Basic Facts about Chapel

* Parallel programming language developed
with programmer productivity in mind

using ﬁjmbm_ * Originally Cray’s project under DARPA’s High

Productivity Computing Systems program

High-level parallel programming

David Bunde, Knox College

Kyle Burke, Colby College * Suitable for shared- or distributed memory
systems
Nov 21, 2013 N * Installs easily on Linux and Mac OS; use
W thJN Cygwin to install on Windows

Denv
enver| 2013

Acknowledgements Why Chapel?

* Material drawn from tutorials created with contributions ; .
from Johnathan Ebbers, Maxwell Galloway-Carson, Michael * Flexible syntax; only need to teach features
Graf, Ernest Heyder, Sung Joo Lee, Andrei Papancea, and that you need
Casey Samoore

* Incorporates suggestions from Michael Ferguson * Provides high-level operations

* Work partially supported by the SC Educator program, the .
Ohio Supercomputing Center, and NSF awards
DUE-1044299 and CCF-0915805. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation

Designed with parallelism in mind

Schedule Flexible Syntax
* Partl: 1:30-3:00 * Supports scripting-like programs:
— Why Chapel? writeln(“Hello World!”);

— Algorithms
— Hands on time
e Partll: 3:30-5:00
— Programming languages
— Parallel programming
— Hands on time
— Summary / discussion

* Also provides objects and modules

Provides High-level Operations Your Presenters are...

* Reductions * Enthusiastic Chapel users
Ex:x =+reduce A //sets x to sum of elements of A * Interested in high-level parallel programming
Also valid for other operators (min, max, *, ...) « Educators who use Chapel with students
* Scans
Like a reduction, but computes value for each prefix
A=1[1,3,2,5];

B=+scanA; //sets B to [1, 143=4, 4+2=6, 6+5=11] NOT connected to Chapel development team

Provides High-level Operations (2) Chapel Resources
* Function promotion: * Materials for this workshop
B = f(A); //applies f elementwise for any function f http://faculty.knox.edu/dbunde/teaching/chapel/SC13/
* Includes built-in operators: * Our tutorials
C=A+1; http://faculty.knox.edu/dbunde/teaching/chapel/
D=A+B; http://cs.colby.edu/kgburke/?resource=chapelTutorial
E=A*B; . ﬁjm_om_ website (tutorials, papers, language specification)

http://chapel.cray.com

* Mailing lists (on SourceForge)

. A ing Practice Syst
Designed with Parallelism in Mind Ceessing Fractice systems

(during SC only)
* Operations on previous slides parallelized
automatically * We have practice accounts set up for use
* Create asynchronous task w/ single keyword during the workshop

* Built-in synchronization for tasks and variables * Get handout from one of the instructors

Installing Chapel Yourself

Instructions (http://chapel.cray.com/download.html)

— Download: http://sourceforge.net/projects/chapel

— Unzip file
— Enter chapel-1.8 directory and invoke make

— source util/setchplenv.csh or util/setchplenv.sh to
set environment variables

* For multiuser installations (e.g. in /usr/local):
http://faculty.knox.edu/dbunde/teaching/chapel/install.html

Algorithms:
Easy implementation of parallelism

Using Chapel in Algorithms

* Give students a quick (~1 lecture) introduction
to Chapel syntax and provide tutorials

* Teach what you need - goal is not language
coverage

“Hello World” in Chapel

* Create file hello.chpl containing
writeln(“Hello World!”);

* Compile with
chpl —o hello hello.chpl

* Run with
./hello

Variables and Constants

* Variable declaration format:
[config] var/const identifier : type;

var x :int;
const pi : real = 3.14;
config const numSides : int = 4;

Serial Control Structures

* if statements, while loops, and do-while loops
are all pretty standard

* Difference: Statement bodies must either use
braces or an extra keyword:
if(x==5) theny =3; elsey = 1;
while(x < 5) do x++;

Example: Reading until eof

var x :int;
while stdin.read(x) {
writeln(“Read value “ x);

Procedures/Functions

E.m\&ﬁa// <\ argument omit for generic function

\

proc addOne(in val : int, inout val2 : int) : int {

val2 =val + 1; \
return type

return val + 1;
(omit if none
w or if can be inferred)

Arrays
* Indices determined by a range:
var A:[1..5]int; //declares A as array of 5 ints
var B : [-3..3]int; //has indices -3 thru 3

var C:[1..10, 1..10] int; //multi-dimensional array

* Accessing individual cells:
A[1] = A[2] + 23;

* Arrays have runtime bounds checking

For Loops

* Ranges also used in for loops:
foriin 1..10 do statement;
foriin 1..10{

loop body
}

* Can also use array or anything iterable

Parallel Loops

* Two kinds of parallel loops:
forall iin 1..10 do statement; //omit do w/ braces
coforall iin 1..10 do statement;

« forall creates 1 task per processing unit

* coforall creates 1 per loop iteration

* Used when each iteration requires lots of work and/or
they must be done in parallel

Asynchronous Tasks

* Easy asynchronous task creation:
begin statement;

* Easy fork-join parallelism:
cobegin {
statementl;
statement2;

} //creates task per statement and waits here

Sync blocks

* sync blocks wait for tasks created inside it
* These are equivalent:

sync { cobegin {
begin statementl; statementl;
begin statement?2; statement2;
} }

Analysis of Algorithms

* Chapel material
— Assign basic tutorial
— Teach forall & cobegin (also algorithmic notation)

* Projects
— Partition integers
— BubbleSort
— MergeSort
— Nearest Neighbors

Algorithms Project: List Partition

* Partition a list to two equal-summing halves.
* Brute-force algorithm (don't know P vs NP yet)
* Questions:

— What are longest lists you can test?
— What about in parallel?

Trick: enumerate possibilities and use forall

Algorithms Project: BubbleSort

e
e

* Instead of left-to-right, test all pairs in two steps!
* Two nested forall loops (in sequence) inside a for loop

Algorithms Project: BubbleSort
LA LU UL L LD
> LA L LT LT

foriin0..n-1{

forall k in 0..n/2

//compare 2k to 2k+1 (maybe swap)
forall k in 0..n/2-1

//compare 2k+1 to 2k+2 (maybe swap)

Algorithms Project: BubbleSort
foriin 0..n-1{
forall k in 0..n/2
//compare 2k to 2k+1 (maybe swap)

forall k in 0..n/2-1
//compare 2k+1 to 2k+2 (maybe swap)

lim,, T(n,p) = 0O(n)

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12|8|5|15|7 |4

4

0

16

7

1

9

12|18 (5(15|7 (4

16

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12|8|5|15|7 |4

4

0

16

7

1

9

4(5]|7|8(12|]15

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12|8|5|15|7 |4

4

0

16

7

1

9

4(5]|7|8(12|]15

12

15

16

Algorithms Project: Nearest Neighbors

* Find closest pair of (2-D) points.

* Two algorithms:
— Brute Force
* (use a forall like bubbleSort)
— Divide-and-Conquer
* (use cobegin)
e A bit tricky
* Value of parallelism: much easier to program
the brute-force method

Algorithms: Reductions

Summing values in an array

Summing values in an array

16}

Summing values in an array

. \ﬂ \@ \M

Finding max of an array

Finding the maximum index

2,7

QX /: ﬁ\ /ww @\ /wm o,m\ /mm

21403 13 02

Finding the maximum index

2,7

QX /: ﬁ\ /ww @\ /wm o,m\ /mm

2, 1,43 1]3,0)2

Parts of a reduction
* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally

Parts of a reduction Parts of a reduction

* Tally: Intermediate state of computation

Tally: Intermediate state of computation
(value, index)

* Combine: Combine 2 tallies * Combine: Combine 2 tallies
take whichever pair has larger value
* Reduce-gen: Generate result from tally * Reduce-gen: Generate result from tally

return the index

* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Two issues Parallel reduction framework

* Need to convert initial values into tallies Tally: Tntermediate state of computation

A 36 AI. i = Init: Create "empty" tally
* May want separate operation for values local uM@ a= Accumulate: Add 1 value to tally
to a single processor @u

¢ = Combine: Combine 2 tallies
rg = Reduce—gen: Generate result from tally

Two issues Defining reductions

s . . * Tally: Intermediate state of computation
* Need to convert initial values into tallies

* May want separate operation for values local .
to a single processor

Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
"Empty"

__.. Tally of
tally

these values

! * Init: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max, 2"4 largest

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max, 2"4 largest,
length of longest run

Can go beyond these...

* indexOf (find index of first occurrence)
¢ sequence m__m:«jm:ﬁ [Srinivas Aluru]

* n-body problem [Srinivas Aluru]

Relationship to dynamic programming

* Challenges in dynamic programming:
— What are the table entries?

— How to compute a table entry from previous entries?

* Challenges in reduction framework:
— What is the tally?
— How to compute a new tallies from previous ones?

Reductions in Chapel

* Express reduction operation in single line:
var s =+ reduce A; //Ais array, s gets sum

* Supports +, *, A (xor), &&, ||, max, min, ...

* minloc and maxloc return a tuple with value
and its index:
var (val, loc) = minloc reduce A;

Reduction example

* Can also use reduce on function plus a range

1
* Ex: Approximate /2 using ﬁ 1=y :

config const numRect = 10000000;
const width = 2.0 / numRect; //rectangle width
const baseX = -1 - width/2;
const halfPl = + reduce [i in 1..numRect]
(width * sqrt(1.0 — (baseX + i*width)**2));

Defining a custom reduction

* Create object to represent intermediate state

* Must support
— accumulate: adds a single element to the state
— combine: adds another intermediate state
— generate: converts state object into final output

Classes in Chapel

class Circle {
var radius : real;
proc area() : real {
return 3.14 * radius * radius;

}

var cl, c2 : Circle; //creates 2 Circle references

cl = new Circle(10); /* uses system-supplied constructor
to create a Circle object
and makes c1 refer to it */

c2=cl; //makes c2 refer to the same object

delete c1; //memory must be manually freed

Inheritance

class Circle : Shape { //Circle inherits from Shape

var s : Shape;
s = new Circle(10.0); //automatic cast to base class
var area = s.area(); /* call recipient determined

by object’s dynamic type */

Example “custom” reduction

class MyMin : ReduceScanOp { //finds min element (equiv. to built-in “min”)
type eltType; //type of elements
var soFar : eltType = max(eltType); //minimum so far

proc accumulate(val : eltType) {
if(val < soFar) { soFar =val; }

}
proc combine(other : MyMin) {
if(other.soFar < soFar) { soFar = other.soFar; }

}

proc generate() { return soFar; }

And that’s not all... (scans)

* Instead of just getting overall value, also compute
value for every prefix

al2[ifefsfr]afof2]

[2] 3] 7 [10] 11] 1a] 18] 16]

And that’s not all... (scans)

* Instead of just getting overall value, also compute
value for every prefix

al2[ifefsfr]afof2]

un[2] 3] 7 [10] 11] 1a] 18] 16]

» Useful answering queries like
“What is the sum of elements 2 thru 7?”
=sum[7] —sum[1]

Computing the scan in parallel

_@ Upward pass to compute reduction

5 8%

[2[t] [4]3] [2]3][o]2]

Computing the scan in parallel

Upward pass to compute reduction
Downward pass to also compute scan

Downward pass with function labels

i=init
a = accumulate

Presenting reductions

* Using reductions with standard functions
— Optionally including scans

Defining your own reductions

First hands on time

http://faculty.knox.edu/dbunde/teaching/
chapel/SC13/exercises.html

Programming languages

Programming Languages

* High-Performance Computing as
Paradigm

* Lots of design choices in Chapel to
discuss:

— Task Creation (instead of Threads) with
'begin'.

— Task Synchronicity with 'sync' and cobegin

— Parallel loops: forall and coforall
— Thread safety using variable 'sync’
— reduce overcomes bottleneck

PL: Task Generation

var total = 0;
for i in 1..100 do total += i;

writeln(''Sum is '', total, ''.'');

We can add a Timer to measure running time!

PL: Task Generation

var total = 0;
for i in 1..100 do total += i;

writeln(''Sum is '', total, ''.'');

We can add a Timer to measure running time!

use Time;

var timer: Timer;

var total = 0;

timer.start ();

for i in 1..100 do total += i;
timer.stop();

writeln(''Sum is '', total, ''.'");

writeln(''That took '', timer.elapsed(), '' seconds.

PL: Task Generation
Now let's use another thread!

use Time;
var timer: Timer;
var total = 0;
var highTotal = 0;
var lowTotal = O;
timer.start ();
begin ref (highTotal) {
for i in 51..100 do highTotal += i;
}
for i in 1..50 do lowTotal += i;
total = lowTotal + highTotal;
timer.stop();

writeln(''Sum is '', total, ''.''");

writeln(''That took '', timer.elapsed(), '' seconds.

Note: ref(highTotal) at begin

')

')

PL: Task Generation PL: Syntactic Sugar

Now let's use another thread! Ask students: How common is this?
use Time; sync {

var timer: Timer; begin {

var total = 0; //single line of code

var highTotal = 0;

var lowTotal = O; } -
timer.start (); UQQPS { i i
begin ref (highTotal) { //another single line

for i in 51..100 do highTotal += i; }
} ..
for i in 1..50 do lowTotal += i; -

’ begin {
total = lowTotal + highTotal;))
timer.stop(); //even yet another single line
}

writeln(''Sum is '', total, ''.''); }
writeln(''That took '', timer.elapsed(), '' seconds.'');

]] So, what did language designers do?
Result: faster, but sometimes incorrect.

PL: Synchronization PL: Syntactic Sugar

Incorrect: top thread may not finish.

Chapel provides a solution: sync cobegin {
//single line of code
m%ﬂ“@%b { //another single line
} - w\m<m= yet another single line
begin { }
}
}
PL: Synchronization PL: forall
Use sync:

forall: data-parallel loop

timer.start();

sync { var sum = 0;
bagin ref(highTotal) { forall i in 1..100 {
for i in 51..100 do highTotal += i; j
} sum += 1i;
begin ref (lowTotal) { v
for i in 1..50 do lowTotal += i; . .
) writeln(“Sum is: “, sum, “.”);

}
total = lowTotal + highTotal;

PL: forall

forall: data-parallel loop

var sum = 0;
forall i in 1..100 {
sum += i;

}

writeln(“Sum is: “, sum, “.”);

4

Ask: Why doesn't this work?

PL: HPC Concepts

*Why doesn't it work?
— Race conditions
— Atomicity

— Synchronization solutions

PL: forall
One solution: synchronized variables
var sum : sync int;
sum = 0;

forall i in 1..100 {
sum += i;

}

4

writeln(“Sum is: “, sum, “.”);

PL: sync bottleneck and reduce

* sync causes a bottleneck:

— Running time still technically linear.
* Reductions:

— Divide-and-conquer solution

— Simplify with 'reduce' keyword!

PL: Projects

* Matrix Multiplication

— Matrix-vector multiplication in class
— Different algorithms:

* Column-by-column

* One entry at a time

* Collatz conjecture testing
— Generate lots of tasks (coforall)
— How to synchronize?

PL: Takeaways

* Lots of language features to discuss!

* Learning HPC € Motivates Syntax

e Students love it!

Chapel Ranges

* Whatis a range?
* How are ranges used?
* Range operations

Chapel Ranges

* Whatis a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?

Chapel Ranges

* Whatis a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?
Yes!

Range Operation Examples

var someNaturals: range = 0..50;
var someEvens = someNaturals by 2;
(someEvens: 0, 2, 4, ..., 48, 50)
var someQdds = someEvens align 1;
(someOdds: 1, 3,5, 7, ..., 47, 49)
var fewerOdds = someOdds # 6;
(fewerOdds: 1, 3,5, 7,9, 11)

Other Cool Range Things

* Can create “infinite” ranges:
var naturals: range =0..;

* Ranges in the “wrong order” are auto-empty:
var nothing: range = 2..-2;

* Otherwise, negatives are just fine

Chapel Domains

* What is a domain?

* How are domains used?
* Operations on domains
* Example: Game of Life

Chapel Domains

* Domain: index set

— Used to simplify addressing
— Every array has a domain to hold its indices

— Can include ranges or be sparse
* Example:

var A: [1..10] int; //indices are 1, 2, ..., 10

foriin A.domain {

//do something with A[i]

Chapel Domains

Array (hierarchy)

Array
Domain Array
o Values
(indices)

Chapel Domains

Array (hierarchy)

¢ * Array
e (Sparse) Values

Domain

Chapel Domains

Array (hierarchy)

0,2,4,6, ..., 6000 ﬁv

Array
Values

(Range)

Chapel Domains

Array (hierarchy)
\ D /

2-]
,2,4,86, ..., 6000

P wN=ao

Array
Values

(2 Ranges)

Chapel Domains

Array (hierarchy)

Array
Values

0,2,4,86, ..., 6000

« (Combo)

Domain

Chapel Domains Domains vs. Ranges

* Despite how similar they seem so far, domains

* Domain Declaration:
and ranges are different

—var D: domain(2) = {0..m, 0..n}; - o o

« Diis 2-D domain with (m+1) x (n+1) entries - UoEm.Sm B.Bm_: tied to arrays so that resizing the

. domain resizes the array:
—var A: [D] int;
. . X . . var R : range = 1..10; var D : domain(1) = {1..10};
* Aiis an array of integers with D as its domain var A: [R]int; var A : [D] int;
R=0..10; //no effecton array D =0..10; //resizes array
A[0] =5; //runtime error A[0] =5; //ok

* Domains are more general; some are not sets of

integers
Chapel Domains Domain Slices (Intersection)
* Domain Declaration:
—var D: domain(2) ={0..m, 0..n};
* Dis 2-D domain with (m+1) x (n+1) entries somaing
—var A: [D] int; domain0: {0..2, 1..3} — —
* Ais an array of integers with D as its domain domain1: {1..3, 3..5} - —
Why is this useful?
Chapel Domains Domain Slices (Intersection)

* Changing D changes A automatically!
* D={1..m, 0..n+1}
decrements height; increments width!

domain0

domain0: {0..2, 1..3} H

adds zeroes
() domainil: {1..3, 3..5} —

domain

domain2

a |5 [| EEED |7 |8 |9 o

7 8 9
domain2: {1..2, 3..3}

Domain Slices (Intersection) Unbounded? How?

//domain2 is the intersection of domainl and domain0 * Plan: board starts with small living area, but can grow!
var domain2 = domainl [domain0]; — Start with 4x4 board

domain0

domain0: {0..2, 1..3} H

I
QOBmm:H_ﬁ..Ww..ﬂ = “_ _

domain

domain2

0111
domain2: {1..2, 3..3} too1
0001
0011
Domain Slices (Intersection) Unbounded? How?
//domain2 is the intersection of domainl and domain0 * Plan: board starts with small living area, but can grow!
var domain2 = domain1 [domain0]; — Start with 4x4 board
— Pad all sides with zeros
000O0O0O
0111 0j0111|0
1001 0|1 00 1|0
0001 00 0 0 1f{0
0011 0/0 01 1|0
000O0O0OO0
Domains: Unbounded Game of Life Unbounded? How?
* Example of * Plan: board starts with small living area, but can grow!
— Domain operations — Start with 4x4 board
— One domain for multiple arrays — Pad all sides with zeros
— Changing domain for arrays — lterate forward one round
* Rules:
— Each cell is either dead or alive
— Adjacent to all 8 surrounding cells
— Dead cell = Living if exactly 3 living neighbors o111 M M w N w M M M M H M M
— Living cell = Dead if not exactly 2 or 3 living 1001 oftoo01o ofo1o01f1
Jm_m_JUOq.m 0001 oj{0o 00 1|0 0/o0o0 11
0011 0/0 01 1|0 0/j0 0110
000O0O0OO0 0000O00O0

Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— Iterate forward one round

Recalculate subboard with living cells

©c o r o
© o o m
» o o m
b e e e

©c oo ooo
olo o » ofo
olo o o »|o
o|lr o o »|o
olr r » wlo
©ooooo
©c oo ooo
ofo o o ofe
olo o » r|o
oflr o o rir
ole » » nlo
©cor oo
©cooooo
©c o oooo
oo o » » o
o|lkr 0 0k m
o|lkr kr » ko
ole » » o o

Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— lterate forward one round

Recalculate subboard with living cells

(Un)Pad as necessary

© o r o
© o o m
» o o m
b e e e

©c o oooo
olo o » ofo
olo o o »|o
o|lr o o »|o
olr r » wlo
©ooooo
©c o oooo
ofo o o ofe
olo o » m|o
oflr o 0 rir
ole » » wlo
©cor oo
©cooooo
©c o oooo
oo o » » o
o|lkr 0 0k m
o|lkr kr » ko
ole » » o o
© oo o0oooo
olo o » » oo
oflr o 0 r r|o
oflr r = » ofo
olo » » o o|o

Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— lterate forward one round

Recalculate subboard with living cells

(Un)Pad as necessary

Repeat

©c o r o
© o o m
» o o m
b e e e

©c o oooo
olo o » ofo
olo o o »|o
o|lr o o »|o
olr r » wlo
©ooooo
©c o oooo
ofo o o ofe
olo o » r|o
oflr o o rir
ole » » nlo
©cor oo
©cooooo
©c o oooo
oo o » » o
o|lkr 0 0k m
o|lkr kr » ko
ole » » o o
© oo oooo
olo o » » oo
oflr o 0 r r|o
oflr r = » ofo
olo » » o o|o

© o o o © o o

© o o o © o o

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
ngRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = {boardRows, boardColumns};

Game of Life: Setting the Domain

//set the bounds
var minLivingRow = 3;
var maxLivingRow = 6;

var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = [boardRows, boardColumns];

var lifeArray: [gameDomain] int; //defaults to zeroes

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i Y {

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc li ¥, {

How can we just focus on the neighboring cells?

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc li ¥, {

How can we just focus on the neighboring cells?

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

How can we (easily) handle border cases?

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

How can we (easily) handle border cases?

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain];

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;
var neil =+ reduce i Domain];

i = nei - vl

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;
var neil =+ reduce i Domain];

i = nei - vl

//the survival/reproduction rules for the Game of Life

if 2 <= nei && nei <=3 && cur yl==1{
return 1;

}else if cur y]== 0 && neij ==3{
return 1;

}else { return 0; }

Game of Life: Supporting Boards

Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? 1

rows

o~ OO
b wWoOo
oOOoOWwWoo
O OO OO0

o -~0oool»
I 20O
co-~00o
© O OO oo

cols

[o)oNoNoNa]lo]
NN~NOOo
OO 0O O
OO O OO0

Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;
. . o . . o 6 9
Also, want to easily determine bounds on where life is! How? Also, want to easily determine bounds on where life is! How? 10000
O O O O rows
0330
1 M 00 w 5 m M M M rowlfAliveArray
0000
0110
1100 6 __9
10000
50100 0000 cols
0780
5 M W m M colifAliveArray

Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? Also, want to easily determine bounds on where life is! How? 1

rows

maxLivingRow =

max reduce rowlfAliveArray; 5
minLivingRow =

min reduce rowlfAliveArray;
maxLivingColumn =

max reduce collfAliveArray; 1
minLivingColumn =

min reduce collfAliveArray;

o~ OO
b wWoOo
oOOoOWwWoo
O OO OO0

rowlfAliveArray

EEEEE S
G o Y)
co-~oco
o oo oofo

cols

colifAliveArray

[o)oNoNo el lo]
NN~NOOo
OO 0O O
OO O OO0

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeros! 6 9
10000
0000 rows
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 50500 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 10000
minLivingColumn = 0000 cols
min reduce collfAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeroes! 6 9
10000
Solution: replace with middle index 0000 rows
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 50500 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 10000
minLivingColumn = 0000 cols
min reduce collfAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeroes! 6 9
13333
Solution: replace with middle index 3333 rows
3333
maxLivingRow = 4433 i
max reduce rowlfAliveArray; 5|3 53 3| rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 117777
minLivingColumn = cols
min reduce collfAliveArray; W W M W
6777]| colfaliveArray
57777

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlifAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlifAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

//\ater on, use simple reductions:

maxLivi =max reduce i ray;

minLivi = min reduce f)

maxLivingColumn = max reduce columnifAliveArray;
minLivingColumn = min reduce columnifAliveArray;

Game of Life: Initial Life

//default values are 0 (no life) and 1 (life)

0 5 1/ ing locations start alive:
21000000 lifeArray[minLivingRow, minLivingColumn + 1] = 1;
O O ‘_ ._ ‘_ O lifeArray[minLivingRow, minLivingColumn + 2] = 1;
010010 lifeArray[minLivingRow, minLivingColumn + 3] = 1;
000010 lifeArray[minLivingRow + 1, minlLi
feArray[minLivingRow + 1, minLivil =1;
000110 fleArray[minLivingRow + 2, minLivingColumn +3] = 1;
N O O O O O O feAr inLivi + 3, minLivingColumn +2] = 1;

feArray[minLivingRow + 3, minLivingColumn + 3] = 1;

Game of Life: “If Alive” Functions

/* i life n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
e row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
dle row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange

/* 1flife n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {
i arraylx, y] = 1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row

— Use dim domain method to get 1-D subrange
— Use high and low range properties

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
e row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

var rowHigh = rowRange. high;

var rowLow = rowRange.low;

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange
— Use high and low range properties
— Calculate and return middle index

in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
dle row of array. */
proc rowlfAlive(x, y, array) {

if array[x, y] = 1{

return x;

}

//determine and return the middle row index

var rowRange = array.domain.dim(1);

var rowHigh = rowRange.high;

var rowLow = rowRange.low;

return (rowLow + rowHigh)/2;

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange
— Use high and low range properties
— Calculate and return middle index
— (Doesn't work if the range is strided.)

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {
if array[x, y] = 1{
return x;
}
//determine and return the middle row index
var rowRange = array.domain.dim(1);
var rowHigh = rowRange.high;
var rowLow = rowRange.low;
return (rowLow + rowHigh)/2;

Game of Life: Main Loop

for round in 1..numRounds {

maxLivingColumn = max reduce columnifAliveArray;
minLivingColumn = min reduce columnifAliveArray;

//reset the game domain, including buffer of no life

in = {(minl Row-1)..(maxLivi)

(minLivingColumn-1)..(maxLivingColumn+1)};
lifeArray = nextLifeArray;

Game of Life: Add writeln and Go!

* Add print statements for each iteration of the
loop and watch it go

* | added a printLifeArray function
* Final version available at:

https://dl.dropbox.com/u/43416022/SC13/GameOfLife.chpl

Parallel programming

My experience

* Course to explore HPC overall
(apps, machines, system software, programming)

* Talked about Chapel (and ZPL) in contrast to
MPI

Game of Life in MPI

Game of Life in MPI

Much harder than | thought

* Even a strong student struggled with code that
sent messages to another instance of itself

— Seemed like challenge of distributed memory
environment

— Weak OO background?

Global-view

* Specify entire computation rather than one

node’s (local) view of it

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

var neighborDomain = adjacentDomain[currentBoard.domain];

var neighborSum = + reduce currentBoard[neighborDomain];

neighborSum = neighborSum - currentBoard[x, y];

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var x : int;

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var x :int;
}
* Can move computation to data:
on x do something();

Separate from parallelism

* Serial but multi-locale:
on Locales[0] do function1();
on Locales[1] do function2();

* Parallel and multi-locale:
cobegin {
on Locales[0] do functionl();
on Locales[1] do function2();

Managing data distribution
* Domain maps say how arrays are mapped

var A : [D] int dmapped Block(boundingBox=D) Second hands on time

var A : [D] int dmapped Cyclic(startldx=1)

http://faculty.knox.edu/dbunde/teaching/
chapel/SC13/exercises.html

Useful references

¢ B.L. Chamberlain, S.-E. Choi, E.C. Lewis, C. Lin, L.
Snyder and W.D. Weathersby. "The case for high level

parallel programming in ZPL". IEEE Computational . .
Science and Engineering 5(3): 76-86, 1998. link MCBBNJ\ \ discussion

* Lots of stuff on Chapel website

— H. Burkhart, M. Sathe, M. Christen, O. Schenk, and M.
Rietmann. “Run, Stencil, Run! HPC Productivity Studies in
the Classroom”. Proc. 6th Conf. Partitioned Global Address
Space Programming Models (PGAS), 2012. link

Take home: Parallel course How else might you use Chapel?

¢ Can demonstrate standard concepts * Operating Systems
— Easy thread generation for scheduling projects

» Software Design

. . . . — Some parallel design patterns have lightweight
Lots of possible reading material to expose Chapel implementations

research element

* Particularly suited to demonstrate global-view
and locality management

Artificial Intelligence

(or other courses w/ computationally-intense
projects)

* Independent Projects

Caveats

* Still in development
— Error messages thin
— New versions every 6 months
— Not many libraries
— (Students thought this was awesome!)

* No development environment
— Command-line compilation in Linux

Conclusions

* Chapel is easy to pick up

* Chapel can be used in many courses
¢ Loads of features, but...

* Flexible depth of material

* Students will dig in!

Your Feedback

* What are your impressions of Chapel?

* How likely are you to adopt Chapel?
— What course(s) will you use it in?

* What resources would help you adopt it?
— Kyle has a bunch and is happy to share!!!

Thanks!

dbunde@knox.edu
paithang@gmail.com

