
Improvements to the Structural Simulation Toolkit

Arun Rodrigues
Sandia National Labs

afrodri@sandia.gov

Keren Bergman
Columbia University

kb2028@columbia.edu

David Bunde
Knox College

dbunde@knox.edu
Elliot Cooper-Balis

U. Maryland
ecc17@umd.edu

Kurt Ferreira
Sandia National Labs

kbferre@sandia.gov

K. Scott Hemmert
Sandia National Labs

kshemme@sandia.gov

ABSTRACT
Designing supercomputer architectures and applications is
becoming more difficult because of their increased size and
complexity, because of new technologies, and due to new
constraints such as power and thermal limits.

The Structural Simulation Toolkit (SST) is an architec-
tural simulation framework designed to assist in the design,
evaluation, and optimization of High Performance Comput-
ing (HPC) architectures and applications. Its initial release
included a parallel simulation core with a number of system
component models.

The SST has been expanded and improved in a number
of ways. New memory, network, and processor models have
been added, as well as new high-level system simulation ca-
pabilities. Also, scalability results are presented.

Categories and Subject Descriptors
B.6.3 [Simulation]: Logic Design

Keywords
Simulation, Architecture

1. INTRODUCTION
The complexity of supercomputer architectures and ap-

plications continues to grow as their performance improves.
New technologies such as GPGPUs, silicon photonics, and
advanced packaging, and new constraints, such as power and
thermal limits, also complicate design.

The Structural Simulation Toolkit (SST), first introduced
in [21], is an open, modular, framework designed to assist
in the design, evaluation, and optimization of HPC archi-
tectures and applications. It consists of a parallel simula-
tion core with a number of network, memory, and processor
models, capable of evaluating systems at different levels of
resolution.

The SST has been expanded and improved in a number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools Desenzano, Italy
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of ways. New memory, network, and processor models have
been added, as well as new high-level system simulation ca-
pabilities for modeling scheduling and application resilience.
The improvements covered in this paper include new net-
work components (Sections 4.1, 4.2, and 4.3), A new mem-
ory model (Section 4.4), new processor and GPGPU models
(Section 4.5 and 4.6) and high-level system models of sched-
uleing (Section 4.7) and node allocation (Section 4.8). Each
of these models have been modified to share a common view
of simulated time, and can pass each other events. Prelimi-
nary scalability results are also presented (Section 3).

2. RELATED WORK
The SST simulation framework builds on a long history of

architectural simulators. Giving full justice to this long tra-
dition is beyond the scope of this paper, however some key
simulators which influenced SST include Omnet++, Sim-
pleScalar[3], NS-3[10], and A-Sim[19]. SST’s parallel infras-
tructure builds on previous work[9] in parallel discrete event
simulation.

3. SCALABILITY
Early shared memory MPI scalability testing of the SST

was performed on a 4-socket 32-core 2 GHz machine run-
ning Redhat Enterprise Linux 5 and OpenMPI 1.4.3. Two
component sets were tested. The first is a Portals NIC-based
simulation (Section 4.1) simulation which studies the advan-
tages of NIC-based offload[27]. The second simulation uses
a synthetic test component called simpleComponent.

The Portals simulation consists of three components: a
cycle-approximate model of the Cray SeaStar router, a model
of a Portals network API[20] offload network interface, and a
state machine model of the driver application (in this case,
the Allreduce algorithm). This setup stresses the scaling
performance of the SST core because it is relatively mem-
ory intensive due to the high component count and highly
communication intensive because there is little computation
between synchronization points due to the high level of ab-
straction of the models. Between 8,192 and 262,144 simu-
lated nodes were strong scaled on 1 to 32 shared memory
MPI ranks on the host platform. Figure 1(a) shows the
simulation runtimes, while Figure 1(b) shows the speedup
compared to a single rank run. As can be seen, 32K simu-
lated nodes provided the best scaling, achieving a speed up
of 17.2 on 32 MPI ranks. All sizes saw better scaling with
lower numbers of ranks, most likely due to limited memory
bandwidth when using all shared memory cores. However,

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32

E
xe

cu
tio

n
T

im
e

(s
)

Shared Memory Ranks

8k Sim Nodes
16k Sim Nodes
32k Sim Nodes
64k Sim Nodes

128k Sim Nodes
256k Sim Nodes

(a) Triggered NIC Runtimes

1

2

4

8

16

1 2 4 8 16 32

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 s

in
g
le

 r
a
n
k

Shared Memory Ranks

8k Sim Nodes
16k Sim Nodes
32k Sim Nodes
64k Sim Nodes

128k Sim Nodes
256k Sim Nodes

(b) Triggered NIC Speedup

0

200

400

600

800

1000

1 2 4 8 16 32

E
xe

cu
tio

n
T

im
e

(s
)

Shared Memory Ranks

256 mock SMPs
4k mock SMPs

16k mock SMPs
256 commTest

4k commTest
16k commTest

(c) SimpleComponent Runtimes

1

2

4

8

16

32

1 2 4 8 16 32

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 s

in
g
le

 r
a
n
k

Shared Memory Ranks

256 mock SMPs
4k mock SMPs

16k mock SMPs
256 commTest

4k commTest
16k commTest

(d) SimpleComponent Speedup

1: Scaling Results

worst case scaling showed greater than an 11x speedup us-
ing 32 ranks. Interestingly, many of the runs showed super-
linear scaling from 2 to 8 ranks, most likely due to cache
and memory system effects.

The second simulation setup used a synthetic component
named simpleComponent. This component emulates the
computation and message characteristics of a more complex
component. Each simulated cycle, simpleComponent will
perform some work (simulated by a 6 instruction loop iter-
ated over a configurable number of times) and may send a
message to a random neighbor. Two configurations of sim-
pleComponent were tested. The first was a “Mock SMP”,
representing a medium level processor core simulation, node
which did a relatively large amount of work (4000 iterations
per simulated cycle) and had a 1 in 50 chance of sending
a 100 byte message per cycle. The second was a communi-
cations test which did relatively little work per cycle (100
iterations) and had a 1 in 25 chance of sending a 100 byte
message. Each configuration was tested with 256, 4,096, and
16,384 components.

With only 256 components, both simpleComponent con-
figurations failed to scale much beyond 16 ranks. However,
with more components, they were able to scale effectively.
With 16K components the “Mock SMP” was able to achieve
a speedup of 15.79 on 16 ranks and 31.41 on 32 ranks (98%
parallel efficiency) and even the more communication inten-
sive test achieved speedups of 14.47 on 16 ranks and 26.75
on 32 ranks (84% parallel efficiency).

Future scalability studies will focus on distributed mem-
ory clusters and MPPs. Initial work shows that these system
have higher overhead, but scale well for detailed simulations
where there is a larger amount of computation to be per-
formed between synchronizations.

4. IMPROVEMENTS

4.1 State machine driven Portals 4 NIC
The Portals 4 NIC component models a network interface

which offloads the progress engine for the Portals 4 API[20].
The model is written at a medium level of detail, which is
accurate at the block level, including computational units
and buffering. The NIC supports most of the Portals 4
API, but is missing support for some of the less used op-
tions. The Portals 4 NIC is currently designed to work with
the SeaStar router model, which is cycle approximate, and
a state machine model of the driver application, which pri-
marily accounts for the time required to communicate across
the host interface to the NIC. Future work will expand the
NIC model to work with the gem5 SST component (see Sec-
tion 4.6), which provides a cycle approximate CPU simula-
tion model and currently uses a simpler Portals NIC model.
The SeaStar router has been validated in previous work[26]
to within 7% of hardware performance.

4.2 IRIS
The IRIS Network simulator provides a pipelined, cycle-

accurate router model capable of modeling a variety of Net-
work-on-Chip (NoC) and inter-node interconnection archi-
tectures. The key IRIS component is a generic router, based
on a generic input buffered router described in [6]. IRIS has
been coupled with the Portals NIC model (Section 4.1), and
will be used to study network topologies, routing methods,
and network protocol tradeoffs.

The model is parameterized and can be configured to sup-
port different buffer sizes, virtual channels, routing and ar-
bitration algorithms. The router is comprised of several sub-
components: buffers, routing units, and arbiters:

• Buffer: The basic unit of storage in a buffer is a flit.

There is one buffer per port of the router. The buffer
depth and number of virtual channels are configurable.

• Route Computation (RC) Unit: There is one RC
unit per input port. The RC unit currently reads the
destination from the head flit and specifies the output
port and output virtual channel. It can also support
adaptive routing schemes.Currently, mesh and tori are
supported.

• Arbiters: Both virtual channel arbiters and switch
arbiters are modeled on the request-grant methodol-
ogy. In a given cycle all active messages in the router
populate the requester matrix.The arbiter then issues
grants, in a round robin fasion, depending on the num-
ber of output channel and ports availability. Requests
that fail must re-request in the next cycle.

Additionally, flit level flow control is managed by the router
outside of all the sub-components. Future work will support
additional topologies, more complex request granting mech-
anisms, and more detailed modeling of the router crossbar.
Current work is focusing on validation of the router model.

4.3 PhoenixSim
Over the past decade, silicon photonic interconnect net-

works have been shown in simulation to outperform elec-
tronic networks, providing higher bandwidth at lower power
via wavelength division multiplexing (WDM) while also al-
leviating IO pin constraints with high bandwidth density
silicon photonic channels. Designing such integrated pho-
tonic systems will require careful exploration of the network
design space through simulation. PhoenixSim[4], developed
at Columbia University, allows us to simulate electronic and
photonic networks at both a physical and abstract level and
evaluate our network designs based on performance, energy,
and thermal metrics.PhoenixSim was originally built on top
of the discrete event network simulator OMNeT++[28], but
has been ported to the SST to take advantage of SST’s scal-
ability and interact with other SST components.

PhoenixSim provides models of the waveguides, modula-
tors, detectors, filters, switches, lateral couplers, and lasers
used in silicon photonic communication. The components
models are highly parameterized and can be updated to re-
flect the rapidly evolving capabilities of photonic devices.

The modeled electronic models include: wires, multiplex-
ors, routers, serializers/deserializers, virtual channel logic,
and IO pads. Also included is an abstract application model
which can test and evaluate network functionality by pro-
ducing regular, stochastic, or traced network traffic.

To integrate PhoenixSim with SST, we have interfaced
OMNeT++ with SST. This interface was achieved by re-
moving the event queue from OMNeT++, and forwarding
scheduled events to the SST event queue. This gives us:

1. The ability to design network architectures using the
well-established OMNeT++ framework, namely OM-
NeT++’s network description language, the OMNeT++
parameter configuration system, and the OMNeT++
IDE.

2. The ability to interface existing PhoenixSim models
and any other OMNeT++ project with SST.

3. A stable interface between PhoenixSim and SST

Integrating PhoenixSim with the SST environment allows
us to expand our design space to include the application,

processor, and memory models available through SST. The
more detailed processor and memory models in SST, such
as BOBSim (Section 3.5), gem5 (Section 3.7), or the Portals
NIC (Section 3.2) can drive network traffic and orchestrate
any higher-level network protocols, while leaving the mod-
eling of the interconnection network and any other photonic
components to PhoenixSim. With PhoenixSim integrated
into SST, we can closely analyze the interaction between
processors, a photonic interconnection network, and pho-
tonic links to memory as they operate in a cohesive system.

Because silicon photonic network devices currently exist
as small scale laboratory demonstrators, full scale validation
is difficult to perform. However, individual device models
have been calibrated to match the measured parameters of
fabricated devices.

4.4 BOBSim
Due to the signaling characteristics of JEDEC standard

double-data rate (DDR) DRAM DIMMs, current memory
systems are limited in speed and capabity [8]. To circumvent
these limitations, the buffer-on-board (BOB) memory sys-
tem has been introduced in HPC and server systems. Similar
to FB-DIMM, the BOB memory system uses a small buffer
or controller that grants both an increase in clock rate and
increased signal integrity. The buffer is responsible for con-
trolling the ranks of DDR DIMMs and communicating with
the CPU over a fast and narrow bus. Because there is only
one buffer chip per channel, the BOB approach alleviates
many of the problems (i.e. high power dissipation, cost, and
latency) that plagued the FB-DIMM architecture.

BOBSim is a hardware verified BOB memory system sim-
ulator developed at the University of Maryland and inte-
grated with the SST. BOBSim is a cycle-based simulator
that encapsulates the main BOB controller and each link
bus, simple controller, and DRAM channel that make up
the memory system. All of the major logical portions of the
design have a corresponding software object and associated
parameters that give total control over every aspects of the
system’s configuration and behavior. Device timing parame-
ters and power modeling are based on Micron data-sheets for
DDR3-1333 and DDR3-1600 DRAM parts. The BOB sim-
ulator has been hardware verified at the DRAM level sim-
ilar to DRAMSim2 [22]. Micron Technology, Inc. publicly
provides Verilog HDL models for all DRAM devices it man-
ufactures. These HDL models are used in conjunction with
ModelSIM to ensure correct timing of commands and data
on each bus. Like DRAMSim2, BOBSim provides an easy
to use and accurate memory model for address stream or
system performance analysis while still being able to model
the most cutting edge memory architectures.

BOBSim has been tested with the SST’s genericProc pro-
cessor model, and also with the SST’s port of gem5 (Sec-
tion 4.6). To integrate with gem5, a small wrapper com-
ponent was built around the BOBSim interface to provide
backing store for the data in DRAM, as by default BOBSim
only provides timing information.

4.5 MacSim GPGPU Simulator
The MacSim simulator provides a model of GPU/CPU

cores or heterogeneous computing nodes. MacSim is a trace
driven heterogeneous architecture simulator that can simu-
late x86 and PTX traces (CUDA source code). It can sim-
ulate one of the ISAs (homogeneous node) or both (hetero-

geneous node). Unlike MacSim, GPGPU-Sim [1] simulates
only PTX traces. Recently released Multi2Sim [25] also sim-
ulates heterogeneous architectures (X86 and OpenCL).

Macsim can be driven by PTX or X86 traces. PTX Traces
are generated by Ocelot [5] and x86 traces by Pin [16]. PTX
traces include branch divergence information as bit masks
and all thread memory access addresses. X86 traces include
x86 instructions with decoded information. Both X86 and
PTX traces are translated into MacSim micro-ops, which
are RISC style ops. For the PTX case, almost all ops are
directly translated into micro-ops. For x86 traces,typically 1
to 3 micro-ops are generated per X86 instruction. MacSim
models in-order and out-of-order pipelines, SMT features,
caches, and includes a simple DRAM model.

When integrated with SST, MacSim can represent (a) a
heterogeneous node, (b) CPU/GPU processors (c) one core
in a GPU or CPU. For the heterogeneous node case, SST
only sends timing events and application starting events.
For a CPU/GPU model, MacSim sends memory packets to
the SST. In this case, memory and interconnection compo-
nents are simulated using other components in SST, such as
BOBSim (Section 4.4) or IRIS (Section 4.2). Finally, when
MacSim models only one GPU/CPU core, MacSim sends all
the memory traffic, including cache accesses, to other SST
components.

MacSim can be used to explore the performance of GPGPU
style computation. Integrated with SST, it can be used to
examine the effects of different memory arrangements, and
the tradeoffs in integrating a GPGPU with a more conven-
tional processor or using a GPGPU as a standalone compute
node. Leveraging SST’s network components will allow the
data movement issues different systems to be evaluated.

4.6 gem5
Like SST, the gem5 simulator[2] is a modular framework

for architectural research. It includes a number of simula-
tion structures for processors, caches, busses, and TCP/IP
network components. Unlike SST, its focus is on smaller
scale systems using commodity networks – not HPC. How-
ever, its detailed processor models with support for multiple
ISAs and full system simulation are a valuable addition to
the SST’s set of components.

Integrating gem5 into SST required several changes. First,
gem5’s Python-based initialization was replaced with an XML-
based configuration to better support SST’s two phase ini-
tialization process (where components are partitioned across
the parallel job before being instantiated). Secondly, gem5
was encapsulated as an SST component, and its internal
event queue modified to be driven by SST’s. To allow com-
munication with SST, translator SimObjects were created
which pass gem5 events to SST components through the
normal SST inter-component link objects. Lastly, changes
were made to the gem5 loader to avoid the use of syn-
chronous (untimed out-of-band) messages. This was re-
quired because gem5 used “backdoors” between SimObjects
in the same address space. In the distributed memory SST
these “backdoors” cannot be used.

Once this basic integration was complete, gem5 was tested
with DRAMSim and BOBSim (Section 4.4) as its main mem-
ory model. Additionally, gem5 has been integrated with a
Portals NIC (similar to that described in section 4.1), to
allow larger scale simulations of parallel distributed mem-
ory machines. This has been used to simulate up to 512

inheritence relationship

EASYScheduler

Scheduler

PQScheduler

StatefulScheduler

LinearAllocator

Allocator

MBSAllocator

NearestAllocator SimpleAllocator

Mesh SimpleMachine

Machine

Main
"uses" relationship

2: Simplified class diagram for standalone schedul-
ing/allocation simulator

instances of gem5/SST all running a parallel MPI program.
Previous work[23] has validated gem5’s processor model

to within 15% of actual hardware performance for complex
benchmarks, mainly due to inaccuracies in its relativelty
simple internal memory model. It is expected that the more
detailed DRAMSim/BOBSim memory models in SST will
correct much of this error and validation is ongoing.

4.7 Scheduling Simulation
The scheduler component simulates the placement and

scheduling of jobs onto a simulated system. This compo-
nent is based on an existing standalone HPC simulator[14,
24] which allows exploration of when jobs run (scheduling),
and which processors they are assigned to (allocation) [29].
Porting this simulator into the SST framework provides re-
alistic workloads for low-level simulations and will benefit
research on scheduling and allocation with low-level details
on how jobs in a system interact.

The simulator parses a trace derived from the Parallel
Workloads Archive [7] for characteristics of the jobs to run,
and manages an stream of job arrivals and completions.
It uses objects from the abstract classes Scheduler, Allo-
cator, and Machine to store most of the simulation state
and to make decisions with derived classes implementing
different versions of the necessary functionality (See Fig-
ure 2). Common schedulers and allocators have been imple-
mented for use as comparison baselines. These include in-
clude EASY [13] (EASYScheduler), a generalization of Con-
servative [18] (StatefulScheduler), and a priority-based
scheduler (PQScheduler). The latter uses a set of compara-
tors to select between FCFS, Shortest Job First, Widest
Job First, and similar priority-based schemes. Most of the
allocators are meant for mesh systems, with classes derived
from Allocator implementing allocators based on linear or-
derings [15, 12, 29] (LinearAllocator), center-based alloca-
tors [17, 11] (NearestAllocator), and buddy systems [15,
29] (MBSAllocator). In addition, to speed up simulations
where scheduling is the focus and allocation is unnecessary,
the system provides a “bag of processors” with no notion of
locality (SimpleMachine) along with the appropriate alloca-
tor (SimpleAllocator).

To integrate with the SST, a new class was added to rep-
resent the scheduling components and to interface with the
other SST components. Starting jobs and learning of their
completion now involves interacting with node components,
one for each node in the system. The Allocator classes notify
the interfacing class, which sends the appropriate nodes an
SST message to begin processing. As each node completes
its part of a job, it sends an SST event message back to
the interfacing class, which gathers these until all nodes as-
signed to the job have completed, at which point the rest of
the scheduler is told of these nodes’ availability. Returning
the nodes to availability all together mimics the behavior of
real systems and, fortunately, minimized the changes neces-
sary to the existing scheduler.

Future work will focus on the node component. Currently,
the node simulates job duration as a fixed static interval, ne-
glecting intra- and inter-job interactions. We are now start-
ing to add communication behavior to the nodes, which will
use networking components such as IRIS or PhoenixSim.
Eventually, processor and memory models such as BOB-
Sim, MacSim, and gem5 will be added. This will allow
exploration of topology aware allocation algorithms where
network interference effects can be better understood.

4.8 Reliability Simulation
As high-end computing machines continue to grow in size,

failure rates have begun to limit application scalability. Cur-
rent techniques to ensure progress across faults, like coordi-
nated checkpoint-restart (CCR), are increasingly problem-
atic at these scales due to high overheads.Many alternative
resilience algorithms and fault-tolerance mechanisms have
been proposed, however, few of these techniques have been
accurately evaluated at large scale.With the reliability sim-
ulation components, we extend the SST framework for sim-
ulating the resilience mechanisms of a large-scale system,
giving us the ability to run relative performance compar-
isons of more than a million cores while adjusting a wide
range of system parameters.

The reliability simulation components include a Router,
a Storage component, and an End-point component.

The Router component can be connected into 1-D, 2-D,
or 3-D meshes or tori. They use source-based routing and
wormhole-based routes. This is typical of supercomputer
networks. Message latency is calculated simply based on a
configurable router latency, port contention, and the length
of the message. We use the same basic router model for the
system-level interconnect and the NoC within each socket of
our simulation.

Evaluating resilience algorithms requires simulation of stor-
age access. For our work two types of Storage are be sim-
ulated. In each node there is some amount of NVRAM
that is accessible to the local cores and nodes can access
remote storage. Each storage component accepts data write
requests and queues them. Based on a configurable write
speed parameter, this queue is processed and write acknowl-
edgements are sent back to the requester. There is a similar
queue for read requests and read data events are sent back
to requesters based on the read speed of the device and the
number and size of pending requests.

Due to the cost, we cannot afford to run a detailed execution-
based processor model at each end-point. So, we generate
application events with pattern generators. For example, a
five-point stencil computation using ghost (halo) cells to ex-
change data with neighboring ranks has a simple loop struc-
ture: Send data to neighbors, wait for data from neighbors,
perform computation, repeat. A collective operation, such
as an allreduce, is occasionally inserted to determine conver-
gence. Many similar patterns exist in current applications.
Our simulator is capable of producing any communication
pattern as long as the pattern is not based on data organi-
zation.

These communication patterns are represented by state
machines. However, describing computation as state ma-
chines can be difficult due to the state explosion that occurs
when we combine a communication pattern generator, a re-
silience algorithm, collective operations, and the handling of
asynchronous I/O events and faults. The solution we have

chosen is that of a gate keeper. This is a C++ SST compo-
nent from which all communication patterns inherit. This
gate keeper ensures all events arrive in proper order and
queues events for later retrieval which arrive too early.

Validation of this work has only begun, but, early results,
such as the one in Figure 3 look very promising. That figure
shows the results of a hand-coded allreduce operation using a
one-double sum on up to 4,096 cores of a Cray XE-6 system.
We simulated the same algorithm and configured SST to
mimic the XE system and obtained the results in Figure 3.

T
im

e
 p

e
r

a
llr

e
d

u
c
e

 o
p

e
ra

ti
o

n
1

 d
o

u
b

le
 s

u
m

 (
8

 b
y
te

s
)

Number of MPI ranks

allreduce
simulation

0.0 s

5.0 us

10.0 us

15.0 us

20.0 us

25.0 us

30.0 us

35.0 us

40.0 us

45.0 us

 0 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

3: One double sum allreduce on a Cray XE-6 system

5. SUMMARY
The SST provides a parallel, scalable, modular, and open

framework for architectural simulation of HPC systems. Re-
cent improvements have enhanced its scalability and added
functionality in network, memory, and processor simulation.

The SST will continue to expand and improve. A num-
ber of enhancements are planned, in particular, improving
component interoperability will be emphasized. Component
and inter-component validation will also be a major task,
with particular emphasis on the error analysis of mixed res-
olution simulation. Though the scaling results presented in
this paper are for a small shared memory machine, optimiza-
tion for distributed memory clusters will be a priority. The
long-term goal of the SST is to target advanced architectures
aimed at exascale-class supercomputers.

Acknowledgment
Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

6. ADDITIONAL AUTHORS
Additional authors: Brian Barrett (Sandian National Labs,

bwbarre@sandia.gov), Cassandra Versaggi (Knox College,
cversagg@knox.edu), Robert Hendry (Columbia University,
rh2519@columbia.edu), Bruce Jacob (University of Mary-
land, blj@umd.edu), Hyesoon Kim (Georgia Tech, hyesoon@-
cc.gatech.edu), Vitus Leung (Sandia National Labs, vjle-
ung@sandia.gov), Michael Levenhagen (Sandia National Labs,
mjleven@sandia.gov), Mitchelle Rasquinha (Georgia Tech,
mitchelle.rasquinha@gatech.edu), Rolf Riesen (IBM, rolf.-
riesen@ie.ibm.com), Paul Rosenfeld (U. Maryland, pros-
enf1@umd.edu), Maria del Carmen Ruiz Varela (University
of Delaware, maria.ruiz.varela@gmail.com), Sudhakar Yala-
manchili (Georgia Tech, sudha@ece.gatech.edu)

7. REFERENCES

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and
T. Aamodt. Analyzing cuda workloads using a detailed
gpu simulator. In Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 163 –174, april 2009.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The m5 simulator:
Modeling networked systems. IEEE Micro, 26:52–60,
2006.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. SimpleScalar LLC.

[4] J. Chan, G. Hendry, A. Biberman, K. Bergman, and
L. P. Carloni. Phoenixsim: a simulator for
physical-layer analysis of chip-scale photonic
interconnection networks. In Proc. of the Conference
on Design, Automation and Test in Europe, DATE
’10, pages 691–696, 2010.

[5] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark.
Ocelot: A dynamic compiler for bulk-synchronous
applications in heterogeneo us systems. In PACT-19,
pages 353–364, New York, NY, USA, 2010. ACM.

[6] J. Duato, S. Yalamanchili, and N. Lionel.
Interconnection Networks: An Engineering Approach.
Morgan Kaufmann Publishers Inc., San Franciso, CA,
USA, 2002.

[7] D. Feitelson. The parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload/index.html.

[8] H. Fredriksson and C. Svensson. Improvement
potential and equalization example for multidrop
dram memory buses. IEEE Transaction On Advanced
Packaging, 32(3):675–682, 2009.

[9] R. M. Fujimoto. Parallel discrete event simulation. In
Proceedings of the 21st conference on Winter
simulation, WSC ’89, pages 19–28, New York, NY,
USA, 1989. ACM.

[10] T. Henderson, , T. R. Henderson, and S. Roy. ns-3
project goals.

[11] S. Krumke, M. Marathe, H. Noltemeier,
V. Radhakrishnan, S. Ravi, and D. Rosenkrantz.
Compact location problems. Theoretical Computer
Science, 181(2):379–404, 1997.

[12] V. Leung, E. Arkin, M. Bender, D. Bunde,
J. Johnston, A. Lal, J. Mitchell, C. Phillips, and
S. Seiden. Processor allocation on Cplant: Achieving
general processor locality using one-dimensional
allocation strategies. In Proc. 4th IEEE Intern. Conf.
on Cluster Computing, pages 296–304, 2002.

[13] D. Lifka. The ANL/IBM SP scheduling system. In
Proc. 1st Workshop Job Scheduling Strategies for
Parallel Processing, number 949 in LNCS, pages
295–303, 1995.

[14] A. Lindsay, M. Galloway-Carson, C. Johnson,
D. Bunde, and V. Leung. Backfilling with guarantees
granted upon job submission. In Proc. 17th Intern.
Euro-Par Conf. Parallel Processing, number 6852 in
LNCS, pages 142–153, 2011.

[15] V. Lo, K. Windisch, W. Liu, and B. Nitzberg.
Non-contiguous processor allocation algorithms for
mesh-connected multicomputers. IEEE Trans. Parallel
and Distributed Systems, 8(7):712–726, 1997.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI,
2005.

[17] J. Mache, V. Lo, and K. Windisch. Minimizing
message-passing contention in fragmentation-free
processor allocation. In Proc. 10th IASTED Intern.
Conf. Parallel and Distributed Computing and
Systems, pages 120–124, 1997.

[18] A. W. Mu’alem and D. G. Feitelson. Utilization,
predictability, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfilling. IEEE
Trans. Parallel and Distributed Syst., 12(6):529–543,
2001.

[19] D. Nellans, V. K. Kadaru, and E. Brunv. Asim- an
asynchronous architectural level simulator abstract.

[20] R. E. Riesen, K. T. Pedretti, R. Brightwell, B. W.
Barrett, K. D. Underwood, T. B. Hudson, and A. B.
Maccabe. The Portals 4.0 message passing interface.
Technical Report SAND2008-2639, Sandia National
Laboratories, April 2008.

[21] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B. Jacob. The
structural simulation toolkit. SIGMETRICS Perform.
Eval. Rev., 38:37–42, March 2011.

[22] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
Dramsim2: A cycle accurate memory system
simulator. IEEE Computer Architecture Letters,,
99(RapidPosts), 2011.

[23] A. G. Saidi, N. L. Binkert, L. R. Hsu, and S. K.
Reinhardt. Performance validation of
network-intensive workloads on a full-system
simulator. In First Ann. Workshop on Iteraction
between Operating System and Computer Architecture
(IOSCA), Oct. 2005.

[24] O. Thebe, D. Bunde, and V. Leung. Scheduling
restartable jobs with short test runs. In Proc. 14th
Workshop Job Scheduling Strategies for Parallel
Processing, 2009.

[25] R. Ubal, J. Sahuquillo, S. Petit, and P. López.
Multi2Sim: A Simulation Framework to Evaluate
Multicore-Multithreaded Processors. In Proc. of the
19th Int’l Symposium on Computer Architecture and
High Performance Computing, Oct. 2007.

[26] K. Underwood, M. Levenhagen, and A. Rodrigues.
Simulating red storm: Challenges and successes in
building a system simulation. In IEEE International
Parallel and Distributed Processing Symposium, Long
Beach, CA, 2007. IEEE.

[27] K. D. Underwood, J. Coffman, R. Larsen, K. S.
Hemmert, B. W. Barrett, R. Brightwell, and
M. Levenhagen. Enabling flexible collective
communication offload with triggered operations. In
Proceedings of 19th Annual Symposium on
High-Performance Interconnects (HotI), August 2011.

[28] A. Varga. Omnet++ discrete event simulation system.
http://www.omnetpp.org., 2011.

[29] P. Walker, D. Bunde, and V. Leung. Faster
high-quality processor allocation. In Proc. 11th LCI
Intern. Conf. High-Performance Clustered Computing,
2010.

