Using Real Examples to Motivate Automata
Theory*

David P. Bunde
Computer Science Department
Knox College
Galesburg, IL 61401
dbunde@knox.edu

Abstract

Many institutions have a course on automata theory that studies the
limits of computation by examining successive computational models,
including deterministic finite automata (DFAs), context-free grammars
(CFGs), and Turing machines (TMs). Some students resist this material
because they see it as overly theoretical, but much of it has important
practical applications. In this position paper, we discuss some of these
and advocate a view of the course with applications emphasized to pro-
vide motivation.

1 Introduction

In the automata theory class included in many CS degree programs, the em-
phasis is on fundamental questions such as “What is computing?” and “What
is computable?”. The subject also asks about the power of non-determinism,
which is a key question in polynomial-time complexity and the study of algo-
rithms. These are important questions, but students sometimes struggle to see
the motivation for this abstract material.

With the issue of motivation in mind, we propose a different approach to
teaching automata theory, one which foregrounds applications and practical

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

concerns even as it covers the standard material. This approach recognizes
that the material also has important uses in text processing (using regular
expressions) and parsing. By emphasizing these applications, we attempt to
make the course more accessible to students with an applied focus while still
teaching abstract topics like computability and non-determinism.

This paper presents our efforts to follow this approach; we have taught
using it several times and endeavor to increase the number and prominence of
applications each time. Due to the course’s evolving nature and the relative
infrequency with which we have taught it (roughly every other year), we do
not have formal evidence of the effectiveness of our approach. Thus we present
our ideas as a position paper.

The remainder of the paper discusses our ideas roughly in the order in
which they are used in a standard course, followed by brief discussions of the
context of our course, related work, and possible future directions.

2 Regular languages

We think of an automata theory course as organized into 3 parts, each corre-
sponding to a different class of languages and machines. The first part covers
regular languages, represented by regular expressions, deterministic finite au-
tomata (DFAs), and non-deterministic finite automata (NFAs). Thus, we begin
by presenting applications related to this material.

Practical notation for regular expressions. Regular languages are ac-
tually easy to motivate because many programming languages implement a
version of them, though with a slightly different notation than in standard au-
tomata textbooks. The latter define a regular expression using three base cases:
& (the empty set), e (the empty word), and a single character. Then, regular
expressions can be combined using operators for choice (+) and repetition ().
Unfortunately, this notation is somewhat different than that used in regular
expressions as implemented in practical programming languages. This forms
an unnecessary barrier for students who have already used regular expressions
and also makes it harder for students learning about them in the class to take
their skills outside. Thus, we change the standard notation to something closer
to that used in languages such as Python. Specifically, we adopted | rather than
+ for a choice, but added € and & since the languages {e} and {} are otherwise
difficult or impossible to represent. Having introduced regular expressions as
a practical tool, it then becomes natural to show that other common regular
expression notation is syntactic sugar. For example, other types of repetition
available in Python can be represented using our limited set of operators:

Symbol ‘ Meaning ‘ Example ‘ Equivalent to

? 0 or 1 times a? ale
+ 1 or more times a+ aa™
{n} n times a{5} aaaaa
{n,m} n to m times a{l,3} | a| (aa) | (aaa)

These become examples done in class or they could be used as homework
problems.

Another useful type of syntactic sugar are character classes. For exam-
ple, [a-z] matches any single lowercase letter and [A-Za-z] matches any letter.
Students are quick to see that these expressions can easily be created using a
list of the options, but appreciate the concise representation provided by the
character class. More puzzling, but equivalent in a finite alphabet, are char-
acter classes with negations: ["a-z] matches any single character that is not
a lowercase letter. Again, all of these can be used as examples or exercises
while giving students more powerful regular expression notation for use either
in class or in their programs.

Practical regular languages. Although the syntactic sugar discussed above
does not technically increase the power of regular expressions, using it (partic-
ularly character classes) does make it reasonable to express regular languages
of practical importance. An obvious possibility is programming language iden-
tifiers, which have rules like needing to start with a letter. Limited ranges of
numbers are also natural and constitute a nice challenge; creating a regular
expression for a number with a fixed number of digits (like 2) is easy, but
making one for a range of values like 0-255 (one part of an IPv4 address) is
surprisingly tricky since the values allowed for each digit depend on the val-
ues of the previous digits. One regular expression for numbers in this range
(without leading 0s) is

([1-9]7[0-9]) | (1[0-9][0-9]) | (2[0-4][0-9]) | (25[0-5])

The separation into multiple terms prevents (i) leading 0s and (ii) a ones digit
above 5 in three digit numbers if the first two digits are 25. Obviously, there
are other ways to create regular expressions for this language, but all of them
seem to be surprisingly complicated. This is something for the instructor to
be careful about; the first time the author used numbers as an example, he
asked for the range of a short in C (-32,768 to 32,767), which requires a very
complicated expression.

Code counting. Our favorite example of using a DFA is writing a program
to count lines of code (LOC). Integrated editors will provide a line count, as
will utilities such as Unix’s wec, but their counts include lines that are blank

© 00 O Ui W N+

— =
— o

or contain only comments. Instead, we ask students to write a program or
give a DFA with output that counts lines while excluding blank lines and Java
comments (// to ignore the rest of the line and /* to ignore until the next */).
Consider the following Java code:

public class TestProgram \{
public static void main(String[] args) { //comment
/* Comment at head of line x/ int var = 0;

/* Hard case //with nested comments and break
mid—comment x/ System.out.println ("Hello!");

//Here the comments nest the other way /*
var—+-+;

}

In this example, lines 5 and 8 contain only comments, while lines 4 and 7 are
blank. This leaves 7 lines of actual code. Note that lines of code can contain
either kind of comment and that // can appear inside a /* comment and vice
versa. Because of these complications, it is tricky to write a code-counting
program without the idea of states. Code counting is not a highly practical
problem, but it is a familiar idea for students and the program’s output does
provide a primitive measure of program complexity. (Despite the flaws of LOC
as a measure, the author was asked to write a program to count it in a summer
internship; we share this with the students to help motivate the task.)

3 Context-free languages

The second part of an automata course covers context-free languages, repre-
sented by context-free grammars (CFGs) and pushdown automata (PDAs).
Unlike regular expressions, these are not commonly integrated into program-
ming languages. Grammars are, however, commonly used to represent and
parse programming languages. Thus, the examples for this material tend to be
drawn from programming constructs.

Printf calls. One of the canonical examples of a language that is context-free
but not regular is 0™"1™. The difficulty of this language comes from ensuring
that the numbers of Os and 1s are equal, something which regular expressions
and finite automata are unable to do. The language 01" distills this key lim-
itation into a simple example, but it is hardly motivating without any context
or rationale. Instead, we use a programming-based example: invocations of

printf where the number of conversion specifications (limited to %d for sim-
plicity) in the format string must match the number of other arguments. Again,
the key aspect of this language is basically to make a 1-to-1 correspondence
between a feature of the first part of the word (occurrences of %d) and a feature
of the end of the word (the other arguments). Using printf makes the exam-
ple messier since there are other characters to consider (the word “printf”,
parentheses, commas, the variable names, etc), but also much more interesting
since checking the number of arguments is a task that the compiler actually
has to perform. (Of course, this is not how printf is parsed in practice; the
parser would simply identify the function name and argument list, with the
matching done afterwards.)

Non-regular “regular expressions” For another example, we return to
regular expressions. Some implementations of these provide features that are
more than syntactic sugar, actually expanding the set of languages that can
be represented. For example, Python provides a matching feature; putting
part of the expression in parentheses binds whatever matches that part of the
expression to a numerically-named variable. These can be accessed using \1,
\2, ...later in the regular expression. Thus, the expression

([0-9])x\1

matches words of the form dxd, where d is a decimal digit. Since the parentheses
can contain an arbitrary regular expression, it is easy to show that this feature
allows Python’s “regular expressions” to match at least some languages that
are not even context-free. (The basis for a nice homework problem...)

Parsing ambiguity. The next application is parsing arithmetic expressions.
A naive way to generate expressions with the four basic operators is with a
single rule:

EFE—FE+FE|E—-—E|ExE|E/E|number

This rule generates the desired expressions, but can generate parse trees that do
not respect operator precedence and associativity. For example, the expression
14 2% 3 can yield either of the following trees:

N SN\
8 VAN

The left tree evaluates as 14 (2x3) while the right evaluates as (1+2)*3. Obvi-
ously, the left tree is correct for the standard precedence order. Even without
precedence differences, one order is preferable due to operator associativity;
the expression 1 — 2 — 3 should evaluate to (1 — 2) — 3 rather than 1 — (2 — 3).
Standard precedence order and associativity can be enforced by changing the
grammar as follows:

E — E+A|E-A|A
A — AxB|A/B|B
B — number

This is a standard example, with solutions in textbooks and on the web. To
a lesser degree, the same is true of the “dangling else” problem (when if
statements are chained and the compiler needs to select one of them to associate
with a trailing else). Thus, these examples are shown in class, while homework
features an equivalent but less-popular example such as exponentiation (which
is right associative) or boolean operators (where left associativity is needed for
correct short circuiting).

Some automata theory textbooks discuss this issue under the name am-
biguity, but typically devote only a few pages to the topic. In many ways it
is a programming language topic, but a very low-level one. Note that in a
practical context, precedence and associativity are likely to be established by
means other than the grammar; compiler generation tools such as flex and bi-
son [3] provide directives to specify them without changing the grammar. That
said, they can be established in the grammar itself and doing so illustrates the
connection between interpreting computer code and grammars.

Assignment and equality. Considering the need to parse expressions also
helps motivate the use of separate symbols for assignment and testing for equal-
ity, such as = and == in C/C++/Java or := and = in Pascal. Both assignment
and equality testing can be expressed with the English word “equals” and con-
fusion between = and == has been found to be one of the most common errors
by novice programmers learning Java [1], but looking at them from a parsing
perspective quickly motivates the use of different symbols.

4 Turing machines

Finally, the third part of a typical automata course uses Turing machines (TMs)
to cover recursive and recursively enumerable languages as well as complexity
topics such as NP-completeness and the polynomial hierarchy. This is very
abstract stuff, but there are still some practical connections to be drawn.

Undecidability of program analysis. A particularly abstract part of this
material is reductions, particularly those proving undecidability. A common
structure for these reductions involves describing a TM whose input is itself
the representation of a TM. The TM being described manipulates this repre-
sentation and then provides it as input to another TM being simulated. This
is confusing on several levels. One source of confusion is just the idea of TMs
taking the representations of TMs as input. We have found it helpful to point
out that students use something like this all the time, namely a compiler, which
is a program that takes the description of a program as input.

Building on this, we try to focus on undecidable problems of practical inter-
est. The Halting problem, deciding whether a program will ever halt, is often
presented in practical terms. We take this further with other undecidable prob-
lems that come from analyzing programs such as identifying dead code (does
any input cause a TM to enter a particular state?).

Historical background for programming terminology. In addition, this
material provides historical context for things they may have seen in other CS
settings. We include a couple of days on lambda calculus as another attempt
to answer to the question “what can be computed?” and its equivalence to
TMs while being so different as support for the Church-Turing Thesis. On one
hand, lambda calculus is clearly an automata theory topic, albeit one with a
different flavor than the rest of the material. On the other hand, “lambdas”
are listed as exciting new features of both C++11 and Java 8. Students with
experience in functional programming have likely also seen the word there as
well as function calls formatted in the same way as lambda expressions.

5 Our Experiences

The genesis of our work on a practically-oriented automata course was as a
new assistant professor assigned to teach “Automata theory and programming
languages”, a course whose creation was motivated by the use of automata in
parsing, but which no one had previously taught. The first offering of this
course did not include many lectures explicitly combining the two topics, but
gradually the perspective discussed above was developed and utilized. Later,
the department decided to create separate courses in programming languages
and automata theory in order to give more coverage to each area. The new
automata-only course has been taught once.

Both versions of the course were taught as upper-division electives, of which
3 are required for the CS major and one for the CS minor. The courses were
both taught every other year and typically taken by majors as one of their last
courses, though the official prerequisites were just Discrete Mathematics and

CS 2 (Data Structures). Class sizes were 5-12; with an average just below 7.

The combined course was typically taught without a textbook because of
the lack of books that covered both the automata and programming languages
material. For the automata-only offering, we used a book by Webber [5] which
does not directly take our approach, but which is an accessible treatment of the
standard automata material. The focus on applications and practical concerns
we advocate came through in lecture and assignments. The most awkward
change was the use of different notation for regular expressions, but this is
mitigated by the students being upperclassmen.

Because the approach described in this paper evolved gradually in a course
taught only every other year to relatively few students, we do not have any kind
of formal assessment comparing it to a more traditional automata course. Our
sense is that explicitly connecting to practical regular expressions is helpful,
particular since a couple of students in the class often speak up about how
useful regular expressions are when the topic is first introduced. Similarly, the
applications of regular expressions seem to be well received. Ambiguity is a
somewhat challenging topic since it asks students to relate a grammar to the
set of parse trees it creates. Undecidability also remains a challenge, though
we believe that mentioning the compiler and focusing on languages that can
be interpreted as code analysis tasks gives students a slightly more concrete
frame of reference.

6 Discussion

Given the breadth of automata-related applications, we are not the first to
notice many of them. Several books explicitly introduce some of these appli-
cations. Hopcroft et al. [2] use Unix regular expressions as an example of
practical regular expressions. They also include sections on parse trees (in-
cluding the use of yacc, a predecessor to bison) and ambiguity. Rich [4]
includes nearly 200 pages on applications in the appendices as well as sections
on parsing, parse trees, and ambiguity. Neither of these texts fully integrates
applications throughout the course as we envision or make changes such as
using the practical regular expression syntax, but these books would support
the kind of approach we propose here if the practice-oriented material were
included in the course. They are also resources that instructors could use to
identify interesting applications to include in courses based on other textbooks.
Obviously, much can be done to integrate applications into textbooks and
course materials as well as finding other ways to motivate the material. In
addition, we are very interested in an assessment of this approach: Do students
find our examples more interesting than concise language descriptions such as
0"1'? Does this lead them to enjoy the course more or learn more from it?

References

[1] N.C.C. Brown and A. Altadmri. Investigating novice programming mis-
takes: Educator beliefs vs student data. In Proc. 10th Ann. Conf. Intern.
Computing Education Research (ICER), pages 43-50, 2014.

[2] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introdution to automata
theory, languages, and computation. Addison Wesley, 2nd edition, 2001.

[3] J. Levine. flex & bison. O’Reilly Media, 2009.

[4] E. Rich. Automata, computability, and complexity. Pearson Education,
2008.

[5] A.B. Webber. Formal language: A practical introduction. Franklin, Beedle
& Associates, Inc., 2011.

