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Abstract—Many of the proposed algorithms for allocating
processors to jobs in supercomputers choose arbitrarily among
potential allocations that are “equally good” according to the
allocation algorithm. In this paper, we add a parametrized
tie-breaking strategy to the MC1x1 allocation algorithm for
mesh supercomputers. This strategy attempts to favor alloca-
tions that preserve large regions of free processors, benefiting
future allocations and improving machine performance. Trace-
based simulations show the promise of our strategy; with good
parameter choices, most jobs benefit and no class of jobs is
harmed significantly.

I. I NTRODUCTION

This paper focuses on the processor allocation strategy
known as MC1x1. A processor allocation strategy is used to
place a parallel job on specific nodes of a massively parallel
cluster or supercomputer once the job has been scheduled
to run. MC1x1 targets mesh-connected systems. At Sandia
National Labs, there is a long history of mesh-connected
systems in the top 500 lists of supercomputer sites [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], including the Intel Paragon [1], [2], [3], [4], [6], [7], Cray
XT [13], [14], [16], and Sun Blade System [15] families of
computers. After Intel discontinued the Paragon, it appeared
that the market for mesh-connected systems had disappeared,
and Sandia had to build their own mesh-connected systems in
the form of their Cplant clusters [5], [8], [9], [10], [11], [12].
However, with the Cray XT and Sun Blade System, it appears
that the market for mesh-connect systems has returned.

MC1x1 was originally implemented and tested on Sandia’s
Cplant clusters. In its final incarnation, the compute partition
of Cplant was composed of 1,536 Compaq DS10L 1U servers
in a 3D mesh with wrap-around in two dimensions. The
implementation was then ported to Red Storm, a Cray XT3/4.
The compute partition of Red Storm consists of 12,960 AMD
64 bit Opteron processors in a 3D mesh with wrap-around in
one dimension.

When users submit a job to such a system, they specify the
number of processors it requires and also give an estimated
running time. This estimate serves as a maximum allowed

time; jobs still running after their estimated running time
are killed. The run time system takes submitted jobs and
is responsible for deciding when to run them and which
processors to assign each job. In both research papers and
actual systems, these decisions are typically made in two
stages. First, theschedulerdecides when to run each job.
Then, when the scheduler decides to start a job, theallocator
is responsible for assigning it specific processors. Typically,
the scheduler makes its decision based only on the number of
processors available, ignoring which specific processors are
available, so there is no interaction between these stages.

This paper is concerned with the allocator. The quality of
an allocation can have a significant effect on job running
time; previous work has shown that hand-placing a pair of
high-communication jobs into a high-contention configuration
can roughly double their running times [17]. In order to
minimize both latency and contention, the allocator’s goal is
to give each job a group of processors close together. An ideal
allocation is contiguous, but using only contiguous allocations
lowers system utilization [18]. This additional idle time lowers
system performance even when message-passing contention
is taken into account [19]. Thus, most research has focused
on noncontiguous allocators [20], [21], [17], [19], [22], [23],
which attempt to assign each job a group of nearby processors,
but have no explicit restrictions on the types of allocations
found.

This paper focuses on the noncontiguous allocation al-
gorithm MC1x1, introduced by Bender et al. [20], which
assumes the processors are organized as a mesh. For simplicity,
we focus on a 2D mesh without wraparound, but it easily
generalizes to three dimensions or meshes with wraparound.
For each free processor, MC1x1 finds a candidate allocation
centered on that processor. It assigns ascoreto each candidate
allocation and takes the allocation with the lowest score.
To generate the allocation for a particular centerc, MC1x1
searches for free processors inshellsaround that center. Shell
0 is the processor itself. Larger shells are defined recursively:
a previously-unassigned processor is in shelli + 1 if each
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Fig. 2. Two possible allocations for a four-processor job. MC1x1 assigns
them the same score.

of its coordinates differ by at most 1 from a processor in
shell i. More concisely, the shell number of a processor in
MC1x1 is simply itsL∞ distance from the center, defined in
two dimensions as follows:

L∞(c, p) = max(|cx − px|, |cy − py|)

where c is the center,p is the other processor, and the
subscript denotes the corresponding coordinate (x or y) of that
point. Figure 1 illustrates these shells. MC1x1 selects as many
free processors from a shell as possible before considering
higher-numbered shells and the score assigned to a potential
allocation is the sum of the shell numbers of its processors.

MC1x1 does not specify what to do if more than one
candidate allocation gets the same score. A straightforward
implementation would simply take the first allocation found
that has the best value, but we propose to add a specific tie-
breaking procedure. To see how deliberate tie-breaking may
benefit the system, suppose the system is as shown in Figure 2
when a four-processor job is scheduled. The two groups of
circled processors are equally good potential allocations as far
as MC1x1 is concerned and there are many others as well.
The allocation on the lower left, however, preserves the large
group of free processors and can be expected to benefit future
allocations, particularly large jobs.

Although the particular situation shown in Figure 2 is a
contrived case, ties are actually quite common. To measure
their frequency, we ran simulations using traces from the
Parallel Workloads Archive [24]. Figure 3 lists the specific
traces and machine configurations used.1 These traces were

1[24] credits the LANL-CM5 trace with 3 more jobs. We omit these jobs
because their number of processors is -1 (i.e. “unknown”).

selected because they came from machines whose number
of processors were perfect squares. For our simulations, we
assumed that each machine was a square mesh. This differs
from the actual machine configurations, but was done to make
the results comparable between machines by eliminating any
differences in topology. For scheduling, we use First-Come
First-Served (FCFS) and EASY [25]. FCFS is simple and
is commonly used in allocation research, but EASY allows
higher utilization and is more realistic for production systems.
It allows jobs to run before their turn provided that doing
so does not delay the first job in the queue. Running jobs
out of order in this way is calledbackfilling. EASY is also
called aggressive backfillingbecause it exploits nearly all its
backfilling opportunities, though the single constraint that the
first job not be delayed suffices to ensure that no job is delayed
indefinitely [26].

The results are shown in Figure 4. As you can see, ties occur
in over 36% of the allocations for each of our simulations, and
in most cases, they occur in over 60% of the allocations. Nor
were two- or three-way ties typical; the average number of
potential allocations with the same score was between 16 and
138. These numbers imply that the MC1x1 algorithm has a
great deal of flexibility that has not previously been exploited.
This paper begins to do so.

The rest of this paper is organized as follows. In Section II,
we present our tie-breaking strategy. In Section III, we discuss
the improvements achieved, both overall and for each size
of job. In Section IV, we discuss related work. Finally, in
Section V, we discuss possible ways to continue and extend
this work.

II. T IE-BREAKING STRATEGY

Now we describe our strategy for breaking ties. We designed
the strategy by identifying properties of allocations that tend
to leave the machine in a good state and measuring how
well candidate allocations meet these properties. The scores
from different properties are then combined into atie-breaking
score. MC1x1 resolves ties by selecting the allocation with the
lowest tie-breaking score. By tie-breaking in this manner, we
seek to preserve good places for future allocations without
impacting the job being allocated. We identified the following
three properties of good allocations:

1) Good allocations are near few free processors. This
property prevents large contiguous free areas from being
broken up and favors allocations that fill in smaller
regions of available processors.

2) Good allocations are near walls when possible. This
prevents the allocations from filling up the area in the
middle of the machine before it is needed. Having these
processors free increases the chances that large groups
of free processors will be available in the future.

3) Good allocations border other allocations. Being far
from other allocations is actually good for a specific
allocation, but can result in fragmented groups of pro-
cessors.



Trace Jobs Processors Machine used
KTH-SP2-1996-2.swf 28,489 100 10×10 mesh
LLNL-T3D-1996-1.swf 21,323 256 16×16 mesh
SDSC-Par-1995-2.1-cln.swf 53,970 400 20×20 mesh
SDSC-Par-1996-2.1-cln.swf 32,135 400 20×20 mesh
LANL-CM5-1994-3.1-cln.swf 122,057 1024 32×32 mesh

Fig. 3. Traces considered for tie-breaking.

FCFS EASY
Trace # ties % allocations tied Ave. # tied # ties % allocations tied Ave. # tied
KTH-SP2 17,611 61.8 16.7 17,590 61.7 22.7
LLNL-T3D 14,839 69.6 66.7 15,778 74.0 74.6
SDSC-Par95 34,941 64.7 60.8 37,051 68.7 88.6
SDSC-Par96 20,096 62.5 79.0 20,015 62.3 67.7
LANL-CM5 48,915 40.1 110.2 44,186 36.2 137.9

Fig. 4. Ties for the traces using MC1x1 allocator. Gives number of allocation decisions with a tie, percent of all allocation decisions that have a tie, and
average number of allocations with same score (averaged over the allocation decisions with ties).
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Fig. 5. Terms in the available score for four-processor allocation centered
at “c”. The solid line is the allocation’s outermost shell and the dashed line
marks the edge of a scan radius of 2.

Each of these factors could be used separately as a measure
of allocation quality, but we use a linear combination of them
for our tie breaking. Now we describe how these properties
are measured and how their scores are combined.

a) Available factor:The first property is captured by the
available score, which penalizes allocations that are near other
free processors. The available score is the sum of penalties
assigned to unused free processors near the center. The amount
of the penalty and also the definition of “near” is defined
in terms of thescan radius, which is the number of extra
shells examined beyond the farthest shell required by the
allocation. For example, see Figure 5, which focuses on one
candidate allocation of a four-processor job. The candidate
center is marked with “c”. One shell, denoted with the solid
line, suffices to get 4 processors. The dashed line shows a
scan radius of 2, meaning two additional shells are examined.
The numbered processors are free processors within the scan
radius that are not needed for the allocation.

The shell that is scan radius shells beyond the allocation’s
furthest shell is called themax shellsince it is the highest-
numbered shell considered. A processor’s penalty depends on
its shell number so that unused free processors near the center

c

6 3

3

Fig. 6. Terms in the wall score for the potential allocation of four processors
centered at the “” with scan radius two.

are more strongly discouraged. Specifically, the penalty for a
processor in the max shell is 1 and the penalty increases by 1
for each additional shell inward. We call this thereverseL∞
distancesince it is roughly theL∞ distance inward from the
max shell. The penalties for the unused free processors within
the scan radius are shown in Figure 5.

b) Wall score: We capture the second property with the
wall score, which rewards allocations along the walls. Each
processor in the allocation is assigned a term equal to its
reverseL∞ distance times the number of walls it borders. The
wall score is negative one times the sum of these terms. An
example of the terms contributing to the wall score is shown
in Figure 6. Note that the corner processor borders two walls
so its term is twice as large. The wall score is negative because
we wish to encourage being near walls. Note that which
processors are assigned a non-zero term is independent of the
scan radius, but that the scan radius controls the magnitude
of these terms via the reverseL∞ distance. Scaling the wall
score with the scan radius helps make the available and wall
scores of similar magnitude.

c) Border score: To encourage allocations along the
walls, theborder score. is calculated by examining one shell
beyond the allocation’s last shell and assigning each currently-
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Fig. 7. Terms in border score for a four-processor allocation centered at “c”
with scan radius 2. The line shows the allocation’s outermost shell.

used processor a term equal to its reverseL∞ distance, as
shown in Figure 7. Note that previously-used processors within
the allocation’s shells do not contribute to the score to avoid
encouraging “swiss cheese” allocations whose bounding boxes
contain many processors assigned to other jobs. The border
score is negative one times the sum of these terms. Again,
this score is negative to encourage allocations that border
existing allocations and the scan radius is not directly used,
but indirectly scales this score with the others.

d) Combining the scores:As described above, the prop-
erties give us three scores: the available score, the wall score,
and the border score. The overall tie-breaking score is a
weighted sum of these scores. We call their weights the
available factor (AF), wall factor (WF), and border factor
(BF), respectively. Along with the scan radius (SR), these
factors parameterize our tie-breaking strategy. We denote a
set of parameter values with the vector (SR, AF, WF, BF).

As explained above, the scan radius changes the area used to
search for available processors and the magnitude of the other
scores. The factor parameters set the relative importance of the
three properties. Since the relative order rather than the actual
magnitude of tie-breaking scores is important,(w, x, y, z)
behaves the same as(w, cx, cy, cz) for any constantc 6= 0.

III. R ESULTS

We ran a large number of simulations to identify good
parameter values. We did a brute force search of the parameter
space for integral factor values 0–10 using scan radius 1–9
for KTH-SP2, 1–11 for SDSC-Par95, 1–11 for SDSC-Par96,
and 10–13 for LANL-CM5. We also examined larger scan
radii for some traces and ran a search algorithm that tried
parameter values near the best results so far. We did not run
the brute force search on the LLNL-T3D trace, but ran our
“supplementary” search for many values on this trace. Our
search was most extensive with the KTH trace since it ran
most quickly. Since the LANL-CM5 trace is much slower to
run (it is the largest machine and the longest trace), we selected
promising scan radii based on results from the smaller traces.

Our simulations show that tie-breaking consistently im-
proves MC1x1 except when the border factor is very high.
Figure 8 gives the best values found for each trace.
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Fig. 9. % improvement by job size for(2, 13, 20, 6) on KTH-SP2

The overall percent improvements are quite small. This is
not the complete picture, however, since some sizes of jobs
cannot be improved significantly. For example, jobs whose
size is either 1 or the machine size are always perfectly
allocated. In several of the traces, these categories include a
significant percentage of the jobs; the two categories contain
9,371=32.9% of the jobs in KTH-SP2, 8,224=15.2% of the
jobs in SDSC-Par95, and 2,680=8.3% of the jobs in SDSC-
Par96. In addition to these categories of jobs that cannot be
improved at all, jobs that are so large they use most of the
machine see little variation. To see past the influence of these
job sizes, we examine the results grouped by job size.

Figure 9 shows an example of this grouping for the KTH-
SP2 trace with parameters(2, 13, 20, 6), which provide the
best overall improvement for that trace. The horizontal line is
the baseline (MC1x1 without tie breaking) and the vertical
lines are the percent improvement in average pairwiseL1

distance (left axis) for each job size. The+ marks show the
number of jobs of each size (right axis). Improvements for
more common job sizes are more significant than improve-
ments in sizes containing fewer jobs.

From Figure 9, it is clear that most job sizes had a significant
improvement over MC1x1, while some suffered very slightly.
Figure 10 highlights how few jobs suffered by ordering the
job sizes by the number of jobs they contain. The 36 most
common job sizes all improved. The37th size (with 20 jobs)
worsened by less than 1%. The most harmed job size has 42
processors (rank 49), which worsens by only 3.879%.

Unfortunately, for some traces, the tie-breaking strategy
with the best improvement does not have such a nice profile.
Figure 11 shows the improvement by job size for SDSC-
Par96 (4, 29, 5, 0). Though these parameters give the best
overall improvement, some job sizes get significantly worse
allocations. The greatest worsening is 29.128%, with 5 job
sizes getting worse by more than 15%. These are all fairly
small job classes, as is apparent when the job sizes are ordered
by the number of jobs they contain (see Figure 12).

The top several parameter values for SDSC-Par96 have very
similar ratios and all suffer from the 30% worsening exhibited
by (4, 29, 5, 0). The first that avoids it is(2, 12, 1, 1), the
fourth best overall and the first that uses a non-zero border



Trace Parameters Ratios Ave. PairwiseL1 Dist. % Improvement
KTH-SP2 MC1x1 — 575.399 —

(2, 13, 20, 6) (1, 1.538, 0.461) 564.865 1.8309
(2, 36, 50, 15) (1, 1.388, 0.416) 565.015 1.8046
(2, 59, 90, 27) (1, 1.525, 0.457) 565.032 1.8017

LLNL-T3D MC1x1 — 5,309.586 —
(3, 9, 3, 2) (1, 0.333, 0.222) 5,224.970 1.594
(3, 35, 8, 6) (1, 0.229, 0.171) 5,225.700 1.580
(5, 64, 10, 7) (1, 0.156, 0.109) 5,225.735 1.579

SDSC-Par95 MC1x1 — 5,183.029 —
(10, 1, 3, 2) (1, 3.000, 2.000) 5,080.373 1.981
(7, 13, 1, 0) (1, 0.077, 0.000) 5,082.621 1.937
(7, 10, 1, 0) (1, 0.100, 0.000) 5,082.697 1.936

SDSC-Par96 MC1x1 — 3,484.677 —
(4, 29, 5, 0) (1, 0.172, 0.000) 3,330.287 4.430
(4, 52, 9, 0) (1, 0.173, 0.000) 3,330.287 4.430
(4, 23, 4, 0) (1, 0.173, 0.000) 3,330.311 4.429

LANL-CM5 MC1x1 — 210,310.843 —
(12, 42, 41, 15) (1, 0.796, 0.357) 205,386.282 2.342
(11, 31, 27, 8) (1, 0.871, 0.258) 205,426.429 2.322
(12, 28, 27, 10) (1, 0.964, 0.357) 205,426.429 2.322

Fig. 8. Three best tie-breaking strategy parameter sets found for each trace. Jobs scheduled using FCFS.
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Fig. 10. % improvement by ordinal rank of job frequency for(2, 13, 20, 6)
on KTH-SP2

% improvement

−20

−10

 0

 10

 20

 30

 0  50  100  150  200  250  300  350
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

%
 im

pr
ov

em
en

t

# 
of

 jo
bs

# processors needed

Number of jobs

−30

Fig. 11. % improvement by job size for(4, 29, 5, 0) on SDSC-Par96
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Fig. 12. % improvement by ordinal rank of job frequency for(4, 29, 5, 0)
on SDSC-Par96

factor. The performance of this parameter vector is shown in
Figures 13 and 14. The greatest worsening for(2, 12, 1, 1) is
“only” 20.397%, though note that it does cause a relatively
large job class (2,471 jobs; the6th largest class) to suffer a
3.832% worsening. This is the class of jobs using 2 processors.

It is hard to summarize the best parameter values, though
the border factor is nearly always the lowest of the three and
the available factor if often the highest. More encouraging is
that fact that good solutions generally “cluster”, with slightly
different ratios giving similar performance. An excellent exam-
ple of a cluster is the SDSC-Par96 results shown in Figure 8;
clusters like this occur throughout the top parameter values for
each trace. These clusters reassure us that the allocator quality
is a “somewhat smooth” function of the factors.

Since the parameter values giving the best tie-breaking strat-
egy differ for each trace, a natural question is how dependent



% improvement

−20

−10

 0

 10

 20

 30

 0  50  100  150  200  250  300  350
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000
%

 im
pr

ov
em

en
t

# 
of

 jo
bs

# processors needed

Number of jobs

−30

Fig. 13. % improvement by job size for(2, 12, 1, 1) on SDSC-Par96
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Fig. 14. % improvement by ordinal rank of job frequency for(2, 12, 1, 1)
on SDSC-Par96

these values are on the trace. To investigate this, we tested
how well the parameters(2, 13, 20, 6), which are best for the
KTH-SP2 trace, do on the other traces. We also considered
scaling the scan radius with the machine, keeping it around one
fifth of the machine width. Figure 15 shows the results. From
these, we conclude that the scan radius should be adjusted for
machine size; using scan radius equal to 1/5 of the machine
width (the bold line) gives a better improvement than leaving
it at 2 for all traces except LLNL-T3D, where both the scan
radius and improvement are close.

The most important conclusion from Figure 15, however, is
that good parameter sets are fairly portable. The exact amount
of improvement varies by trace, but adding tie breaking with
vector(SR, 13, 20, 6) improves results on all the traces for both
SR= 2 and SR= width

5 (and all other values we tested). Thus,
tie-breaking gives consistent improvement right “out of the
box”, though greater improvement may be possible by tuning
to the specific system and job characteristics.

Further evidence of our system’s portability was provided
by our examination of the effect of EASY scheduling. We
took the best parameter vector for each trace under FCFS
scheduling (from Figure 8) and reran these with EASY. The
results appear in Figure 16. For all traces except SDSC-Par96,
tie-breaking actually gives a larger improvement with EASY
than FCFS. (Note that tie-breaking is still better for the SDSC-
Par96 trace under EASY scheduling.) That tie-breaking is

Trace SR Ave. PairwiseL1 Dist. % Imp.
LLNL-T3D 2 5,247.661 1.166

3 5,255.086 1.026
4 5242.902 1.256

SDSC-Par95 2 5,136.914 0.890
3 5,099.893 1.604
4 5,113.313 1.345
5 5,106.607 1.474

SDSC-Par96 2 3,377.613 3.072
3 3,353.929 3.752
4 3,353.731 3.758
5 3370.576 3.274

LANL-CM5 2 206,426.347 1.847
3 206,373.745 1.872
6 206,011.123 2.044
7 206,031.378 2.035

Fig. 15. Effect of tie-breaking with(SR, 13, 20, 6). Bold values correspond
to a scan radius of 1/5 of the machine width (rounded to the nearest integer).
The last column gives the % improvement over MC1x1 without tie-breaking.

helpful under EASY scheduling is not entirely unexpected
since backfilling increases utilization, making allocation harder
and giving more room for improvement, but that the same
parameters work so well illustrates their portability.

IV. RELATED WORK

Now we describe related work in processor allocation.
MC1x1 was developed as a variant of the algorithm MC,
introduced by Mache et al. [23]. MC assumes that jobs comes
with a desired shape, so a job might request a2× 3 submesh
rather than 6 processors. MC uses the desired shape as the size
of shell 0, but otherwise is identical to MC1x1. Since Sandia
users do not specify desired shapes, this algorithm does not
apply to the systems we consider.

Also related to MC1x1 are a family of similar algorithms,
proposed independently by different researchers. We call these
algorithmscenter-based. Each center-based algorithm consid-
ers a list of candidate centers, evaluating each by searching in
shells until enough free processors are found and then scoring
the resulting candidate allocation. In these terms, the MC1x1
algorithm uses free processors as the candidate centers, builds
shells containing processors with the sameL∞ distance from
the center, and scores a candidate allocation by summing its
shell numbers (i.e. theL∞ distance of each processor to the
candidate center).

Krumke et al. [27] proposed another algorithm in this family
called Gen-Alg. Gen-Alg uses the free processors as candidate
centers just like MC1x1, but it finds the candidate allocation
and computes a candidate allocation’s score differently. To find
the candidate allocation around a center, Gen-Alg identifies
processors that are closest to the center in terms ofL1 distance,
which is equivalent to selecting from diamond-shaped shells
as shown in Figure 17. The score of a candidate allocation
is the sum of pairwiseL1 distances between its processors.
Krumke et al. [27] were explicitly trying to minimize the sum



Trace Parameters Ave. PairwiseL1 Dist. % Improvement
KTH-SP2 MC1x1 575.399 —

(2, 13, 20, 6) 559.623 2.742
LLNL-T3D MC1x1 5260.370 —

(3, 9, 3, 2) 5,167.365 1.768
SDSC-Par95 MC1x1 5,194.146 —

(10, 1, 3, 2) 5,085.598 2.090
SDSC-Par96 MC1x1 3,556.935 —

(4, 29, 5, 0) 3,428.283 3.617
LANL-CM5 MC1x1 214,790.442 —

(12, 42, 41, 15) 209,539.330 2.445
Fig. 16. Performance of best tie-breaking parameters from Figure 8 when scheduled with EASY

X

Fig. 17. Gen-Alg’s shells centered on “c”.

of L1 distances between processors and they show that Gen-
Alg is a (2 − 2/k)-approximation for this problem, meaning
it always finds an allocation within a factor of(2 − 2/k) of
the optimal, wherek is the size of the job.

The last allocation algorithm in the same family as MC1x1
and Gen-Alg is MM, proposed by Bender et al. [20]. This
algorithm tries more candidate centers than the other algo-
rithms; MM’s candidate centers are all processors that share
each coordinate with some free processor (possibly a distinct
free processor for each coordinate). Specifically, in a 2D mesh,
a center is any processor that both shares itsx-coordinate with
a free processor and itsy-coordinate with a (possibly different)
free processor. Once the centers are selected, MM evaluates
them in the same way as Gen-Alg; the candidate allocation
around a center is the processors that are closest in terms of
L1 distance and the score of a candidate allocation is its sum
of pairwiseL1 distances. Bender et al. [20] show that MM
is a 2 − 1/(2d)-approximation algorithm in ad-dimensional
mesh, meaning that it is a7/4-approximation in 2D meshes
and an11/6-approximation in 3D meshes.

Another family of allocation algorithms is based on a linear
order of the processors. The first of these is Paging, proposed
by Lo et al. [19], which uses a linear order to maintain a
sorted list of free processors.2 When an allocation is needed,
Paging simply assigns it the first processors from this list.

2We actually present a special case of Paging, which groups processors into
blocks that are stored in the sorted free list and assigned to jobs together. We
use block size 1 since we require successful allocation if enough processors
are free and cannot guarantee job sizes are multiples of any larger number.

Lo et al. [19] proposed several linear orders to use with
the Paging algorithm, including the row-major, a “snake”
curve that traverses alternate rows in opposite directions, and
“shuffled” versions of these.

An ordering-based strategy was independently proposed by
Leung et al. [17], who introduced a couple of refinements.
First, they proposed getting the ordering from space-filling
curves such as the recursively-generated Hilbert curve [28].
The other improvement Leung et al. [17] proposed was to
use more sophisticated strategies adapted from bin packing to
select processors from the list. For example, Best Fit allocates
the job into the smallest interval of contiguous free processors
that is large enough to fit the entire job. Later work expanded
on this by considering another space-filling curve [29] and the
treatment of non-square meshes [30].

Some allocation algorithms are neither center-based nor
curve-based. ANCA [21] which splits jobs into multiple parts
when contiguous allocation is not possible and then gives each
part a contiguous allocation. Somewhat similar is Multiple
Buddy [19], [30], which uses a buddy system to keep track of
free processors and uses multiple smaller contiguous blocks to
allocate jobs whose size does not match one of the free blocks.
Bender et al. [20] give an arbitrarily-good approximation
algorithm (PTAS) for finding allocations that minimize the
sum of pairwise distances.

To compare our work against these algorithms, we used
the LLNL-T3D trace. This trace was selected because it can
be run on a16 × 16 mesh; meshes whose dimensions are
not powers of two complicate using space-filling curves [29].
Figure 18 compares MC1x1 with and without tie breaking to
Gen-Alg, MM, and the curve-based strategy using Best Fit.
Although the results are not shown, we also ran the curve-
based strategies using a free list; as in previous work [17],
Best Fit gave better results in all cases. MC1x1 does well
even without our tie-breaking strategy, but it gives the best
results of any of algorithm when the tie-breaking strategy is
added.

V. D ISCUSSION

Our tie-breaking strategy improves system performance by
helping MC1x1 keep the machine in a good state for future
allocations without compromising the quality of the current



Allocator Ave. L1 Dist.
MC1x1 w/ tie-breaking (3, 9, 3, 2) 5,224.970
Hilbert curve with Best Fit 5,232.127
MC1x1 without tie-breaking 5,309.586
MM 5,382.295
Gen-Alg 5,386.368
Snake curve with Best Fit 5,683.268

Fig. 18. Comparison of tie-breaking with other strategies for LLNL-T3D
trace with FCFS scheduling.

allocation. Though the tie-breaking strategy gives only small
overall improvement, viewing the results grouped by job size
shows that it significantly improves the quality of allocations
for most job sizes. Although some scheduling research (eg.
[31]) examines the effect of algorithms on different job cate-
gories, we believe ours is the first work to do this for processor
allocation.

We see several ways to extend this work. We found a set of
weight factors that improves performance for a wide variety
of traces, but different sites would likely want to adjust the
parameters to optimize them for specific machines and types
of jobs. It would be desirable to have a way to do this without
searching the parameter space or, even better, to develop a
self-tuning version of our tie-breaking strategy. One could also
apply the tie-breaking strategy to different machine topologies;
it would be straightforward to consider 3D meshes or toroidal
wraps. More ambitious would be to consider allocations that
do not receive the best score but have a much better tie-
breaking score. This harms the current job, but leaves the
machine in a much better state and could benefit the system
overall.
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