Chapel: A Versatile Tool for Teaching
Undergraduates Parallel Programming

David P. Bunde, Knox College
Kyle Burke, Colby College

Acknowledgements

 Material drawn from tutorials created with
contributions from Johnathan Ebbers, Maxwell
Galloway-Carson, Michael Graf, Ernest Heyder, Sung
Joo Lee, Andrei Papancea, and Casey Samoore

* |ncorporates suggestions from Michael Ferguson

 Work partially supported by NSF awards DUE-1044299
and CCF-0915805. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation @

Topics

Introduction to Chapel

Chapel in Programming Languages
Hands-on time

Chapel in Analysis of Algorithms
Chapel in Parallel Programming
Hands-on time

Final Discussion

Basic Facts about Chapel

Parallel programming language developed
with programmer productivity in mind

Originally Cray’s project under DARPA’s High
Productivity Computing Systems program
Suitable for shared- or distributed memory
systems

Installs easily on Linux and Mac OS; use
Cygwin to install on Windows

Why Chapel?

* Flexible syntax; only need to teach features
that you need

* Provides high-level operations
* Designed with parallelism in mind

Flexible Syntax

e Supports scripting-like programs:
writeln(“Hello World!”);

* Also provides objects and modules

Provides High-level Operations

 Reductions
Ex: x =+ reduce A //sets x to sum of elements of A

Also valid for other operators (min, max, *, ...)

* Scans
Like a reduction, but computes value for each prefix
A=11,3,2,5];
B=+scanA; //setsBto|[1, 1+3=4, 4+2=6, 6+5=11]

Provides High-level Operations (2)

* Function promotion:
B =f(A); //applies f elementwise for any function f

* |Includes built-in operators:
C=A+1;
D=A+B;
E=A*B;

Designed with Parallelism in Mind

* Operations on previous slides parallelized
automatically

* Create asynchronous task w/ single keyword
* Built-in synchronization for tasks and variables

Your Presenters are...

Enthusiastic Chapel users
Interested in high-level parallel programming
Educators who use Chapel with students

NOT connected to Chapel development team

Chapel Resources

Materials for this workshop
http://faculty.knox.edu/dbunde/teaching/chapel/SIGCSE14/

Our tutorials
http://faculty.knox.edu/dbunde/teaching/chapel/
http://cs.colby.edu/kgburke/?resource=chapelTutorial

Chapel website (tutorials, papers, language specification)
http://chapel.cray.com

Mailing lists (on SourceForge)

Practice Systems

* We have practice accounts set up for use
during the workshop

e Get handout from one of the instructors

* Will keep accounts available for a couple of
weeks

“Hello World” in Chapel

* Create file hello.chpl containing
writeln(“Hello World!”);

 Compile with
chpl —o hello hello.chpl

e Run with
./hello

Variables and Constants

e Variable declaration format:
[config] var/const identifier : type;

var X : int;
const pi : real =3.14;
config const numSides : int = 4;

Serial Control Structures

* if statements, while loops, and do-while loops
are all pretty standard

e Difference: Statement bodies must either use
braces or an extra keyword:

if(x==5)theny=3;elsey=1;
while(x < 5) do x++;

Example: Reading until eof

var X : int;
while stdin.read(x) {
writeln(“Read value “ x);

Procedures/Functions

arg_type\' v/ argument omit for generic function

\

proc addOne(in val : 1nt, inout val2 : int) : 1nt {
val2 = val + 1;

return val + 1; return type

(omit if none
} or if can be inferred)

Arrays

* |Indices determined by a range:

var A : [1..5] int; //declares A as array of 5 ints
var B : [-3..3] int; //has indices -3 thru 3
var C : [1..10, 1..10] int; //multi-dimensional array

* Accessing individual cells:
A[l] = A[2] + 23;

* Arrays have runtime bounds checking

For Loops

* Ranges also used in for loops:
foriin 1..10 do statement;

foriin1..10{
loop body

* Can also use array or anything iterable

Timing code

use Time; //include Time library
var timer = new Timer(); //create Timer object
timer.start();

//do something...
timer.stop();

timer.elapsed() //returns (real-valued) number of seconds
timer.clear(); //get ready to use it again!

Programming Languages

* High-Performance Computing as
Paradigm

* Lots of design choices in Chapel to

discuss:

— Task Creation (instead of Threads) with
'‘begin’.

— Task Synchronicity with 'sync' and cobegin

— Parallel loops: forall and coforall

— Thread safety using variable 'sync’

— reduce overcomes bottleneck

PL: Task Generation

var total = 0;
for i in 1..100 do total += 3i;

writeln(''Sum is '', total, ''.''");

We can add a Timer to measure running time!

PL: Task Generation

var total = 0;
for i in 1..100 do total += 3i;

writeln(''Sum is '', total, ''.''");

We can add a Timer to measure running time!

use Time;

var timer: Timer;

var total = 0;

timer.start () ;

for i in 1..100 do total += 1i;
timer.stop();

writeln(''Sum is '', total, ''.'');
writeln(''That took '', timer.elapsed(), '' seconds.'');

PL: Task Generation

Now let's use another thread!

use Time;
var timer: Timer;
var total = 0;
var highTotal = O0;
var lowTotal = 0;
timer.start ();
begin ref (highTotal) ({
for i in 51..100 do highTotal += 1i;
}
for i in 1..50 do lowTotal += i;
total = lowTotal + highTotal,;
timer.stop();

writeln(''Sum is '', total, ''.'');
writeln (' 'That took '', timer.elapsed(), '' seconds.'');

Note: ref(highTotal) at begin

PL: Task Generation

Now let's use another thread!

use Time;
var timer: Timer;
var total = 0;
var highTotal = O0;
var lowTotal = 0;
timer.start ();
begin ref (highTotal) ({
for i in 51..100 do highTotal += 1i;
}
for i in 1..50 do lowTotal += i;
total = lowTotal + highTotal,;
timer.stop();

writeln(''Sum is '', total, ''.'');
writeln (' 'That took '', timer.elapsed(), '' seconds.'');

Result: faster, but sometimes incorrect.

PL: Synchronization

Incorrect: top thread may not finish.

Chapel provides a solution: sync

sync {
begin {

}
begin {

}

PL: Synchronization

Use sync:

timer.start();
sync {
begin ref (highTotal) {
for i in 51..100 do highTotal += 1i;
}
begin ref (lowTotal) {
for i in 1..50 do lowTotal += i;

}

}
total = lowTotal + highTotal;

PL: Syntactic Sugar

Ask students: How common Is this?

sync {
begin {
//single line of code
}
begin {
//another single line

}
begin ({
//even yet another single line

}
}

So, what did language designers do?

PL: Syntactic Sugar

cobegin ({
//single line of code
//another single line

//even yet another single line

}

PL: forall

forall: data-parallel loop

var sum = 0;
forall i in 1..100 {
sum += 1;

}

writeln(“Sum is: “, sum, “.”);

PL: forall

forall: data-parallel loop

var sum = 0;
forall i in 1..100 {
sum += 1;

}

writeln(“Sum is: “, sum, “.”);

Ask: Why doesn't this work?

PL: HPC Concepts

* Why doesn't it work?
— Race conditions
— Atomicity

— Synchronization solutions

PL: forall

One solution: synchronized variables

var sum : sync int;

sum = 0;

forall i1 in 1..100 {
sum += 1;

}

writeln(“Sum is: “, sum, “.”);

PL: sync bottleneck and reduce

* Sync causes a bottleneck:
— Running time still technically linear.
 Reductions:

— Divide-and-conqguer solution

PL: Reductions

12

PL: Reductions

23

15

21

12

PL: Reductions

30 11
N\ N\
I 23 -4 15
N N N N\
3 | -1 21| 1 | -5 |12

PL: Reductions

41
/\
30 11
N\ N\
7 23 -4 15
N N NN
8 | -1 21| 1 | -5 |12

PL: sync bottleneck and reduce

* Sync causes a bottleneck:
— Running time still technically linear.
 Reductions:

— Divide-and-conqguer solution

PL: sync bottleneck and reduce

* Sync causes a bottleneck:
— Running time still technically linear.
 Reductions:

— Divide-and-conqguer solution

— Simplify with 'reduce' keyword!

PL: sync bottleneck and reduce

var integers : [1..100] int,

forall 1 in integers.domain {
integers[i] = 1;

}

var sum = + reduce integers;

PL: sync bottleneck and reduce

var integers : [1..100] int,

forall 1 in integers.domain {
integers[i] = 1;

}

var sum = + reduce integers;

One line solution?

PL: sync bottleneck and reduce

var sum = + reduce (1..100);

PL: sync bottleneck and reduce

All intermediate values?

var sum = + scan array;

|1-1]12121|1]|-5]|12]| 3

PL: sync bottleneck and reduce

All intermediate values?

var sum = + scan array;

|1-1]12121|1]|-5]|12]| 3

PL: sync bottleneck and reduce

Fun Uses!

var factorials = * scan (1..10);

var threes : [1..10] int;

forall i1 in threes.domain do
threes[i] = 3;

var powersOfThree = * scan threes;

Chapel Ranges

* What is a range?
* How are ranges used?
* Range operations

Chapel Ranges

* What is a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?

Chapel Ranges

* What is a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* |teration space in loops

* Are there cool operations?
Yes!

Range Operation Examples

var someNaturals: range = 0..50;
var someEvens = someNaturals by 2;
(someEvens: 0, 2, 4, ..., 48, 50)
var someOdds = someEvens align 1;
(someOdds: 1, 3,5, 7, ..., 47, 49)
var fewerOdds = someQOdds # 6;
(fewerOdds: 1, 3,5, 7, 9, 11)

Other Cool Range Things

e Can create “infinite” ranges:
var naturals: range = 0..;

* Ranges in the “wrong order” are auto-empty:
var nothing: range = 2..-2;

* Otherwise, negatives are just fine

Chapel Domains

What is a domain?
How are domains used?
Operations on domains

Example: Game of Life

Chapel Domains

* Domain: index set
— Used to simplify addressing
— Every array has a domain to hold its indices
— Can include ranges or be sparse

 Example:
var A: [1..10] int; //indices are 1, 2, ..., 10

foriin A.domain {
//do something with A[i]
}

Chapel Domains

Array (hierarchy)

Array
Domain c;l':gs
(indices)

Chapel Domains

Array (hierarchy)

Array
Values

Domain

Chapel Domains

Array (hierarchy)

0,2,4,6,...,6000 Array
Values
(Range)

Chapel Domains

(2 Ranges)

Chapel Domains

Array (hierarchy)

Array
Values

0,2,4,6, ...,6000

. (Combo) °

Domain

Chapel Domains

* Domain Declaration:
—var D: domain(2) = {0..m, 0..n};
* Dis 2-D domain with (m+1) x (n+1) entries
—var A: [D] int;

* Ais an array of integers with D as its domain

Chapel Domains

* Domain Declaration:
—var D: domain(2) = {0..m, 0..n};
* Dis 2-D domain with (m+1) x (n+1) entries
—var A: [D] int;

* Ais an array of integers with D as its domain

Why is this useful?

Chapel Domains

* Changing D changes A automatically!
e D={1..m, 0..n+1}
decrements height; increments width!

(adds zeroes)

2 3 4 5 6 0

4 5 6 7 8 9 0

8 9

Domains vs. Ranges

* Despite how similar they seem so far, domains
and ranges are different

— Domains remain tied to arrays so that resizing the
domain resizes the array:

var R : range = 1..10; var D : domain(1) = {1..10};
var A : [R] int; var A : [D] int;

R=0.10; //no effecton array D =0..10; //resizes array
A[0] = 5; //runtime error A[0] = 5; //ok

 Domains are more general; some are not sets of
Integers

Domain Slices (Intersection)

domain0: {0..2, 1..3}

domainl: {1..3, 3..5}

Domain Slices (Intersection)

domain0: {0..2, 1..3}

domainl: {1..3, 3..5}

domain2: {1..2, 3..3}

Domain Slices (Intersection)

//domain2 is the intersection of domainl and domain0
var domain2 = domainl [domain0];

domain0

domain0: {0..2, 1..3}
domainl: {1..3, 3..5}

domain1

domain2

domain2: {1..2, 3..3}

Domain Slices (Intersection)

//domain2 is the intersection of domainl and domain0
var domain2 = domainl [domain0];

PL: Projects

* Matrix Multiplication
— Matrix-vector multiplication in class

— Different algorithms:
* Column-by-column
* One entry at a time

* Collatz conjecture testing
— Generate lots of tasks (coforall)
— How to synchronize?

PL: Takeaways

* Lots of language features to discuss!

* Learning HPC € Motivates Syntax

e Students love it!

Hands-on time

http://cs.colby.edu/kgburke/?resource=sigcse

Analysis of Algorithms

* Chapel material
— Assign basic tutorial
— Teach forall & cobegin (also algorithmic notation)

* Projects
— Partition integers
— BubbleSort
— MergeSort
— Nearest Neighbors

Algorithms Project: List Partition

Partition a list to two equal-summing halves.
Brute-force algorithm (don't know P vs NP yet)

Questions:
— What are longest lists you can test?
— What about in parallel?

Trick: enumerate possibilities and use forall

Algorithms Project: BubbleSort

LI LLLLLL LT
LU LI LT L]

* Instead of left-to-right, test all pairs in two steps!
* Two nested forall loops (in sequence) inside a for loop

Algorithms Project: BubbleSort

foriin0..n-1 {
forall k in 0..n/2
//compare 2k to 2k+1 (maybe swap)

forall kin 0..n/2-1
//compare 2k+1 to 2k+2 (maybe swap)

Algorithms Project: BubbleSort

foriin0..n-1 {
forall k in 0..n/2
//compare 2k to 2k+1 (maybe swap)

forall kin 0..n/2-1
//compare 2k+1 to 2k+2 (maybe swap)

lim,, T(n,p) = O(n)

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12[8 (5157|440 f16[7 |1]9

12(8|5(15/7|4| [4|of16]/7]1]9

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12[8 (5157|440 f16[7 |1]9

4(5(7|8|12/25| [o[1[4|7]9]|16

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin

12[8 (5157|440 f16[7 |1]9

4(5(7|8|12/25| [o[1[4|7]9]|16

ol1(4afa|5|7]|7]|8]9]|12|15/|16

Algorithms Project: Nearest Neighbors

* Find closest pair of (2-D) points.

* Two algorithmes:
— Brute Force
* (use a forall like bubbleSort)
— Divide-and-Conquer
* (use cobegin)
* A bit tricky

e Value of parallelism: much easier to program
the brute-force method

Reductions II: The Revenge

Summing values in an array

Summing values in an array

© ﬂ
N

P

2 |1

4

3

1

!

Q 9
/N
0 2

Finding max of an array

2 @
AN

{

/4

2 |1

4

3

ek

w

Finding the maximum index

2,7

2,9‘ \1,1 4,2/ ‘\3,3 1,zy \3,5 0,6/ \2,7
1 4 1

2 3 310 2

Finding the maximum index

2,7

2,9‘ \1,1 4,2/ ‘\3,3 1,zy \3,5 0,6/ \2,7
1 4 1

2 3 310 2

Parts of a reduction

e Tally: Intermediate state of computation
e Combine: Combine 2 tallies

 Reduce-gen: Generate result from tally

Parts of a reduction

e Tally: Intermediate state of computation

(value, index)
* Combine: Combine 2 tallies

take whichever pair has larger value
 Reduce-gen: Generate result from tally

return the index

Two Issues

* Need to convert initial values into tallies

* May want separate operation for values local
to a single processor

Two Issues

* Need to convert initial values into tallies

* May want separate operation for values local
to a single processor

"Empty” . Tallyof
tally these values

Parts of a reduction

Tally: Intermediate state of computation
Combine: Combine 2 tallies
Reduce-gen: Generate result from tally
Init: Create “empty” tally

Accumulate: Add single value to tally

Parallel reduction framework

Tally: Intermediate state of computation

36 @ 1 = Init: Create "empty" tally
a = Accumulate: Add 1 value to tally
¢ = Combine: Combine 2 tallies

rg = Reduce—gen: Generate result from tally
/ i}

7
D 3

(i) [e]1] (i) @84@75

-
&
]

co
& —
(=) /'
~

Defining reductions

Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add single value to tally

Sample problems: +

Defining reductions

Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add single value to tally

Sample problems: +, histogram

Defining reductions

Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add single value to tally

Sample problems: +, histogram, max

Defining reductions

Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add single value to tally

Sample problems: +, histogram, max, 2" largest

Defining reductions

Tally: Intermediate state of computation
* Combine: Combine 2 tallies

* Reduce-gen: Generate result from tally
* |nit: Create “empty” tally

* Accumulate: Add single value to tally

Sample problems: +, histogram, max, 2" largest,
length of longest run

Can go beyond these...

* indexOf (find index of first occurrence)
* sequence alignment [Srinivas Aluru]

* n-body problem [Srinivas Aluru]

Relationship to dynamic programming

* Challenges in dynamic programming:
— What are the table entries?

— How to compute a table entry from previous entries?

* Challenges in reduction framework:
— What is the tally?

— How to compute a new tallies from previous ones?

Reductions in Chapel

* Express reduction operation in single line:
var s =+ reduce A; //Ais array, s gets sum

e Supports +, *, A (xor), &&, ||, max, min, ...

* minloc and maxloc return a tuple with value
and its index:
var (val, loc) = minloc reduce A;

Reduction example

* Can also use reduce on function plus a range
l-x*dx .

* Ex: Approximate /2 using f.1

config const numRect = 10000000;
const width = 2.0 / numRect; //rectangle width
const baseX = -1 - width/2;
const halfPl = + reduce [i in 1..numRect]
(width * sgrt(1.0 — (baseX + i*width)**2));

Defining a custom reduction

* Create object to represent intermediate state

* Must support
— accumulate: adds a single element to the state
— combine: adds another intermediate state
— generate: converts state object into final output

Classes in Chapel

class Circle {
var radius : real;

proc area() : real {
return 3.14 * radius * radius;

}
}

var c1, c2 : Circle; //creates 2 Circle references

cl = new Circle(10); /* uses system-supplied constructor
to create a Circle object
and makes c1 refer to it */

c2 =cl; //makes c2 refer to the same object

delete c1; //memory must be manually freed

Inheritance

class Circle : Shape { //Circle inherits from Shape

var s : Shape;

s = new Circle(10.0); //automatic cast to base class

var area =s.area(); /* call recipient determined
by object’s dynamic type */

Example “custom” reduction

class MyMin : ReduceScanOp { //finds min element (equiv. to built-in “min”)
type eltType; //type of elements
var soFar : eltType = max(eltType); //minimum so far

proc accumulate(val : eltType) {
if(val < soFar) { soFar = val; }

}

proc combine(other : MyMin) {
if(other.soFar < soFar) { soFar = other.soFar; }

}

proc generate() { return soFar; }

Example “custom” reduction

class MyMin : ReduceScanOp { //finds min element (equiv. to built-in “min”)
type eltType; //type of elements
var soFar : eltType = max(eltType); //minimum so far

proc accumulate(val : eltType) {
if(val < soFar) { soFar = val; }

}

proc combine(other : MyMin) {
if(other.soFar < soFar) { soFar = other.soFar; }

}

proc generate() { return soFar; }

}

var theMin = MyMin reduce A;

What about scans?

* |nstead of just getting overall value, also
compute value for every prefix

A2 11431302

sum |2 | 3 | 7 10| 11| 14| 14| 16

What about scans?

* |nstead of just getting overall value, also
compute value for every prefix

A2 11431302

sum |2 | 3 | 7 10| 11| 14| 14| 16

var minsArray = MyMin scan A;

Computing the scan in parallel

164 Upward pass to compute reduction

3/@\7 g Q\z

O O O O

Computing the scan in parallel

161 10 Upward pass to compute reduction
0 Q Downward pass to also compute scan

N

O

3 0] 2

Presenting reductions

* Using reductions with standard functions
— Optionally including scans

* Defining your own reductions

Parallel programming course

My experience

* Course to explore HPC overall
(apps, machines, system software, programming)

* Talked about Chapel (and ZPL) in contrast to
MPI

Game of Life in MPI

Game of Life in MPI

Global-view

* Specify entire computation rather than one
node’s (local) view of it

var adjacentDomain : domain(2) = {x-1..x+1, y-1..y+1};
var neighborDomain = adjacentDomain|[currentBoard.domain];

var neighborSum = + reduce currentBoard[neighborDomain];
neighborSum = neighborSum - currentBoard|x, y];

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var X : int;

Representing locality

* Give control over where code is executed:
on Locales[0] do
something();
* and where data is placed:
on Locales[1] {
var X : int;

}

* Can move computation to data:
on x do something();

Separate from parallelism

e Serial but multi-locale:
on Locales[0] do function1();
on Locales[1] do function2();

* Parallel and multi-locale:
cobegin {
on Locales[0] do functionl();
on Locales[1] do function2();

Managing data distribution

* Domain maps say how arrays are mapped

var A : [D] int dmapped Block(boundingBox=D)

var A : [D] int dmapped Cyclic(startldx=1)

Useful references

 B.L. Chamberlain, S.-E. Choi, E.C. Lewis, C. Lin, L.
Snyder and W.D. Weathersby. "The case for high level
parallel programming in ZPL”. IEEE Computational
Science and Engineering 5(3): 76-86, 1998. link

e Lots of stuff on Chapel website

— H. Burkhart, M. Sathe, M. Christen, O. Schenk, and M.
Rietmann. “Run, Stencil, Run! HPC Productivity Studies in
the Classroom”. Proc. 6th Conf. Partitioned Global Address
Space Programming Models (PGAS), 2012. link

Take home: Parallel course

* Can demonstrate standard concepts

* Particularly suited to demonstrate global-view
and locality management

* Lots of possible reading material to expose
research element

Hands-on time

http://cs.colby.edu/kgburke/?resource=sigcse

Summary / discussion

How else might you use Chapel?

Operating Systems
— Easy thread generation for scheduling projects

Software Design

— Some parallel design patterns have lightweight
Chapel implementations

Artificial Intelligence

(or other courses w/ computationally-intense
projects)

Independent Projects

Caveats

 Still in development
— Error messages thin
— New versions every 6 months
— Not many libraries
— (Students thought this was awesome!)

* No development environment

— Command-line compilation in Linux

Conclusions

Chapel is easy to pick up

Chapel can be used in many courses
Loads of features, but...

Flexible depth of material

Students will dig in!

Your Feedback

 What are your impressions of Chapel?
* How likely are you to adopt Chapel?

— What course(s) will you use it in?

 What resources would help you adopt it?
— Kyle has a bunch and is happy to share!!!

Thanks!

dbunde@knox.edu
kgburke@colby.edu

