 e-1 e-1
Tk = . (k+1)/(e—=1)+x—1 e—1\k+1 ke+l1

/kJrl (e — 1)dx n k(e—1)
1 k+2—e+zxz(e—1) (k+1)(ke+1)

e—1

< ln(k:+2—e—|—(k:—|—1)(e—l))—ln(k:+2—e+(e—1))—|—k€+1
ke +1 e—1 ke + e e—1
A L N B el T het1

e—1 e—1
= 1—-In{(1
n( +ke+1) Ther1
The last line is at most 1 since In(1 + z) = Y52, (—1)""'2?/i, which is greater than x for z < 1.
For k < 10, we verify the identity by hand using Equation 3.2: 711 =~ 0.859, 12 ~ 0.937,

73,3 = 0.961, T4 = 0.972, T5,5 ~ 0.979, T6,6 ~ 0.983, T~ 0.985, 78,8 = 0.987, 79,9 ~ 0.989. g

The other observation follows quickly from this:

Proof of Lemma 4:

N

1
2t )f(e— 1) +j— 1

Tk =

<
Il

1
— [(k+1)/(e—1)]+j—1

<
Il

v
HMR‘

= Higern)/(e—1)+k—-1 — H{ks1)/(e=1)1-1

where H, = >7"_; 1/n is the n'" Harmonic number. Recall that lim,_(H, — Inn) = v, where
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v~ 0.577 is Euler’s constant [75]. Thus,

Jm 7 2 lim (H (1) /(e 1)) 41 = H 1) (e-1)1-1)

k—o0
= klin;o (In((k+1)/(e—1)+k—1)—In((k+1)/(e—1)—1))
N Ve R !
koo (k+1)/(e—1)—1
= 1

=In(l+e—1)

The result then follows from Lemma 3.
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