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Abstract—This paper reports on PReMAS, a simulator used
for research on parallel scheduling, processor allocation, and task
mapping for systems with rigid batch jobs scheduled with pure
space sharing. PReMAS features an object-oriented design that
has proven adaptible for a variety of research foci and is easily
extendible to incorporate new resource management algorithms.
We are making its code public to save others development time
and to promote the reproducibility of resource management
research. We discuss PReMAS’s design and lessons learned in
its development to promote greater discussion of the simulators
underlying so much resource management research.

I. INTRODUCTION

Simulation is a key technique for research in resource
management. It allows researchers to develop algorithms for
systems which are either unavailable or not yet created. It
also gives researchers the ability to control all aspects of an
experimental system and allows detailed “instrumentation” of
the system to record its behavior at any desired level of detail
and without impacting the system itself.

Roughly speaking, a simulation-based research project in
resource management involves two distinct tasks. First, the
simulator is developed and results are collected. This requires
writing complicated code for a simulator that implements one
or more algorithms of interest, followed by running the simula-
tor on appropriate data sets. For the second task, the researcher
distills information about the simulator and algorithms into a
compact form that can be presented along with the results in a
technical paper from which others will learn general lessons.

While this research model works well in most cases,
it has two significant disadvantages. The first is that the
distilled description of the simulator and algorithm(s) may
not be sufficient for other groups to reproduce the results. In
practice, the code for any significant program like a simulator
includes many details and it is difficult to judge which must
be explained for other developers to reproduce its behavior.
When writing, there is also tension between the goals of
presenting the main ideas of a research project and including
implementation details. Paper page limits further complicate
authors’ efforts to describe their work. All of these factors
mean that some technical papers fail to present their work in a
fully reproducible way. Without direct access to the simulator
itself, the reader’s only recourse in these cases is to seek
clarification from the author, a less than ideal solution that
either leaves questions unanswered or creates work for the
author, who may well have moved on to another project.

The other disadvantage of the current research model is that
it forces each research group to create an entirely new simula-

tor. While some differences between simulators arise from the
different questions being asked by each group, the duplicate
effort to reimplement shared features seems tragic given the
perpetual time shortage experienced by many researchers.

To promote the reproducibility of our results and also to
save time for other researchers, we have decided to release
the code for our simulator, which we have named the Parallel
Resource Management Algorithm Simulator (PReMAS). It is
available at http://faculty.knox.edu/dbunde/PReMAS under a
BSD-style license to maximize potential reusability. In addi-
tion, this paper contains a discussion of its design and the
lessons we learned developing it. Our hope is that our actions
and this paper will encourage others to similarly release their
code or at least join a more public discussion of simulation
design.

PReMAS has been developed to answer a series of research
questions in High-Performance Computing (HPC), particularly
targeting high-end systems managed by the US Department of
Energy. The first systems simulated were part of the CPlant
project [35]; a modern successor system is Cielo [28]. The
simulator has been used for research on scheduling ([37],
[25], [31]), processor allocation ([22], [5], [38], [19]), and task
mapping ([6], [23], [3]). The scheduling and processor allo-
cation functionality has been incorporated into the Structural
Simulation Toolkit (SST) [33], a simulation framework for the
design, evaluation, and optimization of HPC architectures and
applications; [32] describes our contributions.

PReMAS performs a relatively high-level simulation. It
reports the quality of a processor allocation or task mapping in
terms of metrics such as the average pairwise distance between
allocated nodes or communicating tasks. These metrics have
been shown to correlate with job execution time (e.g. [22],
[11]), but the higher-level simulation requires fewer assump-
tions about the jobs than attempting to directly model the effect
of allocation or mapping on job execution time. This is a
different approach from the SMPI [8] component of SimGrid
[36], which quickly runs a modified version of the actual
application and thus requires access to its code.

Central to our ability to use PReMAS on a variety of
problems has been its object-oriented design. Scheduling,
processor allocation, and task mapping are each performed by
different components with interfaces that enforce a separation
of roles. This allows new implementations of a component
to be swapped in, allowing research on the components sepa-
rately. This design has also allowed much of the simulator’s use
and development to be performed by undergraduate research
assistants, who can begin focusing on only a single component.



The contributions of this work include the following:

• The code itself.
• Lessons learned trying to design a flexible, extensible

simulator.
• Several cases where refactoring simulator code led to a

deeper understanding of the (scheduling and processor
allocation) algorithms involved.

• Discussion of issues that threaten the reproducibility
of simulation results.

• Our strategy for incorporating undergraduates in re-
source management research using PReMAS.

Our hope is that this paper will encourage others to share
their simulators or at least discuss their features in more detail.
We believe that the resource management research community
would benefit from having a common code base or at least
having simulator code readily available to clarify the contents
of research publications.

The remainder of this paper is organized as follows.
Section II defines the resource management problems we have
examined with PReMAS. Section III summarizes the simulator
design. Sections IV and V describe the lessons learned while
implementing it. Section VI outlines our process for using
it in undergraduate research at Knox College. Section VII
summarizes related work. Section VIII discusses future plans.

II. PROBLEM DEFINITIONS

Because definitions can vary within the resource manage-
ment research community, we now define our setting and the
terms relevant to the simulator. Our definitions reflect our focus
on systems like those run at Sandia National Labs for the US
Department of Energy, but the assumptions we make could be
relaxed by other adopters of the simulator.

A. Properties of jobs

A job is a program being run, plus the relevant data, which
are submitted together without any expectation of interactivity
(batch jobs). The simulated HPC system has many nodes, each
of which will be assigned to at most one job at a time (pure
space sharing). In particular, all the cores of a given node will
be assigned to the same job. The compute nodes are diskless
and all data is stored separately so that jobs are agnostic about
the nodes they run on. The number of nodes needed by a job
is declared upon job submission and does not change during
execution (rigid jobs). Our typical assumption is that, once
started, jobs cannot be interrupted and must run to completion
(non-preemptive jobs), but we have incorporated one scheduler
that assumes jobs can be stopped and restarted. We assume the
system has identical nodes, forbidding nodes with differing
configurations.

When users submit a job to the system, they specify the
number of nodes it needs and provide an estimated running
time. This time is an upper bound on the job’s duration for
use when deciding when to run it. The system will kill a job
exceeding its estimated running time to prevent run-away jobs.
This behavior motivates users to provide conservative estimates
(i.e. greater than the job’s actual running time), meaning that
most jobs “finish early” from the system’s perspective.

tasks to nodes
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Fig. 1. Resource management steps between job submission and execution.

Most of our simulations use traces from the Parallel Work-
loads Archive [13], which provides scheduling information on
sequences of jobs run on systems at a variety of HPC centers.
For PReMAS, we use a script to remove unused information
from a trace, leaving just each job’s arrival time (when it
was submitted to the system), number of nodes used, actual
running time, and (optionally) estimated running time. When
other information is needed (e.g. a job’s desired shape), this
is added in a subsequent step.

B. Resource management steps

Jobs submitted to the simulated HPC system go through
the series of resource management steps shown in Figure 1. In
principle, these steps could be combined, but they are separated
for practical reasons.

The first step is scheduling, deciding when each job should
run. The typical assumption for PReMAS is that jobs, once
started, always run until they complete or they reach their
estimated running time. With this assumption, a scheduling
decision (which job(s) to start, if any) is needed when a
new job arrives and when one completes. The simulator also
implements one algorithm (timed-run [37]) that will stop and
restart jobs from the beginning, which also requires periodic
scheduling decisions (whether to stop a currently-running job).

The second step for each job is processor allocation, the
selection of particular free nodes on which to run a specific job
that has been scheduled. There are two kinds of allocations:

• Contiguous allocation, in which each job is guaranteed
to be allocated to a compact shape, and

• Non-contiguous allocation, in which arbitrary sets of
nodes can be assigned to a particular job.

The kind of allocation used is system-dependent; contiguous
allocation eliminates inter-job contention, but its fragmentation
can delay jobs even when enough nodes are available.

For research on non-contiguous allocation, it is important
to note that PReMAS does not model changes in running time
caused by allocation quality. Instead, it reports the quality of
an allocation as the sum of pairwise L1 distances between
allocated nodes; this is the number of hops made by the
job’s messages, which correlates with job running time (e.g.
[22]). This is a conservative measure of allocator performance
since improvements that shorten job running times will reduce
system utilization, potentially allowing further improvements
in allocation quality, but this is a point that needs to be
carefully explained when describing results obtained with
PReMAS since the reader may otherwise expect results in
terms of running time directly.

The third and final step for each job is task mapping,
the assignment of job tasks to nodes (or cores within each
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Fig. 2. Simplified class diagram for PReMAS. Diagram taken from [32].

node). For MPI programs, task mapping is each MPI rank
identifying its role. Unlike scheduling and processor allocation,
task mapping is typically done in the application rather than
system software. It is also often done implicitly without much
consideration, despite several experiments showing that it can
significantly impact application running time (e.g. [18], [4]).

III. OVERALL DESIGN OF PREMAS

Now we describe the design of our simulator. At its center
is a priority queue of events ordered by time. Prototypical
events are the arrival of a new job or the completion of a
currently-running job. The job arrival events are added before
the simulation begins. Whenever a job is started, a completion
event for that job is added to the queue. The simulator’s main
loop simply removes and processes the next event from the
priority queue. This part is standard for event-based simulators.

The special part of PReMAS that allows it to serve diverse
roles is the careful way in which responsibility for decisions
and system state is split between components. Each component
is a Java object and we use inheritence from an abstract base
class to allow each of them a variety of implementations. The
main system state is stored in Scheduler, Allocator,
and Machine objects; we return to task mapping in Section
III-B below. Data and control flow each obey the ordered
structure suggested in the previous section, from Scheduler
to Allocator to Machine. Figure 2, copied from [32],
gives an overview of the structure.

Scheduler keeps track of waiting jobs and any plans it
has about when they will run. These data structures are updated
when the simulator’s main loop calls its jobArrives and
jobFinishes methods. After these, the main loop also calls
tryToStart, which allows the Scheduler to start a job.
(If a job is started, tryToStart is called again so multiple
jobs can start at the same time.) In general, Scheduler uses
Allocator to decide if a job can start.

Allocator is responsible for deciding whether a job
can be started and deciding which nodes it will be allocated.
Allocator’s most important method is allocate, which
takes the job in question. This method returns null if that
job cannot be allocated. Otherwise, it returns an AllocInfo
object as a Machine-specific representation of the selected
allocation. Importantly, allocate does not change the sys-
tem state so that Scheduler can call it multiple times to
see which jobs can start. When Scheduler has decided on
a particular job, the corresponding AllocInfo is returned to
the main loop, which updates the system state.

Machine keeps track of the free nodes. Its
SimpleMachine subclass just records the number of
free nodes, treating the machine as a “bag of nodes”, while
the Mesh subclass keeps track of the identities of free nodes
in the three-dimensional mesh. Other topologies could be
easily added, but Mesh is the only one implemented thus far
since it matches our target machines.

All of these parts interact with Statistics, a class that
generates log files appropriate to the type of research being
performed. It provides common headers with information
about the simulation setup and ensures that the same output
format is used by each subclass implementing a component.
The jobs themselves are represented by Job objects. The
Main class provides overall management of the simulation,
including reading in the input trace, creating all the objects,
and running the main simulation loop.

A. Use cases

The following are specific ways the simulator is used, with
the relevant subclasses:

• For much scheduling research, the job allocations
are ignored; non-contiguous allocation is implicitly
assumed and all allocations are considered equally
good. In this case, the only machine state needed is
the number of free nodes. This is supported by the
SimpleMachine subclass of Machine. It requires
no allocation decisions other than a sanity check that
enough nodes are available, functionality provided by
the SimpleAllocator subclass of Allocator.

• Most of our research on processor allocation with the
simulator is non-contiguous allocation on meshes. In
this case, we use the Mesh subclass of Machine. Nu-
merous schedulers are supported, but we typically use
EASYScheduler, which implements EASY [24], an
algorithm used on actual HPC systems (e.g. [2], [24])
and commonly considered in scheduling research. It
allows jobs backfill (i.e. to start ahead of earlier-
queued jobs) when doing so does not delay the job
at the head of the queue.

• The situation gets much more complicated with con-
tiguous allocation. In this case, jobs have hyper-
rectangular shapes and may be unable to run even if
enough nodes are available due to fragmentation. A
subclass ContiguousJob of Job stores the shape
information. Scheduler uses Allocator to deter-
mine whether a particular job can run. Since not all
schedulers can work in this setting, contiguous allo-
cators extend the ContiguousAllocator subclass
of Allocator and runtime type checking is used to
ensure selection of a valid combination of scheduling
and allocation algorithms.
Simple schedulers such as FCFS (priority-based
scheduling from PQScheduler with job priorities
from FIFOComparator) work for contiguous al-
location without changes. We also provide a spe-
cial version of EASY [24] for contiguous alloca-
tions. This is necessary because EASY gives the
first queued job a guaranteed starting time; thus,
EASY is not allowed to backfill without checking



with the allocator that the backfilled job will not
interfere with the guaranteed job. This requires addi-
tional functionality from the allocator, represented by
the PairTestableAllocator interface. Again,
runtime type checking ensures that valid pairs of
algorithms are used. The same type checking also
automatically selects a version of the scheduler appro-
priate for contiguous allocation when one is needed.

Figure 3 lists the schedulers we implemented. Figures 4 and
5 do the same for non-contiguous and contiguous allocation
algorithms respectively. Note that Figure 4 lists algorithm
families due to the refactoring described in Section IV.

B. Task mapping

The main way to use PReMAS for task mapping is as
a post-processing step. First, use PReMAS to generate a log
of the nodes allocated to each job. This log has enough
information to run the task mapping algorithms and com-
pare the resulting mappings based on distance-based metrics.
Performing task mapping outside the main simulation avoids
recomputing the schedule and all the job allocations for each
task mapping algorithm; recall that we do not yet model the
effect of mapping quality on job running time. That said, we
plan on adding this effect so we have also provided the ability
to compute the mapping for each job as it is allocated.

C. Extensibility

Particular care was taken to make PReMAS easily ex-
tensible. This is the main reason for the use of an object-
oriented design methodology and the many abstract classes.
In addition, we used the reflection features of Java, which
allow a program to refer to its own classes. In particular, each
simulator component (e.g. scheduler or allocator) is created
by a Factory object containing a map from names suitable
for the program’s command line to the corresponding subclass.
These subclasses are registered in a static method of Main. For
example, to populate the factory responsible for creating the
Machine object (called machineFactory), the following
code registers the two subclasses of Machine:

machineFactory.registerClass("simple",
SimpleMachine.class);

machineFactory.registerClass("mesh",
Mesh.class);

With this, the factory can process command line arguments to
create the desired type of Machine using the static method
Make supplied by each subclass. The factories also generate
usage information via each class’s static getParamHelp
method. This has the effect of locating the help and creation
information about each class within that class and requiring
only a single new registration line to add another subclass.

IV. LESSONS FROM ALGORITHM REFACTORING

Now we discuss the lessons learned developing PReMAS.
As part of trying to improve its software design, we tried to
avoid duplicate code by factoring out common functionality
into subroutines. Modest examples of this were the devel-
opment of a single routine to process all the command line

options that configure a simulator run (e.g. the scheduler,
allocator, and machine) and centralizing the code to generate
output files (so all have a common header describing the
simulation that created them). Much more notable, however,
are several times when refactoring to unify duplicate code led
us to think about the algorithms differently.

A. Compression order in Conservative-style backfilling

The greatest intellectual benefit of refactoring we saw be-
gan with the implementation of scheduling with Conservative
backfilling (Conservative) [30]. The idea behind Conservative
is to mostly maintain a FCFS/FIFO job order except to allow
backfilling, in which a job is started before other jobs that
arrived earlier, when doing so does not delay any previously-
arrived job. In order to do this, Conservative keeps a plan of
when it expects to run each job. The position of each job within
the plan is called its reservation; no matter what happens, each
job is guaranteed to start no later than its reservation. When
a new job arrives, Conservative adds it to the current plan
at the earliest possible time (which becomes its reservation);
since previously-arrived jobs are already in the plan, placing
the new job will not delay any of them.

Our research focused on what happens when a job finishes
early (due to a job’s actual time being less than its estimated
time), leaving a hole in the plan. If the schedule is rebuilt from
scratch, it is possible for a job that was previously backfilled
to violate its reservation. To avoid this, a special operation
called compression is performed. In compression, each job is
removed from the plan one at a time and rescheduled into
the rest of the plan. Since each job can be returned to its
previous place, compression never moves any job later in the
plan. The exact procedure for compression is left slightly vague
in the original paper [30], but the simplest implementation is
to remove and reschedule jobs in the order they occur in the
current plan. This is what our simulator does and also what
the behavior of the (non-public) simulator described in the
original paper [15]; for clarity, we use “Conservative” to mean
the algorithm with this version of compression.

When we implemented Conservative, however, we noticed
the potential for other compression procedures and parameter-
ized them using a comparator. When a job finishes early, the
jobs are rescheduled in the order given by the comparator. We
called this algorithm Prioritized Compression (PC) and also
considered a version called Delayed Compression (DC) that
postpones compression unless the job being rescheduled can
start immediately or a new job arrives. We first used PC and
DC with the Shortest Job First order to improve job average
waiting time and with the Widest Job First order to benefit jobs
using a larger fraction of the system [25]. Later, we used the
First-Come First-Served order to improve previously-proposed
[34] measures of job-level fairness [31]. Other orders such as
user-provided priority could also be explored.

B. Center-based allocation algorithms

A second example of refactoring benefiting the research
occurred with what we now call “center-based allocation
algorithms”. We now present the algorithms and then discuss
how the commonalities were identified and factored out.



Priority-queue Run jobs in order indicated by a comparator. Includes FCFS, Shortest Job First, Widest Job First, etc.
(PQScheduler)

EASY [24] Backfilling with guarantee for first queued job. (EASYScheduler, EASYContigScheduler)
Conservative [30] Backfilling with a guarantee for every job. See Section IV-A. (StatefulScheduler)
PC [25] Variation of Conservative that uses a priority function to order rescheduling operations when a job finishes

early. See Section IV-A. (StatefulScheduler)
DC [25] Variation of PC that delays rescheduling operations if possible to increase the impact of the priority

function. See Section IV-A. (StatefulScheduler)
Aggressive Backfilling without limits. Note that some use this name for EASY. (AggressiveScheduler)
Scan [20] Several variations on the idea of grouping jobs by size and rotating thru the sizes. (ScanScheduler)
Timed-Run [37] Give each arriving job a quick run to look for errors before the main scheduling decision. Assumes jobs

can be restarted. (TimedRunScheduler)

Fig. 3. Schedulers implemented in PReMAS, with providing class(es) in parentheses.

Center-based Build candidate allocation centered on free nodes and possibly others. Use a scoring function to rate
[5], [21] each candidate allocation and pick the best one. See Section IV-B. (NearestAllocator,

CenterGenerator, PointCollector, Scorer)
Linear [22], [26] Impose linear order on nodes and sort free list. Either select a prefix of it or treat groups

of consecutive nodes as bins and apply a bin-packing heuristic to select from one of them.
See Section IV-C. (LinearAllocator, SortedFreeListAllocator, BestFitAllocator,
FirstFitAllocator)

Buddy [26], [38] Organize entire system into hierarchical decomposition and use this for buddy system similar to memory
allocation. Allocate multiple pieces to jobs as necessary. Includes several different algorithms based on
the hierarchy used. (MBSAllocator, OctetMBSAllocator, GranularMBSAllocator)

Random Allocate random free nodes. (RandomAllocator)

Fig. 4. Families of non-contiguous processor allocation algorithms implemented in PReMAS, with providing class(es) in parentheses.

First Fit [40] Look for place to fit job and take first one in which it fits. (FirstFitContigousAllocator)
Best Fit [40] Look at all places to fit job and take smallest one in which it fits. (BestFitContiguousAllocator)
MPL [1] Prioritize places along mesh boundary. (MPLAllocator)

Fig. 5. Contiguous processor allocation algorithms implemented in PReMAS, with providing class(es) in parentheses.

One of these algorithms is MC1x1 [5], which is based on
an algorithm MC [29] designed for a slightly different setting.
In that setting, jobs have not just a number of desired nodes,
but also a specific submesh shape, presumably related to their
communication pattern. MC considers an allocation built using
shells centered on each of the free nodes in the system. Shell
0 contains nodes in the job’s desired shape around the center.
Shell 1 is one larger in each direction and subsequent shells
are formed using the same procedure. Figure 6 shows a series
of shells for a 3 × 1 job centered on the node marked with
X. Based on these shells, MC chooses a candidate allocation
corresponding to the center by selecting the necessary numbers
of nodes from the lowest-numbered shells. The score of a
candidate allocation is the sum of its nodes’ shell numbers.
MC takes the allocation with the lowest score. MC1x1 adapts
MC to our setting, where jobs do not have a desired shape, by
setting shell 0 to a 1× 1 submesh.

A second center-based allocation algorithm is Gen-Alg
[21]. Gen-Alg was designed explicitly to minimize the sum of
the pairwise L1 distances between selected nodes. (Recall that
the L1 distance between two points, also called the Manhattan
distance, is the sum of the differences in each coordinate.) As
with MC1x1, Gen-Alg considers candidate allocations centered
on free nodes and selects the best one, but it does each of these
in a different way. To build a candidate allocation, it uses shells
based on the L1 distance from the center, which grow as shown
in Figure 7. To select between these candidate allocations, it

X

free node

busy node

shell 0

shell 1

shell 2

Fig. 6. Illustration of MC. Shells for a 3× 1 job centered on the node X.

uses the sum of pairwise L1 distances between the nodes in
each allocation. Gen-Alg always gives an allocation whose sum
of pairwise L1 distances is no worse than 2 − 2/k times the
best possible [21], where k is the allocation size.

Our final center-based allocation algorithm is MM [5]. It
is the same as Gen-Alg except for considering more possible
centers. In addition to the locations of free nodes, MM uses
a candidate center at every position sharing x, y, and z coor-
dinates with (possibly distinct) free nodes. Figure 8 illustrates
this in two dimensions. MM always gives an allocation whose
sum of pairwise L1 distances is no worse than 2 − 1/(2d)
times the best possible, where d is the system dimensionality
[5]; this guarantee is 7/4 in 2D and 11/6 in 3D. The guarantee
is stronger than Gen-Alg’s for large jobs.
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Fig. 7. Illustration of Gen-Alg. Shells for a job centered on the node X.

free nodes

additional centers

Fig. 8. Additional centers used by MM in 2D. In addition to free nodes
(denoted with circles), MM also tries all positions sharing x and y coordinates
with free nodes, i.e. every intersection of axis-parallel lines thru the free nodes.

While implementing these algorithms, we realized that they
share a common framework. They each identify candidate cen-
ters, collect the nearest points according to some metric around
each into a candidate allocation, and then score the candidate
allocations. Thus, we implemented all these algorithms with a
single class (NearestAllocator) whose constructor takes
a specification for these decisions in the form of members
of subclasses of the abstract classes CenterGenerator,
PointCollector, and Scorer. Figure 9 specifies each
of the algorithms above in this framework. Other center-based
algorithms could easily be created by combining our subclasses
in a different way or defining new ones. We have also found
the common conceptual framework valuable in its own right
as a way of thinking about different algorithms.

C. Linear allocation algorithms

Our final example of refactoring helping us think about
algorithm design is in another class of processor allocation
algorithms, which we call “linear allocation algorithms”.

The common feature of these algorithms is that they assign
a numerical order to the nodes and then use this order when

Algorithm Candidate centers Distance Evaluation
MC1x1 free nodes L∞ L∞ distance

from center
Gen-Alg free nodes L1 pairwise L1

distance
points sharing x pairwise L1

MM and y coords L1 distance
with free nodes

Fig. 9. Parameters that create known center-based algorithms

allocating nodes. The simplest such strategy is to use a sorted
free list, allocating the lowest-numbered free nodes to a new
job. This was initially used on CPlant systems [35], with the
order determined by the physical location of hardware. Lo et
al. [26] considered various logical orders (e.g. row-major based
on the network connections) and Leung et al. [22] introduced
the idea of ordering nodes based on their position along a
space-filling curve. Leung et al. [22] also introduced the idea
of grouping consecutive free nodes together and using bin-
packing heuristics to select them. For example, the First Fit
heuristic selects the earliest group that is large enough for the
entire job and the Best Fit heuristic selects the smallest group
that is large enough.

In PReMAS, an abstract class (LinearAllocator)
provides the functionality common to all linear alloca-
tion algorithms, such as reading a file to define the node
order. Then subclasses (SortedFreeListAllocator,
BestFitAllocator, and FirstFitAllocator) imple-
ment particular selection heuristics. The division of linear
algorithms into ordering and selection heuristic guided our
research, leading to experiments to isolate the effect of the
order [38].

V. ISSUES WITH REPRODUCIBILITY

In addition to these major lessons learned, implementing
the simulator and using it over a period of time also revealed a
number of smaller issues concerning the reproducibility of re-
source management research. Most of these are minor ambigu-
ities with commonly-used data sets or algorithm descriptions.
We do not believe that any are individually important, but they
and issues like them threaten our ability to reproduce the work
of others. This is an important capability if our community
is to have a true academic conversation in which researchers
validate and improve upon each other’s work. Promoting this
capability is one reason for having a community code base and
thus why we are distributing PReMAS.

The first issue concerns the traces in the Parallel Workloads
Archive [13]. Many of the traces have different versions,
including some that are “cleaned” to remove jobs felt to be
unrepresentative. Each job line also includes a job status field,
which marks some lines as reporting scheduler actions (i.e.
suspending a job) rather than new jobs. Together, the different
traces and the status values can create a multitude of choices
for each trace. We followed the advice of the Archive by
using cleaned versions and ignoring jobs with status 2, 3,
and 4 (suspended jobs). We also ignored jobs with running
time or status listed as -1 (“unknown”) and jobs that were
canceled (status 5) before being started. We have also tried
to consistently state the trace version and our criteria for
removing jobs when presenting our work. This is more clear
than many papers using these traces, but even so it is hard to
know if others would generate the same job sets from our
description. Reproducibility is better served by sharing the
code.

The next issue has to do with ties in event times. Since
all trace times are in seconds, several job arrivals can happen
“simultaneously”, as can job arrivals and completions. Since
jobs are scheduled as they arrive and the number of free nodes
affects what happens, different orders can easily yield different



schedules. As an aid to reproducibility, we systematically
broke ties so that job completions happen before arrivals and
broke ties regarding job order using their order in the trace.
Since job completions can themselves trigger the scheduler,
there is the added choice of whether to schedule new jobs after
every job completion or after all simultaneous completions; we
opted for the latter. We have never discussed these decisions
in prior publications, nor have we seen anyone else do so.

A special kind of tie happens with 0-length jobs, which
can have a tie between their start and completion times. These
jobs appear in the traces when a job finishes in the same
second it started. They caused significant complexity in our
implementation of Conservative, which must keep a plan of
when each job is expected to run. Even though they run
instantly, 0-length jobs can still block other jobs from starting
if they (briefly) use nodes needed by the other job. In order
to deal with these jobs, we had to treat planned starts and
completions of 0-length jobs separately from the planned starts
and completions of other jobs. Other options would be to
remove the jobs or (better) to give them short but non-zero
duration. This issue does not affect a large number of jobs,
but the variety of choices makes it a threat to reproducibility.
In addition, the complexity of this code increases the value
of having a shared code base since Conservative proved so
challenging to implement and it is a core algorithm used in
many scheduling studies.

We also found ties to be meaningful for center-based
processor allocation algorithms (described in Section IV-B).
Recall that these algorithms build candidate allocations using
free nodes in shells of nodes at increasing distances from a
candidate center. If the algorithm only needs some of the free
nodes in the outermost used shell, then it must select between
them. We encountered this when implementing MC1x1, the
first implementation of which made some clearly inferior
choices when selecting nodes. Specifically, for jobs requesting
2 nodes, it sometimes chose a pair that were diagonal from
each other (i.e. at distance 2) rather than an adjacent pair. We
fixed this, but the description of MC1x1 leaves considerable
leeway as to how nodes should be selected from the outermost
shell.

Ties in center-based processor allocation became an issue
again when that part of the code was ported into C++ for inclu-
sion into SST. The output of the C++ and Java versions were
compared as a debugging check and were found to differ. This
occurred because the candidate allocations were assembled by
sorting the free nodes and each language provided a different
library sorting routine. This experience is both an argument for
completely resolving all ties and a warning about the difficulty
of maintaining equivalent programs in different languages.

Ties can also occur in many other settings. For example,
when selecting a job based on its width for width-based
scheduling or backfilling, which job is selected in a tie? When
rescheduling jobs in Conservative’s compression operation,
which job goes first if several jobs have a common planned
starting time? In each of these cases, we tried to break the ties
in a consistent and reasonable way, using a numbering of jobs
and events when necessary, but our orderings are not necessar-
ily the same as others would choose. The issue reminds us of
the assumption of general position in computational geometry,
a topic which generated significant discussion in that area (e.g.

[7], [12]). It may be worthwhile for our community to consider
a systematic approach to tie breaking as well.

VI. USING THE SIMULATOR WITH UNDERGRADUATES AT
KNOX COLLEGE

As mentioned previously, an important aspect of our sim-
ulator is that it has mostly been used and developed by
undergraduate students. Since our hope is that others can use
it similarly, we now discuss this aspect of our experience.

The majority of students using this simulator were summer
researchers. These students worked 40 hours a week for 10
weeks. The group of students (1–4 depending on the year) met
daily with one of us (Bunde) as a group and also individually
with him as needed. The first couple of meetings focused on
discussing a series of papers related to the research topic. Later
meetings increasingly shift to discussing their progress and
developing future plans. The students are given some discretion
if a particular research question excites them, but we provide
specific problems and most students work on these.

The simulator has also been used by some students in
coursework, particularly in a senior seminar course. This
course is mainly a research seminar, with most of the term
spent discussing research papers, and only a small hands-on
component using the simulator. Some also used it in their term
project. These projects are smaller in scope than the summer
projects, however, and none have been publishable to date.

The best approach we have found for introducing students
to the simulator is to have them run some of its existing
functionality and then give them a specific task involving a
small part of it, generally implementing a specific algorithm
from the literature. Initially it is important to provide close
guidance while the students learn about the simulator’s overall
structure. Because they have no prior research experience and
only limited familarity with the literature, it is particularly
difficult for the students to interpret their results and go from
output graphs to research “stories”. This is the main activity
that occupies later daily meetings as we and the students try to
understand their output and revise algorithms to improve the
results. Due to both their limited background and the limited
time, we have also found it necessary to do most of the writing
about the project.

VII. RELATED WORK

Now we briefly summarize other research related to PRe-
MAS. Simulation is a huge area, with entire conferences
dedicated to it (e.g. the Winter Simulation Conference, PMBS,
and SIMUTools). Despite this, we continue to observe that
most research groups use their own home-grown simulators.

There are some other publicly-available simulators for re-
source management problems. GridSim [17] and CloudSim [9]
are freely available, but focus on different kinds of distributed
systems than PReMAS. SimGrid [36] provides functionality to
simulate a wide variety of systems. Its SMPI component [8]
allows detailed simulation of individual MPI jobs, including
network effects. This could be used to investigate the effects
of processor allocation and task mapping decisions at the job
level; PReMAS uses a simpler model for each job, but does
a system-level simulation to see the effect of allocation policy
(for example) over an entire trace.



Another option is ProcSimity [27], which was designed
for research in processor allocation. It both supports distance-
based metrics such as we use and has the ability to model
message flits moving through the network. Despite these
appealing features, ProcSimity lacks the modularity and easy
extensibility of PReMAS. A bigger issue is its handling of
time; despite the varying timescales of events (job arrivals vs
flits traversing a switch), only a single unit of time is used. In
practice with Parallel Workload traces, this means that all time
units are in seconds and the network is highly overloaded.

Eventually, the Structural Simulation Toolkit (SST) [33],
to which some of our code has been ported, may also be
a competitor for PReMAS. It is freely-available and aims
to allow system simulation at a variety of levels. Currently,
however, much of the functionality is for simulations at much
lower levels (e.g. architecture) and the code ported from
PReMAS provides much of the high-level functionality. A
more general objection is that the size and complexity of SST
makes it challenging to use; compiling the SST code requires
installing several other software packages.

There are also specific other simulators of interest for large
systems, such as BigSim [39] and MARS [10], but neither of
these is publicly available.

In addition to specific other simulators, Frachtenberg and
Feitelson [16] give a related discussion about best practices
for scheduling simulation.

VIII. DISCUSSION

We hope that others find this discussion and our simulator
code useful, but it will certainly not be the last word. Realizing
a shared code base requires a community discussion and effort.
We are also quite aware that using and adapting code written
by others can be challenging. This is particularly true when
the code involved was written as a research prototype without
plans for long-term maintenance; our own code certainly suf-
fers from this, though we are working to improve the situation.
In particular, we hope to use the code as an example in
software development classes, both as an example of the issue
of software maintenance and as the subject of assignments on
design and testing.

It is also clear that others will want to create forks of
this code rather than using and developing for it directly. One
reason for this is our choice of programming language: Java is
convenient for our simulator since it is the main programming
language for most of the student researchers who participate
in our project, but we know that others will prefer other
languages. (We have already seen this in the integration of
some of our code into SST, which required a port into C++.)
Forking the code base potentially limits its usefulness by
increasing the difficulty of comparing results or incorporating
the improvements of others. One way that even a split code
base could provide many of the advantages we see is for the
community to standardize the interfaces between components.
(By “interface”, we mean the functions and their arguments
rather than anything language specific.) Standardization at
this level (and code being generally available) would greatly
facilitate translating algorithms between simulators even with
variations in the rest of the code base.

Beyond these general issues, there are many possible
improvements to the simulator itself. Consider the following:

• Visualization— A natural extension is to provide tools
for visualization. We have a tool for small-scale visu-
alizations of allocations, but the tool cannot handle
large traces. Expanding this and/or adding tools to
visualize schedules and task mappings could make it
easier to compare algorithms with more than high-
level numeric measures such as average response time
and average pairwise distance.

• Workload models— So far, the simulator has been run
entirely using traces. An alternative is to incorporate
some of the many workload models (see e.g. [14]),
either within the simulator or as a preprocessor to
generate a trace.

• Modeling messages— Research in task mapping and,
to a lesser degree, processor allocation would benefit
from a more detailed simulation that would better
model the congestion on particular links. The obvious
way to do this is to model individual messages, but
one representation at an intermediate level of detail is
to record communication by marking the links used
with the aggregate amount of traffic.

• Performance improvements— Some runs, particularly
those including processor allocation on large systems,
can take days or weeks to execute. Likely some of
the algorithm implementations can be improved by
reconsidering them in the light of larger systems. This
is likely important as HPC systems keep becoming
larger. Parallelization of the simulator itself is also a
natural approach.

There are also smaller projects, such as incorporating addi-
tional algorithms from the literature. We plan on pursuing these
improvements, but we also encourage others to use our code
and share the enhancements made in the course of their work.
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