
CS 226: Operating systems and networking
Spring Term, 2008

Homework 7

Due: Wednesday 5/7 at 11:59pm

Complete the following. Submit the first problem via handin as assignment hwk7. The second problem can
be submitted via email, on paper, or as a comment in the code for the first problem.

1. (8 points) Take a look at FastSerialPrimes.java in the course directory. The primality testing in
this program improves upon the version used in SerialPrimes.java by only dividing by smaller prime
numbers. If you time it, it actually runs faster than the fixed version of the threaded prime finder. (I
have placed my version of that program into the course directory as ThreadedPrimesFixed.java.)

Write a partially multi-threaded version of FastSerialPrimes. Your version should compute small
primes serially and then use two threads to count larger ones. In this context, “small” means at most√

2, 000, 000. The small primes can be stored in a shared ArrayList while the larger ones should be
counted using a private variable in each thread. (I did not store the actual values of the larger primes,
but you may do this.) My version achieved a speedup near 2.

2. (4 points) The reason for creating a version of FastSerialPrimes that is only partially multi-threaded
is that the version that I wrote modeled after ThreadedPrimesFixed was significantly slower than the
serial version. In addition, it had a race condition. Explain what type of overhead might be slowing
this program down and also what race condition would appear when writing a fully multi-threaded
version of FastSerialPrimes.


