
CS 226: Operating systems and networking
Spring Term, 2008

Lab 5

Multiple threads

In this lab, you will gain some exposure to the Java Thread class and also see some of the issues in parallel
programming. Begin with the code SerialPrimes.java in the course directory. This is a program that
counts the number of prime numbers (those only divisible by 1 and themselves) between 1 and 2,000,000.
Look through this program, compile it, and then time a run of it with the command line

time java SerialPrimes

Approximately 19 seconds later, you should be told that there are 148,933 primes in the range 1–2,000,000.

In addition to the output from the program itself, the time program will print out some information on your
program’s running time. The first two numbers are the amount of CPU time the program took while in user
mode (i.e. not during system calls) and the amount of system time (i.e. during system calls). The third
number is the total amount of time between when the program started and when it ended; this is called the
wall clock time.

Now that you are familiar with the serial (i.e. non-parallel) implementation, it is time to take a look at a
naive multi-threaded implementation. Get a copy of ThreadedPrimes.java from the course directory and
look through its code. Instead of a prime-finding loop in main, the work is done by PrimeFinder objects,
each of which is responsible for finding primes within a range specified during object construction. The
main method creates two of these objects with complementary ranges and assigns one of them to each of
two threads. To allow this, PrimeFinder implements the Runnable interface, which simply requires the run
method. Once the work is assigned to each thread, the threads are started by calling their start methods.

Compile and run this program. The results are unimpressive; the program dramatically undercounts the
number of primes. The problem is that main is printing the number of primes before the PrimeFinder
objects have completed their counts. To fix this, add the lines

t1.join();
t2.join();

after the threads are started. The join method does not return until the thread has died.1 Thus, these calls
delay the printing of results until both of the counting threads have completed.

After adding these lines, recompile the program and run it again. The counted number of primes still does
not agree with the value given by the serial program. Can you identify the cause of this difference? See if
you can figure it out before turning to the other side of the page.

1Technically, the thread can also have been interrupted by another part of the program, though this will not occur in our
program. If this had occurred, an InterruptedException would be thrown, which is why our main method is noted to throw
this type of exception.



The problem is that our program suffers from a race condition when it updates pCount. Although pCount++
is a single Java statement, the thread can be interrupted in the middle of it, leading to some primes not
being included in the count. To fix this, we will add a lock around the increment line. Create a static
object called lock in the ThreadedPrimes class. (The type does not matter; I made mine an Object.) Then,
embed the line incrementing pCount inside a block

synchronized(lock) {
...

}

With this, the increment can only occur after the lock associated with the lock object has been acquired.
In Java, every object has a lock associated with it; we just made a static object so it could be shared by
the two occurrences of PrimeFinder. The synchronized statement automatically acquires the lock before
entering the protected block of code and automatically releases it at the block’s end.

After this change, the number of primes should be properly calculated. One potential criticism of this
solution, however, is that the two threads constantly need the lock. This does not cause the program much
overhead since the critical section is so short, but a better solution is possible. Our prime algorithm is what
is called embarrassingly parallel because it is so easy to break into subproblems that can run independently;
testing the primality of each number is completely independent of all the other numbers. With a problem
like this, it seems wasteful to use the lock so heavily. Instead, modify the solution so that each PrimeFinder
object keeps its own count of the number of primes it has found. Then, after it has counted all the primes
within its range, it should update pCount (using a lock of course). With this modification, each thread only
claims the lock once.

So how fast is the resulting program? Run it using time and compare the result to the serial version.
The first two numbers should be nearly identical between the two implementations because they do almost
exactly the same things and therefore need the same amount of CPU time. The wall clock times should
differ, though. The speedup of our parallel implementation is the serial wall clock time divided by the parallel
wall clock time. Since the lab machines have two processors and we are creating a thread to run on each,
an ideal speedup would be 2. In practice, parallel programs cannot normally achieve linear speedup, as this
would be called, since some parts of the program run serially and communication (the lock in our case)
incurs some overhead. However, we should be able to get a speedup extremely close to 2 for this program
because it splits into parallel subproblems so well.

Unfortunately, I get a speedup of only about 1.6. Can you explain this? (Hint: What happens when you
set the two parts to find primes within the ranges 1-1,100,000 and 1,100,001–2,000,000 instead splitting the
test region evenly?) Once you understand the problem, see if you can fix it. (There are at least two fairly
straightforward ways to do so.)

If you have extra time, continue to experiment with threaded programs to find prime numbers. What
happens if you create more than two threads? Another way to speed up the computation is to only divide a
candidate number by the primes smaller than its square root rather than all values smaller than its square
root; can you use this to further improve your performance? (You will probably want to use the Vector
class, which is a synchronized version of ArrayList.)

2


