
CS226 OS & Networking Blaheta

Lab 6
30 Apr 2009

A thread is essentially a lightweight process, where you can have multiple
threads of execution within the same process that each have their own call
stack. It’s different from a regular process, however, in that it shares certain
resources at the split point rather than making copies of them; this means
that some of the inter-process communication we’ve been discussing, which
requires shared variables, can be most straightforwardly implemented using
threads.

In this lab, you will gain some exposure to the POSIX thread library, a
widely-implemented standard for threads, and also see some of the issues
involved in parallel programming. Begin with the code serial primes.c
in the course directory. This is a program that counts the number of
prime numbers (those only divisible by 1 and themselves) between 1 and
20,000,000. Copy it into your own directory and compile with the command
line

cc serial_primes.c -o serial_primes

(This creates the executable as serial primes rather than a.out.) Use the
shell construct time to time the run as follows:

time serial_primes

Approximately 18 seconds later, you should be told that there are 1,270,607
primes in that range.

In addition to the output from the program itself, the time program will
print out some information on your program’s running time. The first two
numbers are the amount of CPU time the program took while in user mode
(i.e. not during system calls) and the amount of system time (i.e. during
system calls). The third number is the total amount of time between when
the program started and when it ended; this is called the wall clock time.

1 Threads

Now that you are familiar with the serial (i.e. non-parallel) implementation,
it is time to take a look at a näıve multi-threaded implementation. Get a



CS226 Lab 6 30 Apr 2009

copy of threaded primes.c from the course directory and look through its
code. The grunt work is still done by count primes, but in a more indirect
fashion and in two batches. What main now does is create two threads, each
of which runs a single function (prime thread) with a single argument (a
pointer to t1arg or t2arg). That function is then responsible for the call
to count primes.

Compile and run this program. The results are unimpressive; the program
immediately exits and dramatically undercounts the number of primes. The
problem is that main is printing the number of primes before the threads
have completed their counts. To fix this, add the lines

pthread_join(t1, NULL);
pthread_join(t2, NULL);

after the threads are started. (Actually, you should check their return val-
ues as well—like pthread create, they return 0 on success.) Much like
the process-oriented system call wait, the pthread join function does not
return until the thread has died. If the function called at the start of the
thread (in this case prime thread) had a return value that we cared to pro-
cess, we could retrieve that value via the second argument to pthread join.
These calls delay the printing of results until both of the counting threads
have completed.

After adding these lines, recompile the program and run it again. Compare
the timed results to those of the serial version. There are two important dif-
ferences: first, the threaded version runs faster, due to both threads being
able to run simultaneously. Second, the threaded version slightly under-
counts the number of primes. Try to identify where the problem lies before
continuing to the next section. (Hint: run the threaded version a few more
times. What do these results suggest?)

2



CS226 Lab 6 30 Apr 2009

2 Fixing the problem

The problem is that our program suffers from a race condition when it up-
dates pCount. Although ++*pCount is a single statement, it is compiled into
multiple statements in machine language (at least on these systems), and so
the thread can be interrupted in the middle of it, leading to some primes not
being included in the count. To fix this, we will create a mutex—a semaphore
specifically aimed at controlling access to a critical region—to prevent inter-
ruption during the increment line. Copy your existing threaded primes.c
to a backup file so that you will be able to compare its performance to your
later versions.

First, a single mutex variable needs to be created that both threads will
have access to. So, at the start of main, create the mutex and init it:

pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

Then, modify the prime arg struct, the prime thread function, and the
count primes function so that a pointer to the mutex can be passed along
into the actual prime-counting code.

Finally, establish the actual critical region by preceding the increment with a
call to pthread mutex lock and following it with a call to pthread mutex unlock.
With this, the increment can only occur after the lock associated with the
mutex object has been acquired.

After this change, the number of primes should be properly calculated. One
potential criticism of this solution, however, is that the two threads con-
stantly need the lock. This does not cause the program much overhead
since the critical section is so short, but a better solution is possible. Our
prime algorithm is what is called embarrassingly parallel because it is so easy
to break into subproblems that can run independently; testing the primality
of each number is completely independent of all the other numbers. With a
problem like this, it seems wasteful to use the lock so heavily. Instead, once
again, save a copy for later comparison and then modify your solution so
that each count primes call keeps its own count of the number of primes
it has found. Then, after it has counted all the primes within its range, it
should update pCount (using a lock of course). With this modification, each
thread only claims the lock once.

So how fast is the resulting program? Run it using time and compare the

3



CS226 Lab 6 30 Apr 2009

results to the serial version and the earlier threaded versions. The first
two numbers should be nearly identical between the two implementations
because they do almost exactly the same things and therefore need the
same amount of CPU time. The wall clock times should differ, though. The
speedup of our parallel implementation is the serial wall clock time divided by
the parallel wall clock time. Since the lab machines have multiple processors
and we are creating two threads, each thread runs on a different processor
and an ideal speedup would be 2. In practice, parallel programs cannot
normally achieve linear speedup, as this would be called, since some parts of
the program run serially and communication (the lock in our case) incurs
some overhead. However, we should be able to get a speedup extremely close
to 2 for this program because it splits into parallel subproblems so well.

Unfortunately, I get a speedup of only about 1.6. Can you explain this?
(Hint: What happens when you set the two parts to find primes within the
ranges 1-1,100,000 and 1,100,001–2,000,000 instead splitting the test region
evenly?) Once you understand the problem, see if you can fix it. (There are
at least two fairly straightforward ways to do so.)

If you have extra time, continue to experiment with threaded programs to
find prime numbers. What happens if you create more than two threads?
Another way to speed up the computation is to only divide a candidate num-
ber by the primes smaller than its square root rather than all values smaller
than its square root; can you use this to further improve your performance?

4


