
A Stratified View of Programming Language Parallelism
for Undergraduate CS Education

Richard Brown (Moderator)
St. Olaf College

rab@stolaf.edu
Joel C. Adams

Calvin College
adams@calvin.edu

David P. Bunde
Knox College

bunde@knox.edu

Jens Mache
Lewis and Clark College
jmache@lclark.edu

Elizabeth Shoop
Macalester College

shoop@macalester.edu

SUMMARY
It is no longer news that undergraduates in computer science need
to learn more about parallelism. CS graduates who enter the
computing workforce without substantial knowledge of parallel
computing do so at their peril, since all new computers feature
multi-core processors, with the number of cores expected to
increase exponentially over time [3]. Also, our work and home
lives have grown dependent on web services fueled by distributed
parallel computing on cloud platforms.
Students learn parallel computing well through hands-on exercises
and projects using programming languages with support for
parallelism [4]. The range of options for parallel programming is
truly staggering, involving hundreds of languages. How can a CS
instructor make informed choices among all the options?
This panel provides a guided introduction to parallelism in
programming languages and their potential for undergraduate CS
education, organized into four progressive categories:

• low-level libraries and features that are close to the
hardware and operating system;

• higher-level libraries and features, providing a layer of
abstraction or management;

• programming languages that incorporate parallelism; and
• frameworks for productive parallel programming.

The four panelists, who direct NSF-funded projects on languages
and instructional materials for teaching parallelism and/or led a
recent international study on adding parallelism to undergraduate
CS curricula [4], will present representative examples in their
categories, then present viewpoints on how those categories relate
to coursework, curriculum, and trends in parallelism.
A wiki accompanies this panel, with references on relevant
language resources and curricular materials
(hopper.macalester.edu/groups/sigcse2012languageparallelism/).

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language classifications –
Concurrent, distributed, and parallel languages.

General Terms
Languages, Design, Performance.

Keywords
Programming languages, parallel computing, parallelism,
education.

1. RICHARD BROWN (MODERATOR)
Dick Brown co-directs (with panelist Shoop) the CSinParallel
project (csinparallel.org) for producing and sharing modular
materials for incrementally adding parallelism to existing
undergraduate computer science courses [6]. He has directed the
creation of parallel platform resources, including the MistRider
virtual cluster [5] and the WebMapReduce interface to Hadoop
map-reduce computing [9]. A longtime director of CS at St. Olaf,
he serves as an executive board member of the EAPF (eapf.org).
Brown will briefly review the goals of the session (3-4 min),
introduce each panelist (10 min each), and moderate discussion.

2. JENS MACHE
Jens Mache is Professor of Computer Science at Lewis & Clark
College. He has taught parallelism to undergraduates since 2001.
He and panelist Bunde direct an NSF TUES project about
teaching parallel computing with activity-based laboratories.
Statement: One way to introduce concurrency is through "low-
level" multi-threaded programming (in C/C++, Java, or Python).
These programs include explicit instructions for parallelism: each
core executes an explicitly assigned task, all cores synchronize,
they execute another task, and so on. Even though threads are
unlikely to work in most CS 1 courses, they fit well into OS,
networking, and system programming types of courses.
Alternatively, CUDA and OpenCL enable the use of graphics
processing units (GPUs) for general purpose parallel computing.
Unlike current CPUs, many GPUs already have hundreds of
cores. All of these approaches give students the ability to map
tasks to threads as well as more explicitly manage memory,
potentially allowing high performance and helping students learn
about the hardware.

I will present an overview, as well as selected examples from
teaching materials.

3. JOEL ADAMS
Joel Adams is Professor and Chair of the Department of Computer
Science at Calvin College, and has been teaching his students
about concurrency and parallelism for 20 years. To provide
platforms for his students to experience the benefits of distributed
parallelism, he has designed and built a variety of Beowulf
clusters, ranging from the personal cluster Microwulf [1] to the
terascale interdisciplinary science cluster Dahl [2].

Statement: A relatively easy way to introduce parallelism into the
computer science curriculum is through high-level libraries that
add parallel capabilities to a sequential language. Such libraries

provide abstraction mechanisms that simplify process/thread
creation, communication, management, synchronization, and
destruction, freeing a student (and software engineer) to focus on
parallel algorithm development, debugging, and tuning. Some
make it quite easy to add parallelism to legacy applications.
Many of these libraries can also be used with different languages
(e.g., C, C++, Fortran, Python), allowing a typical software
engineer to incorporate parallelism into her projects without
having to learn a new language.

I will present an overview of libraries that support shared-memory
parallelism and distributed-memory parallelism; and will present
selected examples from teaching materials as illustrations.

4. DAVID BUNDE
David Bunde is Assistant Professor of Computer Science at Knox
College. He has taught concurrency and parallelism in a variety
of courses. He and panelist Mache have written about the need
for higher-level approaches in parallel education [7] and now
direct an NSF TUES project developing this approach.
Statement: One can also teach parallelism and concurrency by
using languages with high-level constructs to manage them. As
with a library-based approach, these languages seek to let the
programmer focus on algorithms, with some low-level details
being handled by the compiler or run-time system. In fact, many
parallel languages are close relatives of traditional sequential
languages to simplify adoption. The language-based and library-
based approaches differ in that a parallel language can add new
keywords and constructs rather than needing to fit its form
entirely within the structure of the base language.
There is a tremendous variety of parallel programming languages
to select from. Many are created by extending a base language
with mechanisms for lightweight task creation; Charm++ and Cilk
extend C++, Habanero Java extends Java, and Scala is a Java-like
but functionally-flavored language. Other functional language
options are Erlang, Haskell, and occam. Some languages rely
more heavily on the compiler by including high-level operations
that it parallelizes; examples include loops and reductions in
Chapel and the use of math symbols in Fortress.
I will present a brief overview of these options, exploring a couple
in greater depth and describing our experiences at Knox. With so
many language choices, the goal is to be a “commercial” so
attendees become aware of interesting options, with more detailed
information available on the wiki.

5. ELIZABETH SHOOP
Libby Shoop co-directs (with moderator Brown) the CSinParallel
project (csinparallel.org) [6]. She teaches several courses in the
CS curriculum, ranging from the introductory level to computer
systems organization, software development, and parallel and
distributed systems. She is developing a parallel computing
course structured according to OPL patterns
(parlab.eecs.berkeley.edu/wiki/patterns/patterns).
Statement: The technologies of data-intensive scalable computing
on cloud platforms provide an ever-expanding array of web
services that have become staples in the computing consumer
market. Scalable map-reduce frameworks as described in [8] lie

behind most of the web services we have come to expect. The
open-source Hadoop framework (hadoop.apache.org), Yahoo-
initiated software that makes it possible for tiny startups with
good ideas to launch new web services on rented cloud computing
resources, is equally available as a teaching platform for
undergraduate CS students. We have been teaching these
technologies to students as early as the introductory course [9].
Map-reduce is not the only pattern of parallel computing that
might be encapsulated in a convenient framework, although it is
the first to have such great success. I will present several other
patterns that might be encapsulated in frameworks, and ask the
community to consider whether interfaces to such frameworks
might become available for languages of the future, or even be
integrated into them.

6. ACKNOWLEDGMENTS
Brown and Shoop are supported by NSF DUE-0941962/0942190.
Bunde and Mache are supported by NSF DUE-1044299/1044932.

7. REFERENCES
[1] J. Adams, T. Brom. Microwulf: A Beowulf Cluster For

Every Desk. Proc. 39th ACM Technical Symp. Computer
Science Education (SIGCSE 2008), pp. 121-125.

[2] J. Adams, K. Hoogeboom, and J. Walz, A Cluster for CS
Education in the Multicore Era, Proc. 42nd ACM Technical
Symp. Computer Science Education (SIGCSE 2011), pp. 27-
31.

[3] Asanovic, K., Bodik, R. et al. A view of the parallel
computing landscape. CACM. 52, 10 (2009), pp. 56-67.

[4] Brown, R., Shoop, E., Adams, J., et al. Strategies for
Preparing Computer Science Students for the Multicore
World. Proc. 15th Annual Conf. Innovation and Technology
in Computer Science Education (ITiCSE 2010) Working
Group Reports, pp. 97-115.

[5] Brown, R.A. Hadoop at home: large-scale computing at a
small college. Proc. 40th ACM Technical Symp. Computer
Science Education (SIGCSE 2009), pp. 106-110.

[6] Brown, R., Shoop, E. Modules in community: Injecting more
parallelism into computer science curricula. Proc. 42nd ACM
Technical Symp. Computer Science Education (SIGCSE
2011), pp. 447-452.

[7] D.P. Bunde and J. Mache. Teaching concurrency beyond
HPC. Position paper presented at 1st Workshop on Curricula
in Concurrency and Parallelism, OOPSLA, 2009.

[8] Dean, J. and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters. Operating System Design and
Implementation (OSDI 2004), pp. 137-150.

[9] Garrity, P., Yates, T., Brown, R., Shoop, E.
WebMapReduce: An accessible and adaptable tool for
teaching map-reduce computing. Proc. 42nd ACM Technical
Symp. Computer Science Education (SIGCSE 2011), pp.
183-188.

