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Abstract We consider the problem of minimizing flow time on a single machine supporting preemption that can
reject jobs at a cost. Even if all jobs have the same rejection cost, we show that no online algorithm
can have competitive ratio better than (2+

√
2)/2 ≈ 1.707 in general or e/(e− 1) ≈ 1.582 if all jobs are

known to have the same processing time. We also give an optimal offline algorithm for unit-length jobs
with arbitrary rejection costs. This leads to a pair of 2-competitive online algorithms for unit-length
jobs, one when all rejection costs are equal and one when they are arbitrary. Finally, we show that the
offline problem is NP-hard even when each job’s rejection cost is proportional to its processing time.

Keywords: Complexity of Scheduling Problems, Theoretical Scheduling

1 Introduction

In classical scheduling problems, the input is a stream of jobs, all of which must be completed.
This type of problem is just one aspect of planning for industrial production because it ignores
the process of deciding what jobs to complete. One view of industrial planning divides it into
four levels, motivated by semiconductor manufacturing [9]. At the top level, management decides
which product lines to promote and how much production to devote to each. The second level
decides on the desired production for specific products and the third converts this into requests for
components that must be completed by specific times. At the bottom level is a classical scheduling
problem involving the assignment of tasks to specific machinery. Classical scheduling ignores the
decisions at the top levels since they do not fit neatly into a mathematical framework, but these
decisions cannot be made without some assurance that the resulting goals are feasible, requiring
input from the scheduler. Although interaction between levels may be limited in many cases, it
would be advantageous to combine the job selection and scheduling decisions.

In this paper, we consider one such combination. Our system receives requests that potentially
exceed its capacity and focuses on a subset of them, satisfying this subset while rejecting the rest.
More formally, we attempt to schedule n jobs on a single machine. Each job Ji completes after
running exclusively on the machine for its processing time pi, incurs a rejection cost ci if it is rejected,
and cannot be run or rejected before its release time ri. The time at which algorithm A completes
or rejects job Ji is its completion time, denoted CA

i . The flow time FA
i of job Ji is CA

i −ri, the time
between Ji’s arrival and its completion or rejection. The cost of job Ji, denoted costAi , is its flow
time (FA

i ) if algorithm A completes job Ji or its flow time plus its rejection cost (FA
i + ci) if job Ji

is rejected. The objective is to minimize
∑n

i=1 costAi , the total cost. This paper considers machines
supporting preemption, meaning jobs can be interrupted and resumed later without penalty. (This
model is called preempt-resume.) We primarily consider the online problem, where the algorithm
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has no knowledge of a job until its release time, but we also consider the offline problem, where all
aspects of the input are known initially.

Although this problem differs from the factory setting described above, we believe it is an inter-
esting way to add an element of planning to the scheduling decision. The total flow time metric
accurately captures the quality of service for an interactive system. Bansal et al. [2] discuss mini-
mizing total flow time with rejections in the context of managing a “to do” list. Throughout the
day, you receive tasks from coworkers. Each comes with two (potentially unknown) parameters,
the amount of work it will take you and the time it will take someone else. These correspond to the
task’s processing time and its rejection cost, respectively. The time a coworker waits for a requested
task is either your time to complete it, or the time you wait before delegating it to someone else
plus their time to complete it. Minimizing the sum of coworker waiting times is exactly our metric.

Related work. Scheduling to minimize flow time without rejections has been extensively stud-
ied; see the survey by Pruhs et al. [10]. In the uniprocessor preemptive setting, the algorithm
Shortest Remaining Processing Time (SRPT), which always runs the job with the least processing
time remaining, is known to be optimal [12, 15]. In other settings, however, optimal solutions can-
not always be found. When this occurs, one goal is to give algorithms with performance guarantees.
We say that an online algorithm is c-competitive or an offline algorithm is a c-approximation if the
cost of its solution is never more than c times the cost of the optimal solution.

Minimizing flow time with rejections has previously been considered by Bansal et al. [2], whose
work is included in Bansal’s dissertation [1]. When the rejection costs are arbitrary, they show
that no randomized algorithm is better than 4

√
n or

√
C-competitive, where C is the ratio between

the largest and smallest rejection costs. When all jobs have the same rejection cost, they give a 2-
competitive algorithm and a lower bound of 1.5 that holds even when all jobs have processing time
1. Using ideas of Bansal and Dhandhere [3], they generalize the algorithm to the weighted problem
by rounding weights to powers of 2. The result is O(log2 W )-competitive if all jobs in a weight
class have the same rejection cost, where W is the ratio between the largest and smallest weights.
They also give an algorithm for general rejection costs that is O(1

ǫ (log W + log C)2)-competitive if
it runs on a processor that is (1+ǫ) times faster than the optimal solution’s processor. Finally, they

mention a (1 + ǫ)-approximation with running time nO(log n/ǫ2) for the offline unweighted problem
when all jobs have the same rejection cost.

Engels et al. [6] consider offline algorithms to minimize a related metric, weighted completion
time (

∑

i wiC
A
i + cost of rejections). They show this problem is NP-complete even when all jobs

arrive at time 0, have weight equal to their processing time, and have the same rejection cost. (This
implies that minimizing weighted flow time is NP-hard under the same conditions.) They also give
optimal algorithms for some special cases when all jobs arrive at time 0 on a single machine and
approximation algorithms for scheduling multiple unrelated machines.

Scheduling with rejections was introduced by Bartal et al. [4], who tried to minimize makespan
(maxi CA

i + cost of rejections) on a nonpreemptive multiprocessor. Seiden [13] gives better bounds
by allowing preemption and Hoogeveen [8] considers the offline problem with preemption. Sen-
gupta [14] considers scheduling with rejections to minimize maximum lateness and tardiness.

Our results. We give both algorithms and lower bounds for minimizing flow time with rejec-
tions. Many of our results require the assumption that all processing times are the same and each
arrival time is a multiple of this value. We call this special case unit-length jobs and assume the
processing times are 1 and job arrival times are integers. This corresponds to an application with
events occurring on clock ticks and/or extremely short jobs. Focusing on unit-length jobs allows us
to assume that any job started is completed before another arrives. Our results are the following:

When all jobs have the same rejection cost, we show that no algorithm has a constant com-
petitive ratio below e/(e − 1) ≈ 1.582 if all jobs have unit length or (2 +

√
2)/2 ≈ 1.707
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if distinct processing times are allowed. The previous best lower bound in both cases was
1.5 [2].

We give an optimal offline algorithm and a 2-competitive online algorithm for the special case
of unit-length jobs with arbitrary rejection costs. Nothing was previously known in this case.

We introduce a family of online algorithms and show that one member is 2-competitive for
unit-length jobs, each having the same rejection cost. This result is not surprising since the
algorithm above achieves the same competitive ratio with arbitrary rejection costs and the
algorithm of Bansal et al. [2] achieves it with arbitrary processing times. We include it,
however, because both the algorithm and proof technique are different.

We show that the problem is NP-complete even when the rejection cost of a job is proportional
to its processing time. This is the first offline hardness result for the unweighted problem,
answering an open question posed by Bansal [1].

We also have, but defer to a later version of this paper, an optimal offline algorithm for the special
case when all jobs have the same (non-unit) processing time.

The rest of this paper is organized as follows. Section 2 contains our lower bounds on the compet-
itive ratio of online algorithms. Section 3 gives algorithms for unit-length jobs. Section 4 contains
the NP-completeness proof. Finally, Section 5 concludes with a discussion of open problems.

2 Lower bounds

Now we give lower bounds on the competitive ratio when all jobs have the same rejection cost,
which we denote with c. In our proofs, we use OPT to refer to the optimal algorithm and ALG to
refer to a hypothetical algorithm whose competitive ratio is better than our bounds.

2.1 When all jobs have unit length

Our first lower bound applies to unit-length jobs. It is a generalization of one presented by
Bansal et al. [2]. The instance in their bound has two parts. The first is a stream of jobs, one
released at each unit time. The second is a single “extra” job, released at time 0. The stream
continues until the algorithm rejects a job, which we may assume to be the extra one. Their lower
bound of 3/2 comes from the tradeoff between rejecting the extra job quickly, in which case OPT
finishes all jobs quickly and there is little to amortize the rejection cost against, and rejecting the
extra job later, in which case OPT rejects it immediately and the algorithm’s flow time is too large.

Our lower bound instance consists of a stream of jobs arriving one per time unit and k extra jobs
released at time 0. We will show that the algorithm cannot achieve a competitive ratio better than
e/(e − 1) because it must wait until a time τk,ic to make the ith rejection, but that delaying the
rejections to these times yields the same competitive ratio. We define τk,i recursively as follows:

τk,0 = 0

τk,i =
i +

∑i−1
j=1 τk,j − (i − 1)τk,i

(k + 1)/(e − 1)
. (1)

Subtracting τk,i−1 from τk,i and solving for the difference gives the following alternate definition:

τk,i =
i

∑

j=1

1

(k + 1)/(e − 1) + (j − 1)
(2)

In this paper, we use the following observations about τk,k:
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Lemma 1 For all values of k, τk,k < 1.

Lemma 2 limk→∞ τk,k = 1

These lemmas have technical and unenlightening proofs, which appear in the Appendix. Instead,
we proceed with the lower bound:

Theorem 3 No deterministic algorithm for flow time with rejections is (e/(e− 1)− ǫ)-competitive

for any constant ǫ > 0 even when all jobs have unit length and the same rejection cost.

Proof: Suppose to the contrary that ALG is (e/(e−1)− ǫ)-competitive. Choose k large enough so
τk,k ≥ 1− ǫ/2, which is possible by Lemma 2. We consider the instance described above consisting
of a stream of jobs, one released at each unit time, and k extra jobs released at time 0. All jobs
have unit length and rejection cost c = 6k2/ǫ.

Let time ti be when ALG makes its ith rejection, assuming the stream continues until time ti.
We consider two cases. The first is ti < τk,ic for some smallest value i. In this case, the last job

of the stream arrives at time ti. ALG has cost at least ic +
∑i

j=1 tj + (k − i + 1)ti +
(

k+1−i
2

)

>

ic +
∑i

j=1 tj + (k− i + 1)ti. OPT has cost at most (k + 1)ti +
(

k+1
2

)

. If i = 1, the competitive ratio

is at least ec/((e− 1)c + k2) > e/(e− 1)− ǫ and we are done. If i > 1, the cost of OPT is at most

(k +1)ti +
(

k+1
2

)

≤ (k + 1)ti + k2 ≤ (k + 1)ti(1+ ǫ/(3(e− 1))) ≤ (k +1)ti(1+ ǫ(e− 1)/e). Algebraic
manipulation of the ratio between these bounds leads to a contradiction:

ic +
∑i

j=1 tj + (k − i + 1)ti

(k + 1)ti(1 + ǫ(e − 1)/e)
=

1

1 + ǫ(e − 1)/e
+

ic +
∑i−1

j=1 tj − (i − 1)ti

(k + 1)ti(1 + ǫ(e − 1)/e)

≥ 1

1 + ǫ(e − 1)/e
+

ic +
∑i−1

j=1 τk,jc − (i − 1)τk,ic

(k + 1)τk,ic(1 + ǫ(e − 1)/e)

=
e

(e − 1)(1 + ǫ(e − 1)/e)

>
e

e − 1
− ǫ.

In the second case, ti ≥ τk,ic for each i. In this case, the last job of the stream arrives at time

tk. The cost of ALG is kc +
∑k

i=1 ti + tk + 1 ≥ kc +
∑k−1

i=1 τk,ic + 2tk + 1. OPT can immediately
reject all k extra jobs, so its cost is at most kc + tk + 1. Again, manipulation of the ratio between
these bounds leads to a contradiction:

kc +
∑k

i=1 τk,i + tk + 1

kc + tk + 1
≥ kc +

∑k
i=1 τk,ic + τk,kc + 1

kc + τk,kc + 1
= 1 +

∑k
i=1 τk,i

kc + τk,k + 1

> 1 +

∑k
i=1 τk,i

k + 1 + 1/c
> 1 +

∑k
i=1 τk,i

(k + 1)(1 + ǫ/6)

≥ 1 +
1

(e − 1)(1 + ǫ/6)
− kǫ

2(k + 1)(1 + ǫ/6)

≥ 1 +
1 − ǫ/3

e − 1
− ǫ/2

>
e

e − 1
− ǫ.

2
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2.2 When jobs have arbitrary processing times

For jobs with arbitrary processing times, we prove the following stronger lower bound:

Theorem 4 When jobs have uniform rejection cost and arbitrary processing time, no deterministic

online algorithm has a constant competitive ratio better than (2 +
√

2)/2 ≈ 1.707.

Proof: Let γ = (2 +
√

2)/2. Suppose to the contrary that a deterministic algorithm ALG is
(γ − ǫ)-competitive. Without loss of generality, we assume 1/ǫ is an integer. Let c = 2γ/ǫ.

Using these values, we give an input instance on which ALG has competitive ratio worse than
γ − ǫ. At time 0, release a job with processing time c/γ = 2/ǫ. Starting at time c/γ − 1, release a
job with processing time 1 every unit time until ALG rejects a job at some time t. If t < c/γ − 1,
the instance has only one job and the competitive ratio is at least c/(c/γ) = γ > γ − ǫ. Otherwise,
the competitive ratio is

2t − (c/γ − 1) + c + 1

min{t + 1, c} + t + 1 − (c/γ − 1)
.

This is minimized when t = c − 1, so this ratio is at least

3c − c/γ

2c − c/γ + 1
.

Since the ratio is at most 2, this is greater than

3c − c/γ − 2

2c − c/γ
> γ − 2/c > γ − ǫ.

2

Intuitively, the bound is improved by the flow time incurred before ALG rejects the long job.

3 Algorithms for unit-length jobs

Now we give algorithms for the special case of unit-length jobs. We describe these algorithms
in terms of the active jobs at a particular time, those that have arrived but have not yet been
completed or rejected.

3.1 Optimal offline algorithm

We begin by observing which jobs an offline optimal algorithm rejects. We call ri + ci the rank
of job Ji and denote it with rank(Ji).

Lemma 5 If all jobs have unit processing time and OPT rejects job Ji, then no job with rank lower

than rank(Ji) is active any time during the interval [ri, ri + ci).

Proof: Suppose to the contrary that OPT rejects some job Ji but completes a job Jj during
[ri, ri + ci), with rj + cj < ri + ci. Consider schedule OPT ′ that is identical to OPT except that
OPT ′ rejects Jj at time rj and runs Ji in the time freed up, i.e. starting at time COPT

j − 1 and

ending at COPT
j . Jobs Ji and Jj contribute ci + COPT

j − rj to OPT and COPT ′

i − ri + cj to OPT ′.

By construction, COPT ′

i = COPT
j and the cost of every job other than Ji and Jj is the same. Thus,

cost(OPT ′)− cost(OPT ) = −ri + cj − (ci − rj) = rj + cj − (ri + ci) < 0. Therefore, schedule OPT ′

is strictly better than OPT , a contradiction. 2

Implicit in the proof of this lemma is that a rejected job can be swapped for a job of equal rank
without affecting the total cost. Let a normalized optimal solution be an optimal solution that
rejects the fewest number of jobs and always runs the active job with highest rank, breaking ties
with the job number.
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Lemma 5 leads us to the algorithm Offline Highest Rank First (HRF–OFF). At all times, HRF–

OFF runs the active job with highest rank, again using job numbers to break ties. It rejects any
job whose flow time equals its rejection cost, i.e., any job not completed by time equal to its rank.
Each of HRF–OFF’s rejections occurs at the rejected job’s arrival time.

Theorem 6 Algorithm HRF–OFF is optimal for unit-length jobs with arbitrary rejection costs.

Proof: Let OPT be a normalized optimal solution. By construction, OPT and HRF–OFF can
only differ if they reject different jobs. Consider the first time this occurs. Since both algorithms
always reject jobs when they arrive, this time is the arrival time ri of some job Ji.

Suppose HRF–OFF rejects job Ji and OPT does not. This is the first difference between the
schedules so OPT and HRF–OFF have the same active jobs just prior to time ri. Also, Lemma 5
implies that OPT does not reject jobs ranked above Ji arriving between times ri and COPT

i . Since
both OPT and HRF–OFF run jobs in order of decreasing rank, they have the same higher-ranked
active jobs throughout this interval. HRF–OFF is busy with higher-ranked jobs until time ri + ci

because it rejects job Ji. Thus, the flow time of job Ji in OPT is greater than ci, a contradiction.
Now suppose OPT rejects job Ji and HRF–OFF does not. Let t = CHRF–OFF

i − 1 be the time
HRF–OFF starts job Ji. At time t, HRF–OFF has completed all jobs ranked above Ji that have
arrived because it runs jobs in order of decreasing rank. (None are rejected since a job is rejected
exactly when it cannot be completed by time equal to its rank and t < rank(Ji) ≤ “higher” rank.)
OPT also runs jobs in order of decreasing rank so it has also completed these jobs. By Lemma 5,
OPT has no lower-ranked active jobs at time t since ri ≤ t < rank(Ji) = ri + ci. Thus, it has
no active jobs at time t and running job Ji then instead of rejecting it is a valid schedule. This
schedule has fewer rejections than OPT and no worse cost, a contradiction. 2

3.2 2-competitive online algorithm

HRF–OFF makes most of its decisions online, but is an offline algorithm since running it online
requires the ability to reject jobs retroactively. We call the algorithm that rejects jobs when their
flow time equals their rejection cost Online Highest Rank First (HRF–ON) since it can run online.

By Theorem 6, HRF–ON is optimal if each rejection is made retroactively at the job’s release
time. Since each rejected job Ji accumulates flow time ci before rejection, we get the following:

Theorem 7 HRF–ON is 2-competitive for unit-length jobs having arbitrary rejection costs.

In fact, HRF–ON is not (2 − ǫ)-competitive for any constant ǫ > 0 even if we assume it rejects
jobs once it is clear their flow time will exceed their rejection cost. Consider the following instance
where all jobs have rejection cost c:

√
c jobs (the main group) arrive at time 0 and another job

arrives at each time i for i = 0, . . . , c−1 (the stream). The algorithm keeps all the main group jobs
until time c−√

c, at which point it rejects them one at a time, one per unit time. Thus, these jobs

incur cost
√

c(c−√
c)+

(

√
c

2

)

+ c
√

c = 2c3/2− c/2+
√

c/2. Jobs in the stream run as they arrive, for

combined flow time and cost c. Thus, the total cost is 2c3/2 + c/2 +
√

c/2. The optimal algorithm
rejects the main group immediately and runs the stream as it arrives, for total cost c3/2 + c. Thus,
the competitive ratio approaches 2 as c increases.

3.3 Online algorithm when all jobs have rejection cost c

Let the psuedoschedule of a schedule be the modification created by keeping each rejected job Ji

active for ci time units. Intuitively, these jobs wait until being instantly finished or rejected for free.
Note that the psuedoschedule’s total flow is the cost of the schedule from which it is made. When
this schedule is an optimal schedule, we call the result an optimal pseudoschedule. The optimal
psuedoschedule can be generated by an online simulation of HRF–OFF since HRF–OFF is optimal
and decides whether to reject each job Ji within time ci of its release.
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Using this simulation, we define a family of algorithms called ratio rejecting. A member of this
family is denoted RR(ρ) for a constant ρ > 1, though we omit ρ when discussing a general property
of the family or when its value is clear from context. Let cost(EOPT, t) and cost(RR(ρ), t) be the
costs incurred up to time t by the simulation and RR(ρ), respectively. RR(ρ) always runs the most
recently-arrived job. It rejects the active job with earliest arrival time whenever

cost(RR(ρ), t) + c

cost(EOPT, t)
≤ ρ. (3)

Since cost(EOPT, t) is a lower bound on the optimal cost, this condition ensures that the com-
petitive ratio is at most ρ when RR(ρ) makes a rejection. This observation quickly leads to the
following lemma:

Lemma 8 RR(ρ) is ρ-competitive if it completes or rejects each job within time c of its release.

Proof: Let OPT be an optimal psuedoschedule. We claim that each job is active in OPT at least
as long as in RR. For jobs that OPT rejects, this follows immediately from our assumption on job
completion/rejection times since these jobs are active in OPT for time c after their release. Suppose
to the contrary that there exists a job that OPT runs before RR. Let Ji be the job with earliest
completion time in RR having this property. Let Jj be the job RR completed immediately before
Ji. Because RR runs the job with latest arrival time, rj ≥ ri. OPT does not reject job Jj since
it does not reject job Ji. Also, because it uses the same criteria to select which job to run, OPT
must have completed job Jj before running job Ji. Thus, COPT

j < COPT
i ≤ CRR

j , contradicting
our assumption that job Ji was the first job that OPT runs before RR.

Now the lemma follows by considering how the ratio cost(RR, t)/cost(EOPT, t) changes over
time. Since each job is active in OPT at least as long as in RR, cost(EOPT, t) increases at least
as fast as cost(RR, t) except when RR rejects a job. Thus, the ratio declines toward 1 except when
RR rejects a job. By definition, however, RR only rejects a job when doing so does not raise the
ratio above ρ. Therefore, the ratio lies between 1 and ρ at all times. Since this ratio at the end of
the input is exactly the competitive ratio, the competitive ratio of RR(ρ) is at most ρ. 2

Using this, we can show that RR(2) is 2-competitive:

Theorem 9 RR(2) is 2-competitive for unit-length jobs all having rejection cost c.

Proof: Call all jobs that RR(ρ) does not run within time c of their release extra jobs. (Note that
this includes all jobs RR rejects.) We show that all extra jobs are rejected within time c of their
release; the result then follows from Lemma 8. First we consider the simple case when all extra
jobs arrive at a single time. Without loss of generality, assume this time is 0. Let k be the number
of extra jobs and let OPT be a normalized optimal solution.

Let ti be the time of RR’s ith rejection. For notational convenience, we define t0 = 0. We
show that the time between ti−1 and ti is at most c/(k + i). The result then follows from
Lemma 1 since the ith rejection occurs before τk,i as defined in Equation 2. Consider how the
ratio cost(RR, t)/cost(EOPT, t) changes between times ti−1 and ti. All k extra jobs contribute to
the denominator since they remain active in the pseudoschedule even if OPT rejects them. Only
k − (i− 1) = k + 1− i of them contribute to the numerator since i− 1 have already been rejected.
In addition to the extra jobs, there is at least one other job active at all times or RR would work
on extra jobs. This job and any other non-extra job contributes equally to the numerator and
denominator since OPT and RR process jobs in the same order. Thus, the rejection occurs latest
if k + 2 − i jobs contribute to the numerator and k + 1 contribute to the denominator. Therefore,
if RR has not made the ith rejection before time ti−1 + c/(k + i), the largest possible value of the
ratio in Equation 3 is

cost(RR, ti−1) + (k + 2 − i)c/(k + i) + c

cost(EOPT, ti−1) + (k + 1)c/(k + i)
≤ 2
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and RR makes the ith rejection at that time.
It remains to show that each extra job is rejected within time c of its release when extra jobs

arrive at several times. Suppose to the contrary that an input instance exists in which some job J
is not completed or rejected within time c of its release. Since extra jobs arriving after job J only
hasten its rejection, we assume the extra jobs arriving with J are the last extra jobs and the only
ones not rejected within time c of their arrival. We also assume that non-extra jobs arrive one per
unit time since deviations from this also hasten rejections. Call each set of a extra jobs arriving
concurrently a group. We give a modification of the instance that reduces the number of groups
in such a way that every rejection after the arrival of the second group occurs no earlier. This
suffices since repeatedly applying this transformation to our initial instance creates an instance
with a single group of extra jobs that are not all rejected within time c, which we have already
shown cannot occur.

Suppose the first two groups of extra jobs arrive at times 0 and t, respectively. Let k be the size of
the first group and let i be the number of these jobs rejected by time t. Our transformation removes
all jobs arriving before time t and adds k − i jobs to the second group. We show the rejections
occur later in this modified instance by showing that cost(RR, t) grows at least as quickly and
cost(EOPT, t) grows more slowly. The value of cost(RR, t) grows at least as quickly at time t
since exactly the same number of jobs are active in RR. The faster growth continues after time
t because slower growth of cost(EOPT, t) delays RR’s rejections. To show that cost(EOPT, t)
grows more slowly, consider how the first group of extra jobs contribute to it after time t in the
original instance. We showed above that an extra group with k jobs causes i rejections by time
∑i

j=1 c/(k+j) ≤ ci/k after its arrival. Thus, t ≤ ci/k. Since the first group has k jobs contributing

to cost(EOPT, t) until time c, their total contribution after time t is at least ck(1− i/k) = c(k− i).
This is exactly the total contribution of the k − i jobs we replaced them with. In addition, the
replacement jobs contribute until time t + c rather than stopping at time c. Since the contribution
of the replacement jobs is no larger and it is more dispersed, cost(EOPT, t) grows more slowly. 2

4 NP-completeness of minimizing flow with rejections

Turning to the offline problem, we show that a restricted version of the problem is NP-complete.

Theorem 10 Minimizing total flow time with rejections is NP-complete even when the cost of

rejecting a job is proportional to its processing time.

Note that this theorem implies that minimizing the sum of completion times with rejection is
also NP-complete since the same schedule is optimal for total flow time and sum of completion
times. In fact, our proof uses ideas of Du et al. [5], who proved that it is NP-complete to find a
multiprocessor preemptive schedule minimizing the sum of completion times. Rejected jobs in our
schedule are equivalent to jobs running on a second processor in theirs.

Proof: The problem is in NP because once the jobs to reject are specified, the others are run using
SRPT [2]. To show hardness, we give a reduction from Partition [7]:

Partition: Given a set A = {a1, a2, . . . , an} of positive integers, does there exist a partition of A into
A1 and A2 such that

∑

ai∈A1
ai =

∑

ai∈A2
ai?

Let B =
∑n

i=1 ai. We assume B is a multiple of 2 since otherwise a partition cannot exist.
We also assume n ≥ 5 since small instances of Partition can be quickly decided. We create a
scheduling instance with n + 2 jobs. For each element ai ∈ A, we create job Ji with ri = 2(i− 1)B,
pi = 2ai, and ci = 5ai. In addition, there are two jobs Jn+1 and Jn+2 with rn+1 = 0, pn+1 = 2nB,
cn+1 = 5nB, rn+2 = 2nB + B, pn+2 = 2nB, and cn+2 = 5nB. Observe that the rejection cost for
each job is 5/2 times its processing time.
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We claim that a partition exists if and only if a schedule exists with cost at most (4n + 9/2)B.
Suppose a partition of A into A1 and A2 exists. Let S1 and S2 be sets of jobs containing the jobs
corresponding to A1 and A2 respectively. We create a schedule that rejects the jobs in S1 as they
arrive and runs the jobs in S2 to completion as they arrive. In the times between these executions,
it runs Jn+1. Since the jobs in S2 have total execution time

∑

Ji∈S2
pi =

∑

ai∈A2
2ai = B, job Jn+1

finishes at time 2nB + B. Thus, we can run job Jn+2 as soon as it arrives. This schedule has total
cost

∑

Ji∈S2
pi +

∑

Ji∈S1
ci + (2nB + B) + 2nB = B + (5/2)B + 4nB + B = (4n + 9/2)B.

Now suppose a schedule with cost at most (4n+9/2)B exists. Clearly, neither Jn+1 nor Jn+2 are
rejected. Let S1 be the set of rejected jobs and S2 be the other members of {J1, J2, . . . , Jn}. Also,
let A1 and A2 contain the ai corresponding to members of S1 and S2 respectively. We assume that
each member Ji of S2 is run immediately following its arrival since otherwise doing so and running
Jn+1 when Ji was run produces a schedule with no greater cost. Similarly, we assume that job
Jn+1 is completed before Jn+2 is started. If

∑

ai∈A2
ai > B/2, then Jn+1 does not complete before

the arrival of Jn+2 and so the cost is at least 5
∑

ai∈A1
ai + 2

∑

ai∈A2
ai +

(

2nB + 2
∑

ai∈A2
ai

)

+
(

2nB + 2
∑

ai∈A2
ai − B

)

= 4nB + 4B +
∑

ai∈A2
ai > (4n + 9/2)B. (Recall that

∑

ai∈A1
ai +

∑

ai∈A2
ai = B.) However, if

∑

ai∈A2
ai < B/2, then the cost is at least 5

∑

ai∈A1
ai +2

∑

ai∈A2
ai +

(

2nB + 2
∑

ai∈A2
ai

)

+ 2nB = 4nB + 5B − ∑

ai∈A2
ai > (4n + 9/2)B. Thus,

∑

ai∈A2
ai = B/2 =

∑

ai∈A1
ai so A1 and A2 form a partition of A. 2

5 Discussion

Although we have made progress on several parts of this problem, there remain areas for further
work. We are most interested in closing the gap between the lower bound of e/(e − 1) ≈ 1.582
and the various 2-competitive algorithms for unit-length jobs with rejection cost c. We believe
that RR can be better than 2-competitive; certainly there is slack for a single group of extra jobs,
which RR(2) finishes by approximately 0.7c. There is also still a gap between our lower bound of
(2 +

√
2)/2 ≈ 1.707 and the 2-competitive algorithm of Bansal et al. [2] for jobs with arbitrary

processing times and rejection cost c. In addition, it would be interesting to know if randomized
algorithms can beat the competitive ratios given in Theorems 3 and 4. In the offline setting, we
have shown that one form of the problem is NP-complete, but it is not known whether the problem
remains NP-complete when all jobs have rejection cost c. Another open question is whether either
the full problem or this special case admit a PTAS, i.e. a (1 + ǫ)-approximation algorithm that
runs in polynomial-time for any constant ǫ.

More generally, much more can be done to address the question of how to combine planning
with scheduling. This question has not been considered in many scheduling settings nor has anyone
characterized the requirements of a specific application.
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Appendix: Proof of Lemmas 1 and 2

Before proving our main results, we show the following technical lemma:

Lemma 11 Consider the axis-aligned rectangle with corners (i, 1/i) and (i + 1, 1/(i + 1)). The

proportion of its area above the function f(x) = 1/x is at most 1/2 + 1/(2i).

Proof: The area of the box is 1/i − 1/(i + 1) = 1/(i(i + 1)). The area within the box and under
the curve is

∫ i+1

i

dx

x
− 1

i + 1
= ln

i + 1

i
− 1

i + 1

Thus, the proportion of area under the curve is 1−i(i+1) ln((i+1)/i)+i = 1+i−i(i+1) ln(1+1/i).
Using the first two terms of the Taylor series expansion for ln(1 + x), this is at most

1 + i − (i2 + i)

(

1

i
− 1

2i2

)

= 1/2 + 1/(2i)

2

This allows us to prove the first of our lemmas about τk,k.
Proof of Lemma 1: For the value of τk,k, we use Equation 2:

τk,k =
k

∑

j=1

1

(k + 1)/(e − 1) + j − 1
=

∫ k+1

1

dx

(k + 1)/(e − 1) + ⌊x⌋ − 1

We want to remove the floor from this integral, but doing so decreases the value. We bound the
difference by considering the total area in the axis-aligned rectangles with corners along the curve
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y = 1/x at x = (k + 1)/(e − 1) + i for i = 0, 1, . . . , k. These boxes have total area

(k+1)/(e−1)+k
∑

i=(k+1)/(e−1)

(

1

i
− 1

i + 1

)

=
e − 1

k + 1
− e − 1

ke + 1

When k ≥ 10, the proportion of this area that is part of the error is at most

1

2
+

1

2i
≤ 1

2
+

e − 1

22
=

e + 10

22
≤ 1

e − 1

by Lemma 11. Thus, τk,k for k ≥ 10 obeys

τk,k ≤
∫ k+1

1

dx

(k + 1)/(e − 1) + x − 1
+

1

e − 1

(

e − 1

k + 1
− e − 1

ke + 1

)

=

∫ k+1

1

(e − 1)dx

k + 2 − e + x(e − 1)
+

k(e − 1)

(k + 1)(ke + 1)

< ln(k + 2 − e + (k + 1)(e − 1)) − ln(k + 2 − e + (e − 1)) +
e − 1

ke + 1

= ln
ke + 1

k + 1
+

e − 1

ke + 1
= 1 − ln

ke + e

ke + 1
+

e − 1

ke + 1

= 1 − ln

(

1 +
e − 1

ke + 1

)

+
e − 1

ke + 1

The last line is at most 1 since ln(1 + x) =
∑∞

i=1(−1)i+1xi/i, which is greater than x for x < 1.
For k < 10, we verify the identity by hand using Equation 2: τ1,1 ≈ 0.859, τ2,2 ≈ 0.937,

τ3,3 ≈ 0.961, τ4,4 ≈ 0.972, τ5,5 ≈ 0.979, τ6,6 ≈ 0.983, τ7,7 ≈ 0.985, τ8,8 ≈ 0.987, τ9,9 ≈ 0.989. 2

The other observation follows quickly from this:

Proof of Lemma 2:

τk,k =
k

∑

j=1

1

(k + 1)/(e − 1) + j − 1

≥
k

∑

j=1

1

⌈(k + 1)/(e − 1)⌉ + j − 1

= H⌈(k+1)/(e−1)⌉+k−1 − H⌈(k+1)/(e−1)⌉−1

where Hn =
∑n

j=1 1/n is the nth Harmonic number. Recall that limn→∞(Hn − lnn) = γ, where

γ ≈ 0.577 is Euler’s constant [11]. Thus,

lim
k→∞

τk,k ≥ lim
k→∞

(

H⌈(k+1)/(e−1)⌉+k−1 − H⌈(k+1)/(e−1)⌉−1

)

= lim
k→∞

(ln((k + 1)/(e − 1) + k − 1) − ln((k + 1)/(e − 1) − 1))

= lim
k→∞

ln
(k + 1)/(e − 1) + k − 1

(k + 1)/(e − 1) − 1
= ln(1 + e − 1)

= 1

The result then follows from Lemma 1. 2


