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Designed with parallelism in mind

Schedule Flexible Syntax
* Partl: 1:30-3:00 * Supports scripting-like programs:
— Why Chapel? writeln(“Hello World!”);

— Algorithms
— Hands on time
e Partll: 3:30-5:00
— Programming languages
— Parallel programming
— Hands on time
— Summary / discussion

* Also provides objects and modules



Provides High-level Operations Your Presenters are...

* Reductions * Enthusiastic Chapel users
Ex:x =+reduce A //sets x to sum of elements of A * Interested in high-level parallel programming
Also valid for other operators (min, max, *, ...) « Educators who use Chapel with students
* Scans
Like a reduction, but computes value for each prefix
A=1[1,3,2,5];

B=+scanA; //sets B to [1, 143=4, 4+2=6, 6+5=11] NOT connected to Chapel development team

Provides High-level Operations (2) Chapel Resources
* Function promotion: * Materials for this workshop
B = f(A); //applies f elementwise for any function f http://faculty.knox.edu/dbunde/teaching/chapel/SC13/
* Includes built-in operators: * Our tutorials
C=A+1; http://faculty.knox.edu/dbunde/teaching/chapel/
D=A+B; http://cs.colby.edu/kgburke/?resource=chapelTutorial
E=A*B; . ﬁjm_om_ website (tutorials, papers, language specification)

http://chapel.cray.com

* Mailing lists (on SourceForge)

. . . . . A ing Practice Syst
Designed with Parallelism in Mind Ceessing Fractice systems

(during SC only)
* Operations on previous slides parallelized
automatically * We have practice accounts set up for use
* Create asynchronous task w/ single keyword during the workshop

* Built-in synchronization for tasks and variables * Get handout from one of the instructors



Installing Chapel Yourself

Instructions (http://chapel.cray.com/download.html)

— Download: http://sourceforge.net/projects/chapel

— Unzip file
— Enter chapel-1.8 directory and invoke make

— source util/setchplenv.csh or util/setchplenv.sh to
set environment variables

* For multiuser installations (e.g. in /usr/local):
http://faculty.knox.edu/dbunde/teaching/chapel/install.html

Algorithms:
Easy implementation of parallelism

Using Chapel in Algorithms

* Give students a quick (~1 lecture) introduction
to Chapel syntax and provide tutorials

* Teach what you need - goal is not language
coverage

“Hello World” in Chapel

* Create file hello.chpl containing
writeln(“Hello World!”);

* Compile with
chpl —o hello hello.chpl

* Run with
./hello

Variables and Constants

* Variable declaration format:
[config] var/const identifier : type;

var x :int;
const pi : real = 3.14;
config const numSides : int = 4;

Serial Control Structures

* if statements, while loops, and do-while loops
are all pretty standard

* Difference: Statement bodies must either use
braces or an extra keyword:
if(x==5) theny =3; elsey = 1;
while(x < 5) do x++;



Example: Reading until eof

var x :int;
while stdin.read(x) {
writeln(“Read value “ x);

Procedures/Functions

E.m\&ﬁa// <\ argument omit for generic function

\

proc addOne(in val : int, inout val2 : int) : int {

val2 =val + 1; \
return type

return val + 1;
(omit if none
w or if can be inferred)

Arrays
* Indices determined by a range:
var A:[1..5]int; //declares A as array of 5 ints
var B : [-3..3]int; //has indices -3 thru 3

var C:[1..10, 1..10] int; //multi-dimensional array

* Accessing individual cells:
A[1] = A[2] + 23;

* Arrays have runtime bounds checking

For Loops

* Ranges also used in for loops:
foriin 1..10 do statement;
foriin 1..10{

loop body
}

* Can also use array or anything iterable

Parallel Loops

* Two kinds of parallel loops:
forall iin 1..10 do statement; //omit do w/ braces
coforall iin 1..10 do statement;

« forall creates 1 task per processing unit

* coforall creates 1 per loop iteration

* Used when each iteration requires lots of work and/or
they must be done in parallel

Asynchronous Tasks

* Easy asynchronous task creation:
begin statement;

* Easy fork-join parallelism:
cobegin {
statementl;
statement2;

}  //creates task per statement and waits here



Sync blocks

* sync blocks wait for tasks created inside it
* These are equivalent:

sync { cobegin {
begin statementl; statementl;
begin statement?2; statement2;
} }

Analysis of Algorithms

* Chapel material
— Assign basic tutorial
— Teach forall & cobegin (also algorithmic notation)

* Projects
— Partition integers
— BubbleSort
— MergeSort
— Nearest Neighbors

Algorithms Project: List Partition

* Partition a list to two equal-summing halves.
* Brute-force algorithm (don't know P vs NP yet)
* Questions:

— What are longest lists you can test?
— What about in parallel?

Trick: enumerate possibilities and use forall

Algorithms Project: BubbleSort

e
e

* Instead of left-to-right, test all pairs in two steps!
* Two nested forall loops (in sequence) inside a for loop

Algorithms Project: BubbleSort
LA LU UL L LD
> LA L LT LT

foriin0..n-1{

forall k in 0..n/2

//compare 2k to 2k+1 (maybe swap)
forall k in 0..n/2-1

//compare 2k+1 to 2k+2 (maybe swap)

Algorithms Project: BubbleSort
foriin 0..n-1{
forall k in 0..n/2
//compare 2k to 2k+1 (maybe swap)

forall k in 0..n/2-1
//compare 2k+1 to 2k+2 (maybe swap)

lim,, T(n,p) = 0O(n)




Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin
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Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin
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Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin
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Algorithms Project: Nearest Neighbors

* Find closest pair of (2-D) points.

* Two algorithms:
— Brute Force
* (use a forall like bubbleSort)
— Divide-and-Conquer
* (use cobegin)
e A bit tricky
* Value of parallelism: much easier to program
the brute-force method

Algorithms: Reductions

Summing values in an array




Summing values in an array

16}

Summing values in an array

. \ﬂ \@ \M

Finding max of an array

Finding the maximum index

2,7
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Finding the maximum index

2,7

QX /: ﬁ\ /ww @\ /wm o,m\ /mm

2, 1,43 1]3,0)2

Parts of a reduction
* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally



Parts of a reduction Parts of a reduction

* Tally: Intermediate state of computation

Tally: Intermediate state of computation
(value, index)

* Combine: Combine 2 tallies * Combine: Combine 2 tallies
take whichever pair has larger value
* Reduce-gen: Generate result from tally * Reduce-gen: Generate result from tally

return the index

* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Two issues Parallel reduction framework

* Need to convert initial values into tallies Tally: Tntermediate state of computation

A 36 AI. i = Init: Create "empty" tally
* May want separate operation for values local uM@ a= Accumulate: Add 1 value to tally
to a single processor @u

¢ = Combine: Combine 2 tallies
rg = Reduce—gen: Generate result from tally

Two issues Defining reductions

s . . * Tally: Intermediate state of computation
* Need to convert initial values into tallies

* May want separate operation for values local .
to a single processor

Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
"Empty"

__.. Tally of
tally

these values

! * Init: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +



Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max, 2"4 largest

Defining reductions

* Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add 1 value to tally

Sample problems: +, histogram, max, 2"4 largest,
length of longest run

Can go beyond these...

* indexOf (find index of first occurrence)
¢ sequence m__m:«jm:ﬁ [Srinivas Aluru]

* n-body problem [Srinivas Aluru]

Relationship to dynamic programming

* Challenges in dynamic programming:
— What are the table entries?

— How to compute a table entry from previous entries?

* Challenges in reduction framework:
— What is the tally?
— How to compute a new tallies from previous ones?



Reductions in Chapel

* Express reduction operation in single line:
var s =+ reduce A; //Ais array, s gets sum

* Supports +, *, A (xor), &&, ||, max, min, ...

* minloc and maxloc return a tuple with value
and its index:
var (val, loc) = minloc reduce A;

Reduction example

* Can also use reduce on function plus a range

1
* Ex: Approximate /2 using ﬁ 1=y :

config const numRect = 10000000;
const width = 2.0 / numRect; //rectangle width
const baseX = -1 - width/2;
const halfPl = + reduce [i in 1..numRect]
(width * sqrt(1.0 — (baseX + i*width)**2));

Defining a custom reduction

* Create object to represent intermediate state

* Must support
— accumulate: adds a single element to the state
— combine: adds another intermediate state
— generate: converts state object into final output

Classes in Chapel

class Circle {
var radius : real;
proc area() : real {
return 3.14 * radius * radius;

}

var cl, c2 : Circle; //creates 2 Circle references

cl = new Circle(10); /* uses system-supplied constructor
to create a Circle object
and makes c1 refer to it */

c2=cl; //makes c2 refer to the same object

delete c1; //memory must be manually freed

Inheritance

class Circle : Shape {  //Circle inherits from Shape

var s : Shape;
s = new Circle(10.0); //automatic cast to base class
var area = s.area(); /* call recipient determined

by object’s dynamic type */

Example “custom” reduction

class MyMin : ReduceScanOp { //finds min element (equiv. to built-in “min”)
type eltType; //type of elements
var soFar : eltType = max(eltType); //minimum so far

proc accumulate(val : eltType) {
if(val < soFar) { soFar =val; }

}
proc combine(other : MyMin) {
if(other.soFar < soFar) { soFar = other.soFar; }

}

proc generate() { return soFar; }



And that’s not all... (scans)

* Instead of just getting overall value, also compute
value for every prefix

al2[ifefsfr]afof2]

[ 2] 3] 7 [10] 11] 1a] 18] 16]

And that’s not all... (scans)

* Instead of just getting overall value, also compute
value for every prefix

al2[ifefsfr]afof2]

un[ 2] 3] 7 [10] 11] 1a] 18] 16]

» Useful answering queries like
“What is the sum of elements 2 thru 7?”
=sum[7] —sum[1]

Computing the scan in parallel

_@ Upward pass to compute reduction

5 8%

[2[t] [4]3] [2]3][o]2]

Computing the scan in parallel

Upward pass to compute reduction
Downward pass to also compute scan

Downward pass with function labels

i=init
a = accumulate

Presenting reductions

* Using reductions with standard functions
— Optionally including scans

Defining your own reductions



First hands on time

http://faculty.knox.edu/dbunde/teaching/
chapel/SC13/exercises.html

Programming languages

Programming Languages

* High-Performance Computing as
Paradigm

* Lots of design choices in Chapel to
discuss:

— Task Creation (instead of Threads) with
'begin'.

— Task Synchronicity with 'sync' and cobegin

— Parallel loops: forall and coforall
— Thread safety using variable 'sync’
— reduce overcomes bottleneck

PL: Task Generation

var total = 0;
for i in 1..100 do total += i;

writeln(''Sum is '', total, ''.'');

We can add a Timer to measure running time!

PL: Task Generation

var total = 0;
for i in 1..100 do total += i;

writeln(''Sum is '', total, ''.'');

We can add a Timer to measure running time!

use Time;

var timer: Timer;

var total = 0;

timer.start ();

for i in 1..100 do total += i;
timer.stop();

writeln(''Sum is '', total, ''.'");

writeln(''That took '', timer.elapsed(), '' seconds.

PL: Task Generation
Now let's use another thread!

use Time;
var timer: Timer;
var total = 0;
var highTotal = 0;
var lowTotal = O;
timer.start ();
begin ref (highTotal) {
for i in 51..100 do highTotal += i;
}
for i in 1..50 do lowTotal += i;
total = lowTotal + highTotal;
timer.stop();

writeln(''Sum is '', total, ''.''");

writeln(''That took '', timer.elapsed(), '' seconds.

Note: ref(highTotal) at begin

')

')



PL: Task Generation PL: Syntactic Sugar

Now let's use another thread! Ask students: How common is this?
use Time; sync {

var timer: Timer; begin {

var total = 0; //single line of code

var highTotal = 0;

var lowTotal = O; } -
timer.start (); UQQPS { i i
begin ref (highTotal) { //another single line

for i in 51..100 do highTotal += i; }
} ..
for i in 1..50 do lowTotal += i; -

’ begin {
total = lowTotal + highTotal; ) )
timer.stop(); //even yet another single line
}

writeln(''Sum is '', total, ''.''); }
writeln(''That took '', timer.elapsed(), '' seconds.'');

] ] So, what did language designers do?
Result: faster, but sometimes incorrect.

PL: Synchronization PL: Syntactic Sugar

Incorrect: top thread may not finish.

Chapel provides a solution: sync cobegin {
//single line of code
m%ﬂ“@%b { //another single line
} - w\m<m= yet another single line
begin { }
}
}
PL: Synchronization PL: forall
Use sync:

forall: data-parallel loop

timer.start();

sync { var sum = 0;
bagin ref(highTotal) { forall i in 1..100 {
for i in 51..100 do highTotal += i; j
} sum += 1i;
begin ref (lowTotal) { v
for i in 1..50 do lowTotal += i; . .
) writeln(“Sum is: “, sum, “.”);

}
total = lowTotal + highTotal;



PL: forall

forall: data-parallel loop

var sum = 0;
forall i in 1..100 {
sum += i;

}

writeln(“Sum is: “, sum, “.”);

4

Ask: Why doesn't this work?

PL: HPC Concepts

*Why doesn't it work?
— Race conditions
— Atomicity

— Synchronization solutions

PL: forall
One solution: synchronized variables
var sum : sync int;
sum = 0;

forall i in 1..100 {
sum += i;

}

4

writeln(“Sum is: “, sum, “.”);

PL: sync bottleneck and reduce

* sync causes a bottleneck:

— Running time still technically linear.
* Reductions:

— Divide-and-conquer solution

— Simplify with 'reduce' keyword!

PL: Projects

* Matrix Multiplication

— Matrix-vector multiplication in class
— Different algorithms:

* Column-by-column

* One entry at a time

* Collatz conjecture testing
— Generate lots of tasks (coforall)
— How to synchronize?

PL: Takeaways

* Lots of language features to discuss!

* Learning HPC € Motivates Syntax

e Students love it!



Chapel Ranges

* Whatis a range?
* How are ranges used?
* Range operations

Chapel Ranges

* Whatis a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?

Chapel Ranges

* Whatis a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?
Yes!

Range Operation Examples

var someNaturals: range = 0..50;
var someEvens = someNaturals by 2;
(someEvens: 0, 2, 4, ..., 48, 50)
var someQdds = someEvens align 1;
(someOdds: 1, 3,5, 7, ..., 47, 49)
var fewerOdds = someOdds # 6;
(fewerOdds: 1, 3,5, 7,9, 11)

Other Cool Range Things

* Can create “infinite” ranges:
var naturals: range =0..;

* Ranges in the “wrong order” are auto-empty:
var nothing: range = 2..-2;

* Otherwise, negatives are just fine

Chapel Domains

* What is a domain?

* How are domains used?
* Operations on domains
* Example: Game of Life



Chapel Domains

* Domain: index set

— Used to simplify addressing
— Every array has a domain to hold its indices

— Can include ranges or be sparse
* Example:

var A: [1..10] int; //indices are 1, 2, ..., 10

foriin A.domain {

//do something with A[i]

Chapel Domains

Array (hierarchy)

Array
Domain Array
o Values
(indices)

Chapel Domains

Array (hierarchy)

¢ * Array
e (Sparse) Values

Domain

Chapel Domains

Array (hierarchy)

0,2,4,6, ..., 6000 ﬁv

Array
Values

(Range)

Chapel Domains

Array (hierarchy)
\ D /

2-]
,2,4,86, ..., 6000

P wN=ao

Array
Values

(2 Ranges)

Chapel Domains

Array (hierarchy)

Array
Values

0,2,4,86, ..., 6000

« (Combo)

Domain



Chapel Domains Domains vs. Ranges

* Despite how similar they seem so far, domains

* Domain Declaration:
and ranges are different

—var D: domain(2) = {0..m, 0..n}; - o o

« Diis 2-D domain with (m+1) x (n+1) entries - UoEm.Sm B.Bm_: tied to arrays so that resizing the

. domain resizes the array:
—var A: [D] int;
. . X . . var R : range = 1..10; var D : domain(1) = {1..10};
* Aiis an array of integers with D as its domain var A: [R]int; var A : [D] int;
R=0..10; //no effecton array D =0..10; //resizes array
A[0] =5; //runtime error A[0] =5; //ok

* Domains are more general; some are not sets of

integers
Chapel Domains Domain Slices (Intersection)
* Domain Declaration:
—var D: domain(2) ={0..m, 0..n};
* Dis 2-D domain with (m+1) x (n+1) entries somaing
—var A: [D] int; domain0: {0..2, 1..3} — —
* Ais an array of integers with D as its domain domain1: {1..3, 3..5} - —
Why is this useful?
Chapel Domains Domain Slices (Intersection)

* Changing D changes A automatically!
* D={1..m, 0..n+1}
decrements height; increments width!

domain0

domain0: {0..2, 1..3} H

adds zeroes
( ) domainil: {1..3, 3..5} —

domain

domain2

a |5 [ | EEED |7 |8 |9 o

7 8 9
domain2: {1..2, 3..3}




Domain Slices (Intersection) Unbounded? How?

//domain2 is the intersection of domainl and domain0 * Plan: board starts with small living area, but can grow!
var domain2 = domainl [domain0]; — Start with 4x4 board

domain0

domain0: {0..2, 1..3} H

I
QOBmm:H_ﬁ..Ww..ﬂ = “_ _

domain

domain2

0111
domain2: {1..2, 3..3} too1
0001
0011
Domain Slices (Intersection) Unbounded? How?
//domain2 is the intersection of domainl and domain0 * Plan: board starts with small living area, but can grow!
var domain2 = domain1 [domain0]; — Start with 4x4 board
— Pad all sides with zeros
000O0O0O
0111 0j0111|0
1001 0|1 00 1|0
0001 00 0 0 1f{0
0011 0/0 01 1|0
000O0O0OO0
Domains: Unbounded Game of Life Unbounded? How?
* Example of * Plan: board starts with small living area, but can grow!
— Domain operations — Start with 4x4 board
— One domain for multiple arrays — Pad all sides with zeros
— Changing domain for arrays — lterate forward one round
* Rules:
— Each cell is either dead or alive
— Adjacent to all 8 surrounding cells
— Dead cell = Living if exactly 3 living neighbors o111 M M w N w M M M M H M M
— Living cell = Dead if not exactly 2 or 3 living 1001 oftoo01o ofo1o01f1
Jm_m_JUOq.m 0001 oj{0o 00 1|0 0/o0o0 11
0011 0/0 01 1|0 0/j0 0110
000O0O0OO0 0000O00O0



Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— Iterate forward one round

Recalculate subboard with living cells
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Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— lterate forward one round

Recalculate subboard with living cells

(Un)Pad as necessary
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Unbounded? How?

* Plan: board starts with small living area, but can grow!
Start with 4x4 board

Pad all sides with zeros

— lterate forward one round

Recalculate subboard with living cells

(Un)Pad as necessary

Repeat
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Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
ngRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = {boardRows, boardColumns};



Game of Life: Setting the Domain

//set the bounds
var minLivingRow = 3;
var maxLivingRow = 6;

var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = [boardRows, boardColumns];

var lifeArray: [gameDomain] int; //defaults to zeroes

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i Y {

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc li ¥, {

How can we just focus on the neighboring cells?

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc li ¥, {

How can we just focus on the neighboring cells?

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

How can we (easily) handle border cases?

(x.y)




Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

How can we (easily) handle border cases?

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain];

(x.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;
var neil =+ reduce i Domain];

i = nei - vl

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means
proc i '3 {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain;
var neil =+ reduce i Domain];

i = nei - vl

//the survival/reproduction rules for the Game of Life

if 2 <= nei && nei <=3 && cur yl==1{
return 1;

}else if cur y]== 0 && neij ==3{
return 1;

}else { return 0; }

Game of Life: Supporting Boards



Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? 1

rows
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Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;
. . o . . o 6 9
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Game of Life: Supporting Boards Game of Life: Supporting Boards

//next turn's board //next turn's board
var nextLifeArray: [gameDomain] int; var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? Also, want to easily determine bounds on where life is! How? 1

rows

maxLivingRow =

max reduce rowlfAliveArray; 5
minLivingRow =

min reduce rowlfAliveArray;
maxLivingColumn =

max reduce collfAliveArray; 1
minLivingColumn =

min reduce collfAliveArray;

o~ OO
b wWoOo
oOOoOWwWoo
O OO OO0

rowlfAliveArray

EEEEE S
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cols

colifAliveArray
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Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeros! 6 9
10000
0000 rows
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 50500 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 10000
minLivingColumn = 0000 cols
min reduce collfAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeroes! 6 9
10000
Solution: replace with middle index 0000 rows
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 50500 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 10000
minLivingColumn = 0000 cols
min reduce collfAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeroes! 6 9
13333
Solution: replace with middle index 3333 rows
3333
maxLivingRow = 4433 i
max reduce rowlfAliveArray; 5|3 53 3| rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce collfAliveArray; 117777
minLivingColumn = cols
min reduce collfAliveArray; W W M W
6777]| colfaliveArray
57777

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlifAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlifAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

//\ater on, use simple reductions:

maxLivi =max reduce i ray;

minLivi = min reduce f)

maxLivingColumn = max reduce columnifAliveArray;
minLivingColumn = min reduce columnifAliveArray;

Game of Life: Initial Life

//default values are 0 (no life) and 1 (life)

0 5 1/ ing locations start alive:
21000000 lifeArray[minLivingRow, minLivingColumn + 1] = 1;
O O ‘_ ._ ‘_ O lifeArray[minLivingRow, minLivingColumn + 2] = 1;
010010 lifeArray[minLivingRow, minLivingColumn + 3] = 1;
000010 lifeArray[minLivingRow + 1, minlLi
feArray[minLivingRow + 1, minLivil =1;
000110 fleArray[minLivingRow + 2, minLivingColumn +3] = 1;
N O O O O O O feAr inLivi + 3, minLivingColumn +2] = 1;

feArray[minLivingRow + 3, minLivingColumn + 3] = 1;



Game of Life: “If Alive” Functions

/* i life n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
e row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
dle row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange

/* 1flife n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {
i arraylx, y] = 1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
* Less easy: getting the index of the middle row

— Use dim domain method to get 1-D subrange
— Use high and low range properties

n array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
e row of array. */
proc rowlfAlive(x, y, array) {
if arraylx, y] = 1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

var rowHigh = rowRange. high;

var rowLow = rowRange.low;

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange
— Use high and low range properties
— Calculate and return middle index

in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
dle row of array. */
proc rowlfAlive(x, y, array) {

if array[x, y] = 1{

return x;

}

//determine and return the middle row index

var rowRange = array.domain.dim(1);

var rowHigh = rowRange.high;

var rowLow = rowRange.low;

return (rowLow + rowHigh)/2;




Game of Life: “If Alive” Functions

* Easy: returning the row/column number

* Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange
— Use high and low range properties
— Calculate and return middle index
— (Doesn't work if the range is strided.)

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */
proc rowlfAlive(x, y, array) {
if array[x, y] = 1{
return x;
}
//determine and return the middle row index
var rowRange = array.domain.dim(1);
var rowHigh = rowRange.high;
var rowLow = rowRange.low;
return (rowLow + rowHigh)/2;

Game of Life: Main Loop

for round in 1..numRounds {

maxLivingColumn = max reduce columnifAliveArray;
minLivingColumn = min reduce columnifAliveArray;

//reset the game domain, including buffer of no life

in = {(minl Row-1)..(maxLivi )

(minLivingColumn-1)..(maxLivingColumn+1)};
lifeArray = nextLifeArray;

Game of Life: Add writeln and Go!

* Add print statements for each iteration of the
loop and watch it go

* | added a printLifeArray function
* Final version available at:

https://dl.dropbox.com/u/43416022/SC13/GameOfLife.chpl

Parallel programming

My experience

* Course to explore HPC overall
(apps, machines, system software, programming)

* Talked about Chapel (and ZPL) in contrast to
MPI

Game of Life in MPI




Game of Life in MPI

Much harder than | thought

* Even a strong student struggled with code that
sent messages to another instance of itself

— Seemed like challenge of distributed memory
environment

— Weak OO background?

Global-view

* Specify entire computation rather than one

node’s (local) view of it

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};

var neighborDomain = adjacentDomain[currentBoard.domain];

var neighborSum = + reduce currentBoard[neighborDomain];

neighborSum = neighborSum - currentBoard[x, y];

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var x : int;

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var x :int;
}
* Can move computation to data:
on x do something();

Separate from parallelism

* Serial but multi-locale:
on Locales[0] do function1();
on Locales[1] do function2();

* Parallel and multi-locale:
cobegin {
on Locales[0] do functionl();
on Locales[1] do function2();



Managing data distribution
* Domain maps say how arrays are mapped

var A : [D] int dmapped Block(boundingBox=D) Second hands on time

var A : [D] int dmapped Cyclic(startldx=1)

http://faculty.knox.edu/dbunde/teaching/
chapel/SC13/exercises.html

Useful references

¢ B.L. Chamberlain, S.-E. Choi, E.C. Lewis, C. Lin, L.
Snyder and W.D. Weathersby. "The case for high level

parallel programming in ZPL". IEEE Computational . .
Science and Engineering 5(3): 76-86, 1998. link MCBBNJ\ \ discussion

* Lots of stuff on Chapel website

— H. Burkhart, M. Sathe, M. Christen, O. Schenk, and M.
Rietmann. “Run, Stencil, Run! HPC Productivity Studies in
the Classroom”. Proc. 6th Conf. Partitioned Global Address
Space Programming Models (PGAS), 2012. link

Take home: Parallel course How else might you use Chapel?

¢ Can demonstrate standard concepts * Operating Systems
— Easy thread generation for scheduling projects

» Software Design

. . . . — Some parallel design patterns have lightweight
Lots of possible reading material to expose Chapel implementations

research element

* Particularly suited to demonstrate global-view
and locality management

Artificial Intelligence

(or other courses w/ computationally-intense
projects)

* Independent Projects



Caveats

* Still in development
— Error messages thin
— New versions every 6 months
— Not many libraries
— (Students thought this was awesome!)

* No development environment
— Command-line compilation in Linux

Conclusions

* Chapel is easy to pick up

* Chapel can be used in many courses
¢ Loads of features, but...

* Flexible depth of material

* Students will dig in!

Your Feedback

* What are your impressions of Chapel?

* How likely are you to adopt Chapel?
— What course(s) will you use it in?

* What resources would help you adopt it?
— Kyle has a bunch and is happy to share!!!

Thanks!

dbunde@knox.edu
paithang@gmail.com



