Introduction to Habanero Java

David Bunde, Jaime Spacco, Casey Samoore
Knox College

Acknowledgements

e Material drawn from a tutorial created with
contributions from Johnathan Ebbers, Maxwell

Galloway-Carson, Michael Graf, Sung Joo Lee, and
Andrei Papancea

 Work partially supported by NSF DUE-1044299.
Any opinions, findings, and conclusions or
recommendations expressed in this material are
those of the author(s) and do not necessarily

reflect the views of the National Science
Foundation

Schedule

Introduction

Core features
Hands-on session
Break

“Other” features
Teaching experiences

Rationale for parallelism

10,000,000
‘ Dual-Core Itanium 2 . /
1,000,000 -

Intel CPU Trends -

{sources: Intel, Wikipedia, K. Olukotun) y

100,000

10,000

1,000

100

10

1 ® Transistors (000)
@ Clock Speed (MHz)
o0 A Power (W)

® Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure: Herb Sutter “The free lunch is over: A fundamental turn toward concurrency in software”
Dr. Dobb's Journal, 30(3), March 2005.
http://www.gotw.ca/publications/concurrency-ddj.htm

Basic Facts about Habanero Java (HJ)

Under development in the group of Vivek
Sarkar (Rice Univ.)
Addition of small number of keywords to Java

— Designed for teaching and research on parallel
technology

“Pedagogic extension” of X10, a parallel
language coming out of DARPA’s High
Productivity Computing Systems program

Programs run on the Java virtual machine

Why HJ?

e Easy to introduce if students already use Java
— We did a short introduction in CS 2

* Allows quicker expression of parallel
algorithms than traditional languages

— Facilitates prototyping of alternatives

— Lets students focus on the algorithm and not the
code

Simplified Parallel Programming

* Toy application: Counting prime numbers

int pCount = 1; //# primes found (starting w/ 2)

for(nextCand = 3; nextCand < 2000000; nextCand += 2)
if(isPrime(nextCand))

pCount++;

Java Threads Version (Part 1)

class PrimeFinder implements Runnable {

public void run() {
int pCount =0;

for(long nextCand = from; nextCand < to; nextCand +=2)
if(isPrime(nextCand))

pCount++;

synchronized(lock) { sharedPCount += pCount; }

Java Threads Version (Part 2)

sharedPCount = 1;

PrimeFinder pl = new PrimeFinder(3, 1000000);
Thread t1 = new Thread(p1);

PrimeFinder p2 = new PrimeFinder(1000001, 2000000);
Thread t2 = new Thread(p2);

tl.start();
t2.start();

tl.join();
t2.join();

HJ Version (Part 1)

public void count(long from, long to) {
int pCount = 0;

for(long nextCand = from; nextCand < to; nextCand +=2)
if(isPrime(nextCand))

pCount++;

isolated { sharedPCount += pCount; }

HJ Version (Part 2)

sharedPCount =1; //(starting with 2)

finish {
async count(3, 1000000);
count(1000001, 2000000);

Your Presenters are ...

* Interested in high-level approaches to parallel
programming

* Learning HJ and beginning to use HJ with our
students

 NOT connected to the developers of HJ

HJ Resources

Downloading and installation instructions:
https://wiki.rice.edu/confluence/display/PARPROG/
HJDownload

Materials for this workshop:
http://faculty.knox.edu/dbunde/teaching/hj/CCSC-MW/
Our HJ tutorial:
http://faculty.knox.edu/dbunde/teaching/hij/

Official HJ webpage:
https://wiki.rice.edu/confluence/display/HABANERO/H)J
Nice paper summarizing HJ:

Habanero-Java: the New Adventures of Old X10
http://www.cs.rice.edu/~vsarkar/PDF/hj-pppjll.pdf

Core Features

Compiling and Running

* Use editor to create HJ program (Hello.hj):
public class Hello {
public static void main(String[] args) {
System.out.printIn(“Hello World!”);

}

e Compile:hjc Hello.hj (creates Hello.class)
* Run: hj Hello

Forall Loops

* Self-contained parallel loop
forall(point [i] : [0:9]) {
//loop body
}

* Automatically splits iteration space into
tasks

Points

e Store integer-valued location in Cartesian
Space

* point p supports:
— p.rank gives dimensionality of p
— p.get(i) gives it" coordinate of p

— lexicographic comparison: p.lt(other), p.le(other),
p.gt(other), p.ge(other)

Regions

e Sets of points formed as product of ranges
— [1:3] contains 1D points [1], [2], [3]

— [1:3,1:3] contains 2D points [1,1], [1,2], [1,3],
2,1],[2,2], ...

— and so on

* Regions are always rectilinear volumes

Implementation of forall

* |teration corresponding to each point
becomes a task

* Tasks are completed asynchronously by a team
of threads

* Execution proceeds when last task completes

Simple Error

e Code toincrement val 20,000 times:
forall(point [1] : [0:19999])
val++;

System.out.println(val);

e Actually increments fewer (varies by run)

Eliminating Race Conditions

* Need to mark critical section with 1solated
forall(point [1] : [0:19999])
isolated {
val++;

Implementation of isolated

* HJ promises that no pair of conflicting isolated
blocks will run concurrently

— conflicting means both access some variable and
at least one is a write

* Allows transaction-based implementation
* Currently just a single global lock

How should isolated be used to correct
this code?

public static void main (String[] args) {
A: int num = 0;

B: forall (point [p] [2:100007)

C: 1f(1isPrime (p)) {

D: num = num + 1;

}

E: System.out.println (num) ;

}

Which block of code should be surrounded with the isolated keyword in order
to ensure that this code prints the correct result?

A
B:
C:
D
E:

Creating Asynchronous Tasks

* Can also create asynchronous tasks by hand:

async
async
async
async
async

System.
System.
System.
System.
System.

out.println("Hello");

'World!");

('
out.println("’
out.println("Welcome) ;
('
('

out.println("to");

out.println("HJ!"

) i

Each println runs as separate task

Body of async can also be a block of code

What are the possible outcomes of the
following program?

async {
System.out.println (10);
System.out.println(5);

}
System.out.println(3);

Which are possible outputs for this Habanero Java code snippet?
A: 10,5, 3

B: 10,3,5

C: 5,10,3

D: Aand B

E: All of the above

What are the possible outcomes of the
following program?

async {
System.out.println (10);
System.out.println(5);

}
System.out.println(3);

Which are possible outputs for this Habanero Java code snippet?
A: 10,5, 3

B: 10,3,5

C: 5,10,3

D: Aand B (2 of 9 students got this right)

E: All of the above

What are the possible outcomes of the
following program?

async{
System.out.println (10);

}
System.out.println(5);

async{
System.out.println(3);

}

Which are possible outputs for this Habanero Java code snippet?
A: 10,5, 3
B: 10, 3,5
C: 5,10, 3
D: AandB
E: Aand C

What are the possible outcomes of the
following program?

async{
System.out.println (10);

}
System.out.println(5);

async{
System.out.println(3);

}

Which are possible outputs for this Habanero Java code snippet?
A: 10,5,3

B: 10, 3,5

C: 5,10,3

D: AandB

E: Aand C (1 of 9 students got this right)

Effect of async on Variable Scope

e Easy to get scope errors when using async
e Tasks can use

— their own local variables

— a private read-only copy of variables from outer
scope

— static variables

Waiting for tasks to complete

* Use finish to wait for a group of tasks:
finish {
async functionl();
async function2();

}

* Both functionl and function2 complete before
execution proceeds beyond this block

Making “forall” by hand

finish {
for(loop condition) {
async {
loop body

What are the possible outcomes of the
following program?

finish {
async {
System.out.println(10) ;

}

async {
System.out.println(5);

}
System.out.println (3);

}

Which are possible outputs for this Habanero Java code snippet?
A: 10,5,3

B: 10, 3,5

C: 5,10,3

D: Aand B

E: All of the above

What are the possible outcomes of the
following program?

finish {
async {
System.out.println(10) ;

}

async {
System.out.println(5);

}
System.out.println (3);

}

Which are possible outputs for this Habanero Java code snippet?
A: 10,5, 3

10, 3,5

5,10,3

: Aand B

All of the above (4 of 9 students got this right)

moow

What are the possible outcomes of the
following program?

finish {
async {
System.out.println(10);

}

async {
System.out.println(5);

}

}
System.out.println(3);

Which are possible outputs for this Habanero Java code snippet?
A: 10,5,3
B: 10, 3,5
C: 5,10,3
D: Aand B
E: Aand C

What are the possible outcomes of the
following program?

finish {
async {
System.out.println(10);

}

async {
System.out.println(5);

}

}
System.out.println(3);

Which are possible outputs for this Habanero Java code snippet?
A: 10,5, 3

B: 10, 3,5

C: 5,10,3

D: Aand B

E: Aand C (6 of 9 students got this right)

Complicated task structure

void countZero(int[] A, int from, int to) {

if((to - from) < threshold) {
//serially compute local count using for loop
isolated { numZeros += localCount; }

} else {
int mid = from + (to - from)/2;
async countZero(A, from, mid); //15t half w/ new task
countZero(A, mid, to); //recurse for 2nd

}

finish {
countZero(array, O, array.length);
} //waits at end of finish until all tasks complete

Recursive Task Organization

* |f problem is small enough, task solves it
* Otherwise, spawn subtask for first half of it

* Prevents overhead from dominating the
running time, but creates large number of
tasks when there is enough work

Asynchronous Return Values

 What about asynchronous operations that
return values?

— Can’t assign to a variable yet since value hasn’t
been calculated

— Inelegant to have the function set a global or use
other indirect return techniques

Futures

e Solution is a future
— container to store the value
— call immediately returns the container

— provides accessor method (get) that blocks until
calculation completes (no need for a finish)

Syntax of future

final future<T> var = {

return retVal; //something of type T
b

T result = var.get(); //blocks if necessary

CountZero using future

public static int countZero(int[] array, int from, int to) {
if((to - from) < threshold) {
//serially compute local count using for loop
return localCount;
}
int halfRange = (to - from)/2;
final future<int> firstFuture = async<int> {
return countZero(array, from, from+halfRange);
J
int second = countZero(array, from+halfRange, to);
return firstFuture.get() + second;

}

countZero(array, O, array.length);

What HJ keyword will help us fix the

public static void main (String[] args) {
int num = 0O;
forall (point [p] 2:100007)

[
if (isPrime (p)) {
num = num + 1;

}

System.out.println (num) ;

}
This code sometimes returns the wrong result. What HJ keyword will help us
fix the error?

A: async
B: future

C: finish

D: isolated

E: replace the forall loop with a formost loop

What HJ keyword will help us fix the

public static void main (String[] args) {
int num = 0O;
forall (point [p] 2:100007)

[
if (isPrime (p)) {
num = num + 1;

}

System.out.println (num) ;
}
This code sometimes returns the wrong result. What HJ keyword will help us
fix the error?

async
future

finish

: isolated

replace the forall loop with a formost loop

moowrx

Hands-on Session

Teaser Trailer: Other Features

Some Other Features

Other Synchronization: Barriers and Phasers
Notation for locality/affinity: Places

Ability to access array contents using different
indexing schemes: Array Views

Complex Numbers

Teaching with HJ

Teaching with HJ

* Quick introduction to parallelism in CS 2
* Planned use in parallel programming course
* Other possible uses

Quick Intro. to Parallelism in CS 2

Goal was to expose students to parallel
concepts via HJ

Jaime introduced n-queens, guest lecture by
Casey, and then two days by Jaime

Introduction on parallelism and worked
through online tutorial together

Assessment via online quiz (content and
attitudinal questions)

Why CS 27

Introduce parallelism throughout our major

— Wanted early introduction

CS 2 is “gateway” course; pre-requisite for
“Core courses”, which are taken in any order

Students have shown interest in CS

Students have a decent understanding of basic
computer science ideas and Java syntax

Why | (Casey) am here

* During the summer of 2011, | was one of
three students hired to research parallel

programming languages
* Quickly learned HJ, then wrote exercises and
the online tutorial

Guest Lecture

* The lecture itself was composed of 3 parts
— What is parallel programming?

— What are common aspects of parallel
programming?

— How does HJ deal with these aspects?

What is Parallel Programming?

e What does it mean for
something to run in
parallel?

[] HOW do Compute rS do Processor Processor Processor

this?
 Why is it important?

Aspects of Parallel Programming

Race Conditions
— Bank Example

Deadlock
Threads
Joining/Forking

Load Balancing

Image from http://www.glommer.net/blogs/?p=189

HJ Coverage

e Couldn't teach the whole language in a short
unit

 Focused on the basic features, as related to
the parallel concepts
— async
— forall

— isolated
— finish

Tutorial Walkthrough

What Students Learned

async: Most students made the connection between

async and creating a thread

— However, they struggled to apply this to identify possible
interleavings

isolated: A bit shakier, but students understood that it
prevented threads from interfering with each other

finish: Students knew that the program would have to
wait until all processes reached a certain point

forall: students explained it as the parallel version of a
for loop, but did not demonstrate an understanding of
how it relates to threads (need to revise the question)

Student Impressions

e Students universally agreed that parallel
programming was an important topic

* Most thought the best part of the unit was
seeing exciting speed up and how easy it was
to achieve

* The main criticism of the unit was that it was
too short and they didn’t have enough time to
experiment and learn HJ

Our Impressions

Brief unit will not gives students mastery of HJ

It did seem to help them grasp major parallel
programming ideas

Students were excited to do parallel
programming

HJ made it easy to demonstrate parallelism,
even in CS 2

HJ in Parallel Programming (W 13)

* Project to parallelize supercomputer simulator
— “Large” code base (138 files, ~13K LOC)
— Long-running simulations (sometimes weeks+)
— Several types of exposed parallelism

* They will try to identify/measure available
parallelism, then exploit it

How else might you use HJ?

Parallel Computing
— quick prototyping of parallel design alternatives

Software Design
Operating Systems
— high-level counterpart to threads

Artificial Intelligence

(or other courses w/ computationally-intense
projects)

Independent Projects

Drawbacks with H)J

* Research project, not finished

— Doesn’t support newest Java (no generics until
newest release; still no foreach loops or reflection)

— Terse and confusing error messages
* No integrated development environment (IDE)
* Limited documentation, no textbook

DrHJ: Prototype IDE

/Users/mgricken/Documents/Research/Misc/DrHabanero/Dr

* DrHJisan IDE designed e[0wl 8 [P | 8 cal® con[8 o [9 o] @

. 32 X = new int[n); // n 1024
for H a ba n e ro Java 33 Random myRand = new Random(n);
;; for (int 1 = 0; 1 < n; i++)
36 X[i) = myRand.nextInt(n);
;;3 int mid = n/2;
39 finish {
* Students had already - R
N 42 X[0] += X[i];
used Eclipse so Dr HJ .
. 45 for (int 1 = mid+1l; i< n; i++) {
X = X[1i]);
would possibly be a [|-
o e . 48
familiar working AR
: 51 '/ O ‘,\It
enVI ronl I Ient :; éyslé;rﬁfc‘)ut.prlntln(‘917 of "+ n+ " elements = " + -
54 X[0] + " (should be 541525 for n = 1024)"%); v
() “« »

I Interactions Console Compiler Qutput

3ce detection enabled

* Not as advanced as ace Stectes
Eclipse, but we hoped it |
would be more familiar w0 PR

But

* Dr HJ was not stable on our (Windows) lab
machines at the time of the lecture

— It frequently crashed
— It would not work on certain machines

* Eventually we decided not to use it

* Hopefully, it will become more reliable in the
future, making HJ more accessible for students
accustomed to IDEs

Conclusions

* Very appealing that it’s based on Java

— Low introduction cost and can selectively teach
desired features

— Doesn’t support all of Java, but has main features

e Currently should be taught using command-
line tools

e Useful to illustrate parallel concepts

— Even with brief exposure, it helps make parallel
ideas concrete

Your Feedback

 What are your impressions of HJ?

 How likely are you to adopt it?
— What course(s) will you use it in?

 What resources would help you adopt it?

